
Page 1 © Hortonworks Inc. 2014

Cost-based query optimization in
Apache Hive 0.14
Julian Hyde Julian Hyde

Seattle
September 24th, 2014

Page 2 © Hortonworks Inc. 2014

About me

Julian Hyde

Architect at Hortonworks

Open source:
•  Founder & lead, Apache Optiq (query optimization framework)
•  Founder & lead, Pentaho Mondrian (analysis engine)
•  Committer, Apache Drill
•  Contributor, Apache Hive
•  Contributor, Cascading Lingual (SQL interface to Cascading)

Past:
•  SQLstream (streaming SQL)
•  Broadbase (data warehouse)
•  Oracle (SQL kernel development)

Page 3 © Hortonworks Inc. 2014

Hadoop - A New Data Architecture for New Data
AP

PL
IC
AT

IO
N
S	

DA
TA

	
 	
 S
YS
TE
M
	

REPOSITORIES	

SO
U
RC

ES
	

Exis4ng	
 Sources	
 	

(CRM,	
 ERP,	
 Clickstream,	
 Logs)	

RDBMS	
 EDW	
 MPP	

Business	
 Analy4cs	

Custom	
 Applica4ons	

Packaged	
 Applica4ons	

OLTP,	
 ERP,	
 CRM	
 Systems	

Unstructured	
 documents,	
 emails	

Clickstream	

Server	
 logs	

Sen>ment,	
 Web	
 Data	

Sensor.	
 Machine	
 Data	

Geoloca>on	

New Data Requirements:

•  Scale
•  Economics
•  Flexibility

Traditional Data Architecture

Page 4 © Hortonworks Inc. 2014
© Hortonworks Inc. 2013

Interactive SQL-IN-Hadoop Delivered

Stinger Initiative – DELIVERED
Next generation SQL based
interactive query in Hadoop
 Speed

Improve Hive query performance has increased by 100X to allow for
interactive query times (seconds)

Scale
The only SQL interface to Hadoop designed for queries that scale
from TB to PB

SQL
Support broadest range of SQL semantics for analytic applications
running against Hadoop

Apache Hive Contribution… an Open Community at its finest

1,672
Jira Tickets Closed

145
Developers

44
Companies

~390,000
Lines Of Code Added… (2x)

Apache	
 YARN	

	

	

Apache	
 	

MapReduce	

	

1	
 °	
 °	
 °	

°	
 °	
 °	
 °	

°	
 °	
 °	
 °	

°	

°	

N	

HDFS	
 	

(Hadoop	
 Distributed	
 File	
 System)	

	

	

Apache	
 	

Tez	

	

Apache	
 Hive	

SQL	

Business	
 Analy4cs	
 Custom	

Apps	

S4nger	
 Project	

S4nger	
 Phase	
 1:	

•  Base	
 Op>miza>ons	

•  SQL	
 Types	

•  SQL	
 Analy>c	
 Func>ons	

•  ORCFile	
 Modern	
 File	
 Format	

S4nger	
 Phase	
 2:	

•  SQL	
 Types	

•  SQL	
 Analy>c	
 Func>ons	

•  Advanced	
 Op>miza>ons	

•  Performance	
 Boosts	
 via	
 YARN	

Delivered

	

S4nger	
 Phase	
 3	

•  Hive	
 on	
 Apache	
 Tez	

•  Query	
 Service	
 (always	
 on)	

•  Buffer	
 Cache	

•  Cost	
 Based	
 Op>mizer	
 (Op>q)	

	

13
Months

G
ov

er
na

nc
e

&

 In
te

gr
at

io
n

Se
cu

rit
y

O
pe

ra
tio

ns

Data Access

Data
Management

HDP	
 2.1	

ORC	
 File	

Window	

Func4ons	

Page 5 © Hortonworks Inc. 2014

Hive – Single tool for all SQL use cases

OLTP,	
 ERP,	
 CRM	
 Systems	

Unstructured	
 documents,	
 emails	

Clickstream	

Server	
 logs	

Sen>ment,	
 Web	
 Data	

Sensor.	
 Machine	
 Data	

Geoloca>on	

Interactive
Analytics

Batch Reports /
Deep Analytics

Hive - SQL

ETL / ELT

Page 6 © Hortonworks Inc. 2014

Incremental cutover to cost-based optimization
Release Date Remarks

Apache Hive 0.12 October 2013 •  Rule-based Optimizations
•  No join reordering
•  Main optimizations: predicate push-

down & partition pruning
•  Semantic info and operator tree tightly

coupled
Apache Hive 0.13

April 2014 “Old-style” JOIN & push-down conditions:
 … FROM t1, t2 WHERE …

HDP 2.1 April 2014 Cost-based ordering of joins
Apache Hive 0.14 soon Bushy joins, large joins, better operator

coverage, better statistics, …

Page 7 © Hortonworks Inc. 2014

Apache Optiq
(incubating)

Page 8 © Hortonworks Inc. 2014

Apache Optiq

Apache incubator project since May, 2014

Query planning framework
•  Relational algebra, rewrite rules, cost model
•  Extensible
•  Usable standalone (JDBC) or embedded

Adoption
•  Lingual – SQL interface to Cascading
•  Apache Drill
•  Apache Hive

Adapters: Splunk, Spark, MongoDB, JDBC, CSV, JSON, Web tables, In-
memory data

Page 9 © Hortonworks Inc. 2014

Conventional DB architecture

Page 10 © Hortonworks Inc. 2014

Optiq architecture

Page 11 © Hortonworks Inc. 2014

MySQL

Splunk

Expression tree
 SELECT p.“product_name”, COUNT(*) AS c

FROM “splunk”.”splunk” AS s
 JOIN “mysql”.”products” AS p
 ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

scan

Table: splunk

Table: products

Page 12 © Hortonworks Inc. 2014

Splunk

Expression tree
(optimized)

SELECT p.“product_name”, COUNT(*) AS c
FROM “splunk”.”splunk” AS s
 JOIN “mysql”.”products” AS p
 ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

Table: splunk

MySQL

scan

Table: products

Page 13 © Hortonworks Inc. 2014

Optiq – APIs and SPIs

Cost, statistics

RelOptCost
RelOptCostFactory
RelMetadataProvider
•  RelMdColumnUniquensss
•  RelMdDistinctRowCount
•  RelMdSelectivity

SQL parser
SqlNode
SqlParser
SqlValidator

Transformation rules
RelOptRule
•  MergeFilterRule
•  PushAggregateThroughUni

onRule
•  RemoveCorrelationForScal

arProjectRule
•  100+ more

Unification (materialized view)
Column trimming

Relational algebra
RelNode (operator)
•  TableScan
•  Filter
•  Project
•  Union
•  Aggregate
•  …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
•  RelConvention (calling-convention)
•  RelCollation (sortedness)
•  TBD (bucketedness/distribution) JDBC driver

Metadata

Schema
Table
Function
•  TableFunction
•  TableMacro

Page 14 © Hortonworks Inc. 2014

Under development in Optiq - materialized views

Query: SELECT x, SUM(y) FROM t GROUP BY x

In-memory
materialized
queries

Tables
on disk

http://hortonworks.com/blog/dmmq/

Page 15 © Hortonworks Inc. 2014

Now… back to Hive

Page 16 © Hortonworks Inc. 2014

CBO in Hive

Why cost-based optimization?
Ease of Use – Join Reordering
View Chaining
Ad hoc queries involving multiple views
Enables BI Tools as front ends to Hive
More efficient & maintainable query preparation process
Laying the groundwork for deeper optimizations, e.g. materialized views

Page 16

Page 17 © Hortonworks Inc. 2014

Query preparation – Hive 0.13

SQL
parser

Semantic
analyzer

Logical
Optimizer

Physical
Optimizer

Abstract
Syntax

Tree (AST)

Hive SQL

Annotated
AST

Plan

Tez

Tuned
Plan

Page 18 © Hortonworks Inc. 2014

Query preparation – full CBO

SQL
parser

Semantic
analyzer

Translate
to algebra

Physical
Optimizer

Abstract
Syntax

Tree (AST)

Hive SQL

Tez

Tuned
Plan

Optiq
optimizer

RelNode

Annotated
AST

Page 19 © Hortonworks Inc. 2014

Query preparation – Hive 0.14

SQL
parser

Semantic
analyzer

Logical
Optimizer

Physical
Optimizer

Hive SQL

AST with optimized
join-ordering

Tez

Tuned
Plan

Translate
to algebra

Optiq
optimizer

Page 20 © Hortonworks Inc. 2014
© Hortonworks Inc. 2013

Query Execution – The basics

Page 20

SELECT R1.x
FROM R1
 JOIN R2 ON R1.x = R2.x
JOIN R3 on R1.x = R3.x AND R2.x = R3.x
WHERE R1.z > 10;

π 	

σ	

⋈ 	

⋈ 	

R1 R2

R3

TS [R1]

TS [R2]

RS

RS
Shuffle
Join

TS [R3]

Map
Join

Filter FS

Page 21 © Hortonworks Inc. 2014

Optiq Planner Process

Hive
Plan

Planner

RelNode
Graph RelNode Converter

RexNode Converter

Hive Op à RelNode
Hive Expr à RexNode

•  Node for each node in
Input Plan

•  Each node is a Set of
alternate Sub Plans

•  Set further divided into
Subsets: based on
traits like sortedness

1. Plan Graph
•  Rule: specifies a Operator

sub-graph to match and
logic to generate equivalent
‘better’ sub-graph.

•  We only have Join
Reordering Rules.

2. Rules

•  RelNodes have Cost (&
Cumulative Cost)

•  We only use Cardinality
for Cost.

3. Cost Model

-  Used to Plugin Schema,
Cost Formulas:
Selectivity, NDV
calculations etc.

-  We only added
Selectivity and NDV
formulas; Schema is
only available at the
Node level

4. Metadata Providers

Rule Match Queue

-  Add Rule matches to Queue
-  Apply Rule match

transformations to Plan Graph
-  Iterate for fixed iterations or

until Cost doesn’t change.
-  Match importance based on

Cost of RelNode and height.

Best
RelNode
Graph

AST Converter

Revised
AST

Logical Plan
Physical traits:
Table Part./Buckets;
RedSink Ops
removed

Page 22 © Hortonworks Inc. 2014

Star schema

Sales Inventory Time

Product

Customer

Warehouse

Key
Fact table
Dimension table
 Many-to-one relationship

Page 23 © Hortonworks Inc. 2014

Query combining two stars

SELECT product.id, sum(sales.units), sum(inventory.on_hand)
FROM sales ON …
JOIN customer ON …
JOIN time ON …
JOIN product ON …
JOIN inventory ON …
JOIN warehouse ON …
WHERE time.year = 2014
AND time.quarter = ‘Q1’
AND product.color = ‘Red’
AND warehouse.state = ‘WA’
GROUP BY …

Sales Inventory Time

Product

Customer

Warehouse

Page 24 © Hortonworks Inc. 2014

Left-deep tree

Initial tree is “left-deep”

No join node is the right child of its parent

Join-ordering algorithm chooses what
order to join tables – does not re-shape the
tree

Typical plan:

•  Start with largest table at bottom left

•  Join tables with more selective
conditions first

Sales Customer

Time

Product

Inventory

Warehouse

Page 25 © Hortonworks Inc. 2014

Bushy tree

No restrictions on where join
nodes can occur

“Bushes” consist of fact tables
(Sales and Inventory) surrounded
by many-to-one related
dimension tables

Dimension tables have a filtering
effect

This tree produces the same
result as previous plan but is
more efficient

 Sales Customer

Time

Product

Inventory Warehouse

Page 26 © Hortonworks Inc. 2014

Two approaches to join optimization

Algorithm #1 “exhaustive search”
Apply 3 transformation rules exhaustively:

•  SwapJoinRule: A join B à B join A
•  PushJoinThroughJoinRule: (A join B) join C à (A join C) join B

•  CommutativeJoinRule: (A join B) join C à A join (B join C)

Finds every possible plan, but not practical for more than ~8 joins

Algorithm #2 “greedy”
Build a graph iteratively
Use heuristics to choose the “best” node to add next

Applying them to Hive
We can use both algorithms – and we do!
Both are sensitive to bad statistics – e.g. poor estimation of intermediate result set sizes

Page 27 © Hortonworks Inc. 2014

Statistics

Feeding the beast
CBO disabled if your tables don’t have statistics
•  No longer require statistics on all columns, just join columns
Better optimizations need ever-better statistics… so, statistics are getting better

Kinds of statistics
Raw statistics on stored data: row counts, number-of-distinct-values (NDV)
Statistics on intermediate operators, computed using selectivity estimates
•  Much improved selectivity estimates this release, based on NDVs
•  Planned improvements to raw statistics (e.g. histograms, unique keys, sort order) will help
•  Materialized views
Run-time statistics
•  Example 1: 90% of the rows in this join have the same key à use skew join
•  Example 2: Only 10 distinct values of GROUP BY key à auto-reduce parallelism

Page 28 © Hortonworks Inc. 2014

Stored statistics – recent improvements

ANALYZE
Clean up command syntax
Faster computation

Table vs partition statistics
All statistics now stored per partition

Statistics retrieval
Faster retrieval
Merge partition statistics
Extrapolate for missing statistics

Extrapolation
SQL:
SELECT productId, COUNT(*)

FROM Sales

WHERE year = 2014

GROUP BY productId

Required statistic: NDV(productId)

Statistics available

2013
Q1

2013
Q2

2013
Q3

2013
Q4

2014
Q1

2014
Q2

2014
Q3

2014
Q4

Used in query

Extrapolate
{Q1, Q2, Q3}
stats for Q4

Page 29 © Hortonworks Inc. 2014

Dynamic partition pruning

Consider a query with a partitioned fact table, filters on the dimension
table:

 SELECT … FROM Sales
 JOIN Time ON Sales.time_id = Time.time_id
 WHERE time.year = 2014 AND time.quarter IN (‘Q1’, ‘Q2’)

At execute time, DAG figures out which
partitions could possibly match, and cancels
scans of the others

2013
Q1

2013
Q2

2013
Q3

2013
Q4

2014
Q1

2014
Q2

2014
Q3

2014
Q4

Time

Page 30 © Hortonworks Inc. 2014

Summary

Join-ordering: (exhaustive & heuristic), scalability, bushy joins

Statistics – faster, better, extrapolate if stats missing

Very few operators that CBO can’t handle – TABLESAMPLE, SCRIPT,
multi-INSERT

Dynamic partition pruning

Auto-reduce parallelism

Page 30

Page 31 © Hortonworks Inc. 2014

Show me the numbers…

Page 32 © Hortonworks Inc. 2014

TPC-DS (30TB) Q17
Joins Store Sales, Store Returns and Catalog
Sales fact tables.
Each of the fact tables are independently
restricted by time.
Analysis at Item and Store grain, so these
dimensions are also joined in.
As specified Query starts by joining the 3 Fact
tables.

SELECT i_item_id
 ,i_item_desc
 ,s_state
 ,count(ss_quantity) as store_sales_quantitycount
 ,….
FROM store_sales ss ,store_returns sr, catalog_sales cs,
 date_dim d1, date_dim d2, date_dim d3, store s, item I
WHERE d1.d_quarter_name = '2000Q1’
AND d1.d_date_sk = ss.ss_sold_date_sk
AND i.i_item_sk = ss.ss_item_sk AND …
GROUP BY i_item_id ,i_item_desc, ,s_state
ORDER BY i_item_id ,i_item_desc, s_state
LIMIT 100;

CBO Elapsed
(s)

Intemediate
data (GB)

Off 10,683 5,017
On 1,284 275

Page 33 © Hortonworks Inc. 2014

TPC-DS (200G) queries

Query Hive 14
CBO off

Hive 14
CBO on

Gain

Q15 84 44 91%
Q22 123 99 24%
Q29 1677 48 3,394%
Q40 118 29 307%
Q51 276 80 245%
Q80 842 70 1,103%
Q82 278 23 1,109%
Q87 275 51 439%
Q92 511 80 539%
Q93 160 69 132%
Q97 483 79 511%

Page 34 © Hortonworks Inc. 2014

Stinger.next

•  SQL compliance: interval data type, non-equi joins, set operators, more
sub-queries

•  Transactions: COMMIT, savepoint, rollback)

•  LLAP

•  Materialized views
•  In-memory
•  Automatic or manual

http://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/

Page 35 © Hortonworks Inc. 2014

Thank you!

@julianhyde

http://hive.apache.org/

http://optiq.incubator.apache.org/

