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About me 

Julian Hyde 

Architect at Hortonworks 

Open source: 
•  Founder & lead, Apache Optiq (query optimization framework) 
•  Founder & lead, Pentaho Mondrian (analysis engine) 
•  Committer, Apache Drill 
•  Contributor, Apache Hive 
•  Contributor, Cascading Lingual (SQL interface to Cascading) 

Past: 
•  SQLstream (streaming SQL) 
•  Broadbase (data warehouse) 
•  Oracle (SQL kernel development) 

 



Page 3 © Hortonworks Inc. 2014 

Hadoop - A New Data Architecture for New Data 
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Interactive SQL-IN-Hadoop Delivered 

Stinger Initiative – DELIVERED 
Next generation SQL based  
interactive query in Hadoop 
 Speed 

Improve Hive query performance has increased by 100X to allow for 
interactive query times (seconds) 

Scale 
The only SQL interface to Hadoop designed for queries that scale 
from TB to PB 

SQL 
Support broadest range of SQL semantics for analytic applications 
running against Hadoop 

Apache Hive Contribution… an Open Community at its finest 

1,672 
Jira Tickets Closed 

145 
Developers 

44 
Companies 

~390,000 
Lines Of Code Added… (2x) 
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Hive – Single tool for all SQL use cases 

OLTP,	
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Hive - SQL 

ETL / ELT 
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Incremental cutover to cost-based optimization 
Release Date Remarks 

Apache Hive 0.12 October 2013 •  Rule-based Optimizations 
•  No join reordering 
•  Main optimizations: predicate push-

down & partition pruning 
•  Semantic info and operator tree tightly 

coupled 
Apache Hive 0.13 
 

April 2014 “Old-style” JOIN & push-down conditions: 
 … FROM t1, t2 WHERE … 

HDP 2.1 April 2014 Cost-based ordering of joins 
Apache Hive 0.14 soon Bushy joins, large joins, better operator 

coverage, better statistics, … 
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Apache Optiq 
(incubating) 
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Apache Optiq 

Apache incubator project since May, 2014 

Query planning framework 
•  Relational algebra, rewrite rules, cost model 
•  Extensible 
•  Usable standalone (JDBC) or embedded 

Adoption 
•  Lingual – SQL interface to Cascading 
•  Apache Drill 
•  Apache Hive 

Adapters: Splunk, Spark, MongoDB, JDBC, CSV, JSON, Web tables, In-
memory data 
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Conventional DB architecture 
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Optiq architecture 



Page 11 © Hortonworks Inc. 2014 

MySQL 

Splunk 

Expression tree 
 SELECT p.“product_name”, COUNT(*) AS c 

FROM “splunk”.”splunk” AS s 
    JOIN “mysql”.”products” AS p 
    ON s.”product_id” = p.”product_id” 
WHERE s.“action” = 'purchase' 
GROUP BY p.”product_name” 
ORDER BY c DESC 

join 

Key: product_id 

group 

Key: product_name 
Agg: count 

filter 

Condition: 
action = 

'purchase' 

sort 

Key: c DESC 

scan 

scan 

Table: splunk 

Table: products 
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Splunk 

Expression tree 
(optimized) 

SELECT p.“product_name”, COUNT(*) AS c 
FROM “splunk”.”splunk” AS s 
    JOIN “mysql”.”products” AS p 
    ON s.”product_id” = p.”product_id” 
WHERE s.“action” = 'purchase' 
GROUP BY p.”product_name” 
ORDER BY c DESC 

join 

Key: product_id 

group 

Key: product_name 
Agg: count 

filter 

Condition: 
action = 

'purchase' 

sort 

Key: c DESC 

scan 

Table: splunk 

MySQL 

scan 

Table: products 
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Optiq – APIs and SPIs 

Cost, statistics 

RelOptCost 
RelOptCostFactory 
RelMetadataProvider 
•  RelMdColumnUniquensss 
•  RelMdDistinctRowCount 
•  RelMdSelectivity 

SQL parser 
SqlNode 
SqlParser 
SqlValidator 

Transformation rules 
RelOptRule 
•  MergeFilterRule 
•  PushAggregateThroughUni

onRule 
•  RemoveCorrelationForScal

arProjectRule  
•  100+ more  

Unification (materialized view) 
Column trimming 

Relational algebra 
RelNode (operator) 
•  TableScan 
•  Filter 
•  Project 
•  Union 
•  Aggregate 
•  … 
RelDataType (type) 
RexNode (expression) 
RelTrait (physical property) 
•  RelConvention (calling-convention) 
•  RelCollation (sortedness) 
•  TBD (bucketedness/distribution) JDBC driver 

Metadata 

Schema 
Table 
Function 
•  TableFunction 
•  TableMacro 
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Under development in Optiq - materialized views 

Query: SELECT x, SUM(y) FROM t GROUP BY x 

In-memory 
materialized 
queries 

Tables 
on disk 

http://hortonworks.com/blog/dmmq/ 
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Now… back to Hive 
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CBO in Hive 

Why cost-based optimization? 
Ease of Use – Join Reordering 
View Chaining 
Ad hoc queries involving multiple views 
Enables BI Tools as front ends to Hive 
More efficient & maintainable query preparation process 
Laying the groundwork for deeper optimizations, e.g. materialized views 

Page 16 
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Query preparation – Hive 0.13 

SQL 
parser 

Semantic 
analyzer 

Logical 
Optimizer 

Physical 
Optimizer 

Abstract 
Syntax 

Tree (AST) 

Hive SQL 

Annotated 
AST 

Plan 

Tez 

Tuned 
Plan 
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Query preparation – full CBO 

SQL 
parser 

Semantic 
analyzer 

Translate 
to algebra 

Physical 
Optimizer 

Abstract 
Syntax 

Tree (AST) 

Hive SQL 

Tez 

Tuned 
Plan 

Optiq 
optimizer 

RelNode 

Annotated 
AST 
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Query preparation – Hive 0.14 

SQL 
parser 

Semantic 
analyzer 

Logical 
Optimizer 

Physical 
Optimizer 

Hive SQL 

AST with optimized 
join-ordering 

Tez 

Tuned 
Plan 

Translate 
to algebra 

Optiq 
optimizer 
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Query Execution – The basics 

Page 20 

SELECT R1.x  
FROM R1 
  JOIN  R2 ON R1.x = R2.x 
JOIN R3 on R1.x = R3.x AND R2.x = R3.x 
WHERE R1.z > 10; 
 

π 	



σ	



⋈ 	



⋈ 	



R1 R2 

R3 

TS [R1] 

TS [R2] 

RS 

RS 
Shuffle 
Join 

TS [R3] 

Map 
Join 

Filter FS 
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Optiq Planner Process 

Hive 
Plan 

Planner 

RelNode 
Graph RelNode Converter 

RexNode Converter 

Hive Op à RelNode 
Hive Expr à RexNode 

 

•  Node for each node in 
Input Plan 

•  Each node is a Set of 
alternate Sub Plans 

•  Set further divided into 
Subsets: based on 
traits like sortedness 

1. Plan Graph 
•  Rule: specifies a Operator 

sub-graph to match and 
logic to generate equivalent 
‘better’ sub-graph. 

•  We only have Join 
Reordering Rules. 

2. Rules 

•  RelNodes have Cost (& 
Cumulative Cost) 

•  We only use Cardinality 
for Cost. 

 

3. Cost Model 

-  Used to Plugin Schema, 
Cost Formulas: 
Selectivity, NDV 
calculations etc. 

-  We only added 
Selectivity and NDV 
formulas; Schema is 
only available at the 
Node level 

4. Metadata Providers 

Rule Match Queue 

-  Add Rule matches to Queue 
-  Apply Rule match 

transformations to Plan Graph 
-  Iterate for fixed iterations or 

until Cost doesn’t change. 
-  Match importance based on 

Cost of RelNode and height.  

Best 
RelNode 
Graph 

AST Converter 

Revised 
AST 

Logical Plan 
Physical traits: 
Table Part./Buckets; 
RedSink Ops 
removed 
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Star schema 

Sales Inventory Time 

Product 

Customer 

Warehouse 

Key 
Fact table 
Dimension table 
       Many-to-one relationship 
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Query combining two stars 

SELECT product.id,  sum(sales.units), sum(inventory.on_hand) 
FROM sales ON … 
JOIN customer ON … 
JOIN time ON … 
JOIN product ON … 
JOIN inventory ON … 
JOIN warehouse ON … 
WHERE time.year = 2014 
AND time.quarter = ‘Q1’ 
AND product.color = ‘Red’ 
AND warehouse.state = ‘WA’ 
GROUP BY … 

Sales Inventory Time 

Product 

Customer 

Warehouse 
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Left-deep tree 

Initial tree is “left-deep” 

No join node is the right child of its parent 

Join-ordering algorithm chooses what 
order to join tables – does not re-shape the 
tree 

Typical plan: 

•  Start with largest table at bottom left 

•  Join tables with more selective 
conditions first 

Sales Customer 

Time 

Product 

Inventory 

Warehouse 
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Bushy tree 

No restrictions on where join 
nodes can occur 

“Bushes” consist of fact tables 
(Sales and Inventory) surrounded 
by many-to-one related 
dimension tables 

Dimension tables have a filtering 
effect 

This tree produces the same 
result as previous plan but is 
more efficient 

 Sales Customer 

Time 

Product 

Inventory Warehouse 
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Two approaches to join optimization 

Algorithm #1 “exhaustive search” 
Apply 3 transformation rules exhaustively: 

•  SwapJoinRule: A join B à B join A 
•  PushJoinThroughJoinRule: (A join B) join C à (A join C) join B 

•  CommutativeJoinRule: (A join B) join C à A join (B join C) 

Finds every possible plan, but not practical for more than ~8 joins 

Algorithm #2 “greedy” 
Build a graph iteratively 
Use heuristics to choose the “best” node to add next 

Applying them to Hive 
We can use both algorithms – and we do! 
Both are sensitive to bad statistics – e.g. poor estimation of intermediate result set sizes 
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Statistics 

Feeding the beast 
CBO disabled if your tables don’t have statistics 
•  No longer require statistics on all columns, just join columns 
Better optimizations need ever-better statistics… so, statistics are getting better 

Kinds of statistics 
Raw statistics on stored data: row counts, number-of-distinct-values (NDV) 
Statistics on intermediate operators, computed using selectivity estimates 
•  Much improved selectivity estimates this release, based on NDVs 
•  Planned improvements to raw statistics (e.g. histograms, unique keys, sort order) will help 
•  Materialized views 
Run-time statistics 
•  Example 1: 90% of the rows in this join have the same key à use skew join 
•  Example 2: Only 10 distinct values of GROUP BY key à auto-reduce parallelism 
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Stored statistics – recent improvements 

ANALYZE 
Clean up command syntax 
Faster computation 

Table vs partition statistics 
All statistics now stored per partition 

Statistics retrieval 
Faster retrieval 
Merge partition statistics 
Extrapolate for missing statistics 

Extrapolation 
SQL: 
SELECT productId, COUNT(*) 

FROM Sales 

WHERE year = 2014 

GROUP BY productId 

Required statistic: NDV(productId) 

Statistics available 

2013 
Q1 

2013 
Q2 

2013 
Q3 

2013 
Q4 

2014 
Q1 

2014 
Q2 

2014 
Q3 

2014 
Q4 

Used in query 

Extrapolate 
{Q1, Q2, Q3} 
stats for Q4 
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Dynamic partition pruning 

Consider a query with a partitioned fact table, filters on the dimension 
table: 

 SELECT … FROM Sales 
 JOIN Time ON Sales.time_id = Time.time_id 
 WHERE time.year = 2014 AND time.quarter IN (‘Q1’, ‘Q2’) 

At execute time, DAG figures out which 
partitions could possibly match, and cancels 
scans of the others 

2013 
Q1 

2013 
Q2 

2013 
Q3 

2013 
Q4 

2014 
Q1 

2014 
Q2 

2014 
Q3 

2014 
Q4 

Time 
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Summary 

Join-ordering: (exhaustive & heuristic), scalability, bushy joins 

Statistics – faster, better, extrapolate if stats missing 

Very few operators that CBO can’t handle – TABLESAMPLE, SCRIPT, 
multi-INSERT 

Dynamic partition pruning 

Auto-reduce parallelism 
 

Page 30 
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Show me the numbers… 
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TPC-DS (30TB) Q17 
Joins Store Sales, Store Returns and Catalog 
Sales fact tables. 
Each of the fact tables are independently 
restricted by time. 
Analysis at Item and Store grain, so these 
dimensions are also joined in. 
As specified Query starts by joining the 3 Fact 
tables. 

 

SELECT i_item_id 
       ,i_item_desc 
       ,s_state 
       ,count(ss_quantity) as store_sales_quantitycount 
       ,…. 
FROM store_sales ss ,store_returns sr, catalog_sales cs, 
 date_dim d1, date_dim d2, date_dim d3, store s, item I 
WHERE d1.d_quarter_name = '2000Q1’ 
AND d1.d_date_sk = ss.ss_sold_date_sk 
AND i.i_item_sk = ss.ss_item_sk AND … 
GROUP BY i_item_id ,i_item_desc, ,s_state 
ORDER BY i_item_id ,i_item_desc, s_state 
LIMIT 100; 

CBO Elapsed 
(s) 

Intemediate 
data (GB) 

Off 10,683 5,017 
On 1,284 275 
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TPC-DS (200G) queries 

Query Hive 14 
CBO off 

Hive 14 
CBO on 

Gain 

Q15 84 44 91% 
Q22 123 99 24% 
Q29 1677 48 3,394% 
Q40 118 29 307% 
Q51 276 80 245% 
Q80 842 70 1,103% 
Q82 278 23 1,109% 
Q87 275 51 439% 
Q92 511 80 539% 
Q93 160 69 132% 
Q97 483 79 511% 
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Stinger.next 

•  SQL compliance: interval data type, non-equi joins, set operators, more 
sub-queries 

•  Transactions: COMMIT, savepoint, rollback) 

•  LLAP 

•  Materialized views 
•  In-memory 
•  Automatic or manual 

http://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/ 
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Thank you! 

 

@julianhyde 

http://hive.apache.org/ 

http://optiq.incubator.apache.org/ 


