
Page 1 © Hortonworks Inc. 2014

Discardable, In-Memory
Materialized Query for Hadoop
Julian Hyde Julian Hyde

June 3rd, 2014

Page 2 © Hortonworks Inc. 2014

About me

Julian Hyde

Architect at Hortonworks

Open source:
•  Founder & lead, Apache Optiq (query optimization framework)
•  Founder & lead, Pentaho Mondrian (analysis engine)
•  Committer, Apache Drill
•  Contributor, Apache Hive
•  Contributor, Cascading Lingual (SQL interface to Cascading)

Past:
•  SQLstream (streaming SQL)
•  Broadbase (data warehouse)
•  Oracle (SQL kernel development)

Page 3 © Hortonworks Inc. 2014

Before we get started…

The bad news
•  This software is not available to download
•  I am a database bigot
•  I am a BI bigot

The good news
•  I believe in Hadoop
•  Now is a great time to discuss where Hadoop is going

Page 4 © Hortonworks Inc. 2014

Hadoop today

Brute force
Hadoop brings a lot of CPU, disk, IO
Yarn, Tez, Vectorization are making Hadoop faster
How to use that brute force is left to the application

Business Intelligence
Best practice is to pull data out of Hadoop
•  Populate enterprise data warehouse
•  In-memory analytics

•  Custom analytics, e.g. Lambda architecture

Ineffective use of memory

Opportunity to make Hadoop smarter

Page 5 © Hortonworks Inc. 2014

Brute force + diplomacy

Page 6 © Hortonworks Inc. 2014

Hardware trends

Typical Hadoop server configuration

Lots of memory - but not enough for all data
More heterogeneous mix (disk + SSD + memory)

What to do about memory?

Year 2009 2014
Cores 4 – 8 24
Memory 8 GB 128 GB
SSD None 1 TB
Disk 4 x 1 TB 12 x 4 TB
Disk : memory 512 : 1 384 : 1

Page 7 © Hortonworks Inc. 2014

Dumb use of memory - Buffer cache

Example:
50 TB data
1 TB memory
Full-table scan

Analogous to virtual
memory
•  Great while it works, but…

•  Table scan nukes the cache!

Table (disk)

Buffer cache
(memory)

Table scan

Query
operators
(Tez, or
whatever)

Pre-fetch

Page 8 © Hortonworks Inc. 2014

“Document-oriented” analysis

Operate on working sets small enough to fit in memory

Analogous to working on a document (e.g. a spreadsheet)
•  Works well for problems that fit into memory (e.g. some machine-learning algorithms)
•  If your problem grows, you’re out of luck

Working set
(memory)

Table (disk)

Interactive user

Page 9 © Hortonworks Inc. 2014

Smarter use of memory - Materialized queries

In-memory
materialized
queries

Tables
on disk

Page 10 © Hortonworks Inc. 2014

Census data

Census table – 300M records

Which state has the most
males?

Brute force – read 150M
records

Smarter – read 50 records

CREATE TABLE Census (id, gender,  
 zipcode, state, age);

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1;

CREATE TABLE CensusSummary AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender;

SELECT state, c"
FROM CensusSummary  
WHERE gender = ‘M’  
ORDER BY c DESC LIMIT 1;

Page 11 © Hortonworks Inc. 2014

Materialized view – Automatic smartness

A materialized view is a
table that is declared to be
identical to a given query

Optimizer rewrites query
on “Census” to use
“CensusSummary” instead

Even smarter – read 50
records

CREATE MATERIALIZED VIEW CensusSummary  
 STORAGE (MEMORY, DISCARDABLE) AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender;

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1;

Page 12 © Hortonworks Inc. 2014

Indistinguishable from magic

Run query #1

System creates materialized
view in background

Related query #2 runs
faster

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1;

CREATE MATERIALIZED VIEW CensusSummary  
 STORAGE (MEMORY, DISCARDABLE) AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender;

SELECT state,  
 COUNT(NULLIF(gender, ‘F’)) AS males,  
 COUNT(NULLIF(gender, ‘M’)) AS females  
FROM Census"
GROUP BY state  
HAVING females > males;

Page 13 © Hortonworks Inc. 2014

Materialized views - Classic

Classic materialized view
(Oracle, DB2, Teradata, MSSql)!
1.  A table defined using a SQL query
2.  Designed by DBA!
3.  Storage same as a regular table

1.  On disk

2.  Can define indexes

4.  DB populates the table
5.  Queries are rewritten to use the

table**
6.  DB updates the table to reflect

changes to source data (usually
deferred)*

*Magic required
!

!

SELECT t.year, AVG(s.units)  
FROM SalesFact AS s"
JOIN TimeDim AS t USING (timeId)"
GROUP BY t.year;

CREATE MATERIALIZED VIEW SalesMonthZip AS"
SELECT t.year, t.month,"
 c.state, c.zipcode,"
 COUNT(*), SUM(s.units), SUM(s.price)"
FROM SalesFact AS s"
JOIN TimeDim AS t USING (timeId)"
JOIN CustomerDim AS c USING (customerId)"
GROUP BY t.year, t.month, "
 c.state, c.zipcode;

Page 14 © Hortonworks Inc. 2014

Materialized views - DIMMQ

DIMMQs - Discardable, In-memory Materialized Queries

Differences with classic materialized views
1.  May be in-memory
2.  HDFS may discard – based on DDM (Distributed Discardable Memory)
3.  Lifecycle support:

1.  Assume table is populated

2.  Don’t populate & maintain
3.  User can flag as valid, invalid, or change definition (e.g. date range)
4.  HDFS may discard

4.  More design options:
1.  DBA specifies

2.  Retain query results (or partial results)
3.  An agent builds MVs based on query traffic

Page 15 © Hortonworks Inc. 2014

DIMMQ compared to Spark RDDs

It’s not “either / or”
•  Spark-on-YARN, SQL-on-Spark already exist; Cascading-on-Spark common soon
•  Hive-queries-on-RDDs, DIMMQs populated by Spark, Spark-on-Hive-tables are possible

Spark RDD DIMMQ
Access By reference By algebraic expression
Sharing Within session Across sessions
Execution model Built-in External
Recovery Yes No
Discard Failure or GC Failure or cost-based
Native organization Memory Disk
Language Scala (or other JVM

language)
Language-independent

Page 16 © Hortonworks Inc. 2014

Data independence

This is not just about SQL standards compliance!
Materialized views are supposed to be transparent in creation, maintenance and use.
If not one DBA ever types “CREATE MATERIALIZED VIEW”, we have still succeeded

Data independence
Ability to move data around and not tell your application
Replicas
Redundant copies
Moving between disk and memory
Sort order, projections (à la Vertica), aggregates (à la Microstrategy)
Indexes, and other weird data structures

Page 17 © Hortonworks Inc. 2014

Implementing DIMMQs

Relational algebra
Apache Optiq (just entered incubator – yay!)
Algebra, rewrite rules, cost model

Metadata
Hive: “CREATE MATERIALIZED VIEW”
Definitions of materialized views in HCatalog

HDFS - Discardable Distributed Memory (DDM)
Off-heap data in memory-mapped files
Discard policy
Build in-memory, replicate to disk; or vice versa
Central namespace

Evolution of existing components

Page 18 © Hortonworks Inc. 2014

Tiled queries in distributed memory

Query: SELECT x, SUM(y) FROM t GROUP BY x

In-memory
materialized
queries

Tables
on disk

Page 19 © Hortonworks Inc. 2014

An adaptive system

Ongoing activities:
•  Agent suggests new MVs

•  MVs are built in background
•  Ongoing query activity uses MVs
•  User marks MVs as invalid due to source data

changes
•  HDFS throws out MVs that are not pulling their

weight

Dynamic equilibrium
DIMMQs continually created & destroyed
System moves data around to adapt to
changing usage patterns

Page 20 © Hortonworks Inc. 2014

Lambda architecture

From “Runaway complexity in Big Data and a plan to stop it” (Nathan Marz)

Page 21 © Hortonworks Inc. 2014

Lambda architecture in Hadoop via DIMMQs

Use DIMMQs for materialized historic & streaming data

MV on disk

MV in key-
value store

Hadoop

Query via
SQL

Page 22 © Hortonworks Inc. 2014

Variations on a theme

Materialized queries don’t have to be in memory

Materialized queries don’t need to be discardable

Materialized queries don’t need to be accessed via SQL

Materialized queries allow novel data structures to be
described

Maintaining materialized queries - build on Hive ACID

Fine-grained invalidation

Streaming into DIMMQs

In-memory tables don’t have to be materialized queries

Data aging – Older data to cheaper storage

Discardable

In-memory

Algebraic

Page 23 © Hortonworks Inc. 2014

Lattice

Space of possible materialized views
A star schema, with mandatory many-to-one
relationships

Each view is a projected, filtered
aggregation
•  Sales by zipcode and quarter in 2013

•  Sales by state in Q1, 2012

Lattice gathers stats
•  “I used MV m to answer query q and avoided

fetching r rows”
•  Cost of MV = construction effort + memory * time
•  Utility of MV = query processing effort saved

Recommends & builds optimal MVs

CREATE LATTICE SalesStar AS"
SELECT *  
FROM SalesFact AS s  
JOIN TimeDim AS t USING (timeId)"
JOIN CustomerDim AS c USING (customerId);"

Page 24 © Hortonworks Inc. 2014

Conclusion

Broadening the tent – batch, interactive BI, streaming, iterative

Declarative, algebraic, transparent

Seamless movement between memory and disk

Adding brains to complement Hadoop’s brawn

Page 25 © Hortonworks Inc. 2014

Thank you!

My next talk:
“Cost-based query optimization in Hive”
4:35pm Wednesday

@julianhyde

http://hortonworks.com/blog/dmmq/

http://hortonworks.com/blog/ddm/

http://incubator.apache.org/projects/optiq.html

