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About me 

Julian Hyde 

Architect at Hortonworks 

Open source: 
•  Founder & lead, Apache Optiq (query optimization framework) 
•  Founder & lead, Pentaho Mondrian (analysis engine) 
•  Committer, Apache Drill 
•  Contributor, Apache Hive 
•  Contributor, Cascading Lingual (SQL interface to Cascading) 

Past: 
•  SQLstream (streaming SQL) 
•  Broadbase (data warehouse) 
•  Oracle (SQL kernel development) 
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Before we get started… 

The bad news 
•  This software is not available to download 
•  I am a database bigot 
•  I am a BI bigot 

The good news 
•  I believe in Hadoop 
•  Now is a great time to discuss where Hadoop is going 
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Hadoop today 

Brute force 
Hadoop brings a lot of CPU, disk, IO 
Yarn, Tez, Vectorization are making Hadoop faster 
How to use that brute force is left to the application 

Business Intelligence 
Best practice is to pull data out of Hadoop 
•  Populate enterprise data warehouse 
•  In-memory analytics 

•  Custom analytics, e.g. Lambda architecture 

Ineffective use of memory 

Opportunity to make Hadoop smarter 
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Brute force + diplomacy 
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Hardware trends 

Typical Hadoop server configuration 

 

 

 

 

 
Lots of memory - but not enough for all data 
More heterogeneous mix (disk + SSD + memory) 

What to do about memory? 

Year 2009 2014 
Cores 4 – 8 24 
Memory 8 GB 128 GB 
SSD None 1 TB 
Disk 4 x 1 TB 12 x 4 TB 
Disk : memory 512 : 1 384 : 1 
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Dumb use of memory - Buffer cache 

Example: 
50 TB data 
1 TB memory 
Full-table scan 

 

Analogous to virtual 
memory 
•  Great while it works, but… 

•  Table scan nukes the cache! 

Table (disk) 

Buffer cache 
(memory) 

Table scan 

Query 
operators 
(Tez, or 
whatever) 

Pre-fetch 
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“Document-oriented” analysis 

Operate on working sets small enough to fit in memory 

Analogous to working on a document (e.g. a spreadsheet) 
•  Works well for problems that fit into memory (e.g. some machine-learning algorithms) 
•  If your problem grows, you’re out of luck 

Working set 
(memory) 

Table (disk) 

Interactive user 



Page 9 © Hortonworks Inc. 2014 

Smarter use of memory - Materialized queries 

In-memory 
materialized 
queries 

Tables 
on disk 
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Census data 

Census table – 300M records 

 

Which state has the most 
males? 

 

Brute force – read 150M 
records 

 

Smarter – read 50 records 

CREATE TABLE Census (id, gender,  
 zipcode, state, age); 

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1; 

CREATE TABLE CensusSummary AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender; 

SELECT state, c"
FROM CensusSummary  
WHERE gender = ‘M’  
ORDER BY c DESC LIMIT 1; 
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Materialized view – Automatic smartness 

A materialized view is a 
table that is declared to be 
identical to a given query 

 

 

Optimizer rewrites query 
on “Census” to use 
“CensusSummary” instead 

 

Even smarter – read 50 
records 

 

 

CREATE MATERIALIZED VIEW CensusSummary  
 STORAGE (MEMORY, DISCARDABLE) AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender; 

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1; 
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Indistinguishable from magic 

Run query #1 

 

 

 

System creates materialized 
view in background 

 

 

Related query #2 runs 
faster 

SELECT state, COUNT(*) AS c  
FROM Census"
WHERE gender = ‘M’"
GROUP BY state  
ORDER BY c DESC LIMIT 1; 

CREATE MATERIALIZED VIEW CensusSummary  
 STORAGE (MEMORY, DISCARDABLE) AS"
SELECT state, gender, COUNT(*) AS c  
FROM Census"
GROUP BY state, gender; 

SELECT state,  
  COUNT(NULLIF(gender, ‘F’)) AS males,  
  COUNT(NULLIF(gender, ‘M’)) AS females  
FROM Census"
GROUP BY state  
HAVING females > males; 
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Materialized views - Classic 

Classic materialized view 
(Oracle, DB2, Teradata, MSSql)!
1.  A table defined using a SQL query 
2.  Designed by DBA!
3.  Storage same as a regular table 

1.  On disk 

2.  Can define indexes 

4.  DB populates the table 
5.  Queries are rewritten to use the 

table** 
6.  DB updates the table to reflect 

changes to source data (usually 
deferred)* 

*Magic required 
!

!

SELECT t.year, AVG(s.units)  
FROM SalesFact AS s"
JOIN TimeDim AS t USING (timeId)"
GROUP BY t.year; 

CREATE MATERIALIZED VIEW SalesMonthZip AS"
SELECT t.year, t.month,"
  c.state, c.zipcode,"
  COUNT(*), SUM(s.units), SUM(s.price)"
FROM SalesFact AS s"
JOIN TimeDim AS t USING (timeId)"
JOIN CustomerDim AS c USING (customerId)"
GROUP BY t.year, t.month, "
  c.state, c.zipcode; 
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Materialized views - DIMMQ 

DIMMQs - Discardable, In-memory Materialized Queries 

Differences with classic materialized views 
1.  May be in-memory 
2.  HDFS may discard – based on DDM (Distributed Discardable Memory) 
3.  Lifecycle support: 

1.  Assume table is populated 

2.  Don’t populate & maintain 
3.  User can flag as valid, invalid, or change definition (e.g. date range) 
4.  HDFS may discard 

4.  More design options: 
1.  DBA specifies 

2.  Retain query results (or partial results) 
3.  An agent builds MVs based on query traffic 
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DIMMQ compared to Spark RDDs 

It’s not “either / or” 
•  Spark-on-YARN, SQL-on-Spark already exist; Cascading-on-Spark common soon 
•  Hive-queries-on-RDDs, DIMMQs populated by Spark, Spark-on-Hive-tables are possible 

Spark RDD DIMMQ 
Access By reference By algebraic expression 
Sharing Within session Across sessions 
Execution model Built-in External 
Recovery Yes No 
Discard Failure or GC Failure or cost-based 
Native organization Memory Disk 
Language Scala (or other JVM 

language) 
Language-independent 
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Data independence 

This is not just about SQL standards compliance! 
Materialized views are supposed to be transparent in creation, maintenance and use. 
If not one DBA ever types “CREATE MATERIALIZED VIEW”, we have still succeeded 
 

Data independence 
Ability to move data around and not tell your application 
Replicas 
Redundant copies 
Moving between disk and memory 
Sort order, projections (à la Vertica), aggregates (à la Microstrategy) 
Indexes, and other weird data structures 
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Implementing DIMMQs 

Relational algebra 
Apache Optiq (just entered incubator – yay!) 
Algebra, rewrite rules, cost model 

Metadata 
Hive: “CREATE MATERIALIZED VIEW” 
Definitions of materialized views in HCatalog  

HDFS - Discardable Distributed Memory (DDM) 
Off-heap data in memory-mapped files 
Discard policy 
Build in-memory, replicate to disk; or vice versa 
Central namespace 

Evolution of existing components 
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Tiled queries in distributed memory 

Query: SELECT x, SUM(y) FROM t GROUP BY x 

In-memory 
materialized 
queries 

Tables 
on disk 
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An adaptive system 

Ongoing activities: 
•  Agent suggests new MVs 

•  MVs are built in background 
•  Ongoing query activity uses MVs 
•  User marks MVs as invalid due to source data 

changes 
•  HDFS throws out MVs that are not pulling their 

weight 

 

Dynamic equilibrium 
DIMMQs continually created & destroyed 
System moves data around to adapt to 
changing usage patterns 
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Lambda architecture 

From “Runaway complexity in Big Data and a plan to stop it” (Nathan Marz) 
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Lambda architecture in Hadoop via DIMMQs 

Use DIMMQs for materialized historic & streaming data 

MV on disk 

MV in key-
value store 

Hadoop 

Query via 
SQL 
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Variations on a theme 

Materialized queries don’t have to be in memory 

Materialized queries don’t need to be discardable 

Materialized queries don’t need to be accessed via SQL 

Materialized queries allow novel data structures to be 
described 

Maintaining materialized queries - build on Hive ACID 

Fine-grained invalidation 

Streaming into DIMMQs 

In-memory tables don’t have to be materialized queries 

Data aging – Older data to cheaper storage 
 

 

Discardable 

In-memory 

Algebraic 
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Lattice 

Space of possible materialized views 
A star schema, with mandatory many-to-one 
relationships 

Each view is a projected, filtered 
aggregation 
•  Sales by zipcode and quarter in 2013 

•  Sales by state in Q1, 2012 

Lattice gathers stats 
•  “I used MV m to answer query q and avoided 

fetching r rows” 
•  Cost of MV = construction effort + memory * time 
•  Utility of MV = query processing effort saved 

Recommends & builds optimal MVs 

CREATE LATTICE SalesStar AS"
SELECT *  
FROM SalesFact AS s  
JOIN TimeDim AS t USING (timeId)"
JOIN CustomerDim AS c USING (customerId);"
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Conclusion 

Broadening the tent – batch, interactive BI, streaming, iterative 

Declarative, algebraic, transparent 

Seamless movement between memory and disk 

Adding brains to complement Hadoop’s brawn 
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Thank you! 

My next talk: 
“Cost-based query optimization in Hive” 
4:35pm Wednesday 

 

@julianhyde 

http://hortonworks.com/blog/dmmq/  

http://hortonworks.com/blog/ddm/  

http://incubator.apache.org/projects/optiq.html 


