
One SQL to Rule them All

an Efficient and Syntactically Idiomatic Approach to Management
of Streams and Tables

https://arxiv.org/pdf/1905.12133.pdf

Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, Kenneth Knowles

Microsoft Silicon Valley, June 2019; presented by Julian Hyde;
slides authored by Tyler Akidau & Fabian Hueske.

Slides: https://s.apache.org/streaming-sql-beam-summit-berlin-2019

Background
● Apache Flink and Beam communities have been working on SQL support

○ Leveraging Apache Calcite as building block

● All three communities aim for unified batch/streaming semantics for SQL
○ Frequent exchange among communities
○ Agreement on a common model / feature set

● Idea: Write a paper to summarize our ideas and get it peer-reviewed
○ Paper accepted at SIGMOD 2019 Industry Track (to be presented next week)

Our Motivation
● Share our experience of building OS streaming systems with SQL support

○ Our software powers many real-world streaming use cases

● The SQL Standards Committee is investigating extensions for streaming SQL
○ We want to offer our experience and help to shape the standard

What we came up with
● Guiding principles

○ Unified semantics for SQL over tables and streams
○ Minimal additions to the standard
○ Use as much as possible of SQL in a streaming context

● Our proposal is threefold
1. Time-varying relations
2. Event time semantics
3. Controlling the materialization of time-varying results

Time-Varying Relations

Regular and Streaming SQL
● Regular SQL queries process point-in-time relations

○ Transactions & isolation levels ensure consistency of relations

● Time is the new dimension of streaming SQL
○ Streaming SQL queries process relations that evolve over time

Time-Varying Relations (TVRs)
● A time-varying relation (TVR) is a regular relation that changes over time

○ A table that is updated by transactional applications
○ A stream that is interpreted as the changelog of a table

● For each point in time, a TVR can return a static relation
○ The full set of SQL operations remains valid!

● A SQL query on a TVR is continuously evaluated and produces a result TVR
○ Result TVR can be computed in lock step with input TVRs
○ Equivalent to maintaining a materialized view

Key Insight

Streams and Tables are different representations
of the same semantic object - a TVR.

“Streams are Tables” instead of “Streams and Tables”

TVR Representations
TVR of auction bids

| bidtime | price | item |

TVR Representations
TVR of auction bids

| bidtime | price | item |

Stream representation of TVR

8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:15 INSERT (8:09, $5, D)
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)

Time of change

Type of change

Changed data

TVR Representations
TVR of auction bids

| bidtime | price | item |

Stream representation of TVR

8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:15 INSERT (8:09, $5, D)
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)

Table representation of TVR

8:14> SELECT * FROM bids;

| bidtime | price | item |

8:07	$2	A
8:11	$3	B
8:05	$4	C

Time of query

TVR Representations
TVR of auction bids

| bidtime | price | item |

Stream representation of TVR

8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:15 INSERT (8:09, $5, D)
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)

Table representation of TVR

8:14> SELECT * FROM bids;

| bidtime | price | item |

8:07	$2	A
8:11	$3	B
8:05	$4	C

8:20> SELECT * FROM bids;

| bidtime | price | item |

8:07	$2	A
8:11	$3	B
8:05	$4	C
8:09	$5	D
8:13	$1	E
8:17	$6	F

No SQL Extension
● No SQL extensions needed!

● All SQL operations remain valid on TVRs

Event Time Semantics

Event Time vs. Processing Time
● Time-based operations are very common in stream processing

○ Count clicks per URL and hour
○ Join events that are at most 5 minutes apart from each other

● An engine needs a notion of time to evaluate such queries
○ Using arrival time of events (a.k.a. processing time) results in arbitrary results

● Event time semantics are required for correct and consistent results
○ Using timestamps that are provided by/embedded in the data
○ Correct results when live data is delayed or out-of-order is processed
○ Correct results when recorded data is processed

Implementing Event Time Semantics
● Event timestamps and watermarks* to

implement event time semantics
○ Event timestamps define point in time of an event
○ Watermarks define a temporal margin of completeness

for a stream

● General approach to support full breadth
of streaming use cases

○ Temporal aggregations
○ Notifications and alerts

*Millwheel (VLDB’13) proposed watermarks. Later adopted by Cloud Dataflow, Beam, and Flink

SQL Extension 1: Event Time Attributes
● Add DDL syntax to declare watermarked event time attributes

○ Similar to PRIMARY KEY, UNIQUE, NOT NULL, or other constraints

● Event time attribute is a regular TIMESTAMP type
○ Attribute can be used like any other TIMESTAMP attribute
○ Attribute is “roughly” increasing
○ Watermarks report minimum of future values

● Optimizer uses knowledge of event time attributes to build plans that leverage
watermarks to reason about progress

SQL Extension 1: Event Time Attributes

8:07 WM → 8:05
8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:14 WM → 8:08
8:15 INSERT (8:09, $5, D)
8:16 WM → 8:12
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)
8:21 WM → 8:20

Watermark

Event Timestamp

SQL Extension 2: Event Time Windowing Functions
● Add build-in table-valued functions to assign rows to event time windows

● TUMBLE function assigns each row to a fixed sized window
○ Enriches rows of a TVR with start and end timestamps

--
| wstart | wend | bidtime | price | item |
--
8:00	8:10	8:07	$2	A
8:10	8:20	8:11	$3	B
8:00	8:10	8:05	$4	C
8:00	8:10	8:09	$5	D
8:10	8:20	8:13	$1	E
8:10	8:20	8:17	$6	F
--

8:21> SELECT *
 FROM
 Tumble (
 data => TABLE(Bid),
 timecol => DESCRIPTOR(bidtime),
 dur => INTERVAL '10 ' MINUTES);

SQL Extension 2: Event Time Windowing Functions
● Aggregate rows per event time window

| wstart | wend | price |

| 8:00 | 8:10 | $11 |
| 8:10 | 8:20 | $10 |

8:21> SELECT MAX(wstart), wend, SUM(price)
 FROM
 Tumble (
 data => TABLE(Bid),
 timecol => DESCRIPTOR(bidtime),
 dur => INTERVAL '10 ' MINUTES)
 GROUP BY wend;

Controlling the
Materialization of Time-Varying Results

Control How and When to Materialize a TVR
● A query on a TVR produces a result TVR

○ There are several options how to materialize a TVR

● Materialize a TVR as table or as stream?
○ Table materialization is the default
○ Stream materialization needs to be explicitly chosen

● Choose when or how often to materialize TVR changes
○ Only materialize complete results
○ Only materialize changes once per minute

SQL Extension 3: Stream Materialization
● Add EMIT STREAM clause for stream materialization

● Materializes the changes of a TVR in a changelog TVR
○ All operations on TVR are supported

SQL Extension 3: Stream Materialization
8:08> SELECT ... EMIT STREAM;
--
| wstart | wend | price | undo | ptime | ver |
--
8:00	8:10	$2		8:08	0
8:10	8:20	$3		8:12	0
8:00	8:10	$2	undo	8:13	1
8:00	8:10	$6		8:13	2
8:00	8:10	$6	undo	8:15	3
8:00	8:10	$11		8:15	4
8:10	8:20	$3	undo	8:17	1
8:10	8:20	$4		8:17	2
8:10	8:20	$4	undo	8:18	3
8:10	8:20	$10		8:18	4
...

8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:15 INSERT (8:09, $5, D)
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)

8:20> SELECT ...;

| wstart | wend | price |

| 8:00 | 8:10 | $11 |
| 8:10 | 8:20 | $10 |

SQL Extension 4: Delay for Completeness
● Add EMIT AFTER WATERMARK clause to materialize only complete results

○ Watermark indicates completeness

8:15> SELECT ... EMIT AFTER WATERMARK;

| wstart | wend | price |

8:17> SELECT ... EMIT AFTER WATERMARK;

| wstart | wend | price |

| 8:00 | 8:10 | $11 |

8:07 WM → 8:05
8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:14 WM → 8:08
8:15 INSERT (8:09, $5, D)
8:16 WM → 8:12
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)
8:21 WM → 8:20

SQL Extension 4: Delay for Completeness
● Add EMIT AFTER WATERMARK clause can be combined with EMIT STREAM

8:07 WM → 8:05
8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:14 WM → 8:08
8:15 INSERT (8:09, $5, D)
8:16 WM → 8:12
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)
8:21 WM → 8:20

8:08> SELECT ... EMIT STREAM AFTER WATERMARK;
--
| wstart | wend | price | undo | ptime | ver |
--
| 8:00 | 8:10 | $11 | | 8:16 | 0 |
| 8:10 | 8:20 | $10 | | 8:21 | 0 |
...

SQL Extension 5: Periodic Delays
● Materializing every change of a TVR can result in many updates

○ Can overload downstream systems
○ Often not necessary / required

● Add EMIT AFTER DELAY clause to control frequency of updates

SQL Extension 5: Periodic Delays
8:08> SELECT ... EMIT STREAM
 AFTER DELAY INTERVAL '6' MINUTES;
--
| wstart | wend | price | undo | ptime | ver |
--
8:00	8:10	$6		8:14	0
8:10	8:20	$10		8:18	0
8:00	8:10	$6	undo	8:21	1
8:00	8:10	$11		8:21	2
...

8:08 INSERT (8:07, $2, A)
8:12 INSERT (8:11, $3, B)
8:13 INSERT (8:05, $4, C)
8:15 INSERT (8:09, $5, D)
8:17 INSERT (8:13, $1, E)
8:18 INSERT (8:17, $6, F)

8:21> SELECT ...;

| wstart | wend | price |

| 8:00 | 8:10 | $11 |
| 8:10 | 8:20 | $10 |

8:15> SELECT ...;

| wstart | wend | price |

| 8:00 | 8:10 | $6 |

8:19> SELECT ...;

| wstart | wend | price |

| 8:00 | 8:10 | $6 |
| 8:10 | 8:20 | $10 |

Adoption
● Flink

○ Available via Table and SQL APIs
○ In use at companies such as Alibaba, Huawei, Lyft, Uber

● Beam
○ Available via Java SQL API, SQL CLI, and Google Cloud Dataflow UI.
○ In use by companies such as eBay, Spotify

Future Work
● Expanded / Custom Event-Time Windowing

○ Pre-built: transitive closure sessions, keyed sessions, calendar months, etc.
○ Custom windows defined via a SQL expression

● Time-progressing expressions:
○ E.g., (bidtime > CURRENT_TIME - INTERVAL ’1’ HOUR)
○ Expressions like CURRENT_TIME are fixed to query evaluation time in current standard

● Correlated access to temporal tables
○ Need dynamic AS OF SYSTEM TIME expressions for time-varying correlations

● Streaming changelog options
○ E.g, render changelog as sequence of deltas rather than updates.

Future Work
● Nested EMIT

○ EMIT within nested queries could add additional power, at cost of increased complexity

● Graceful evolution
○ Need clean ways to evolve stateful streaming pipelines over time

● More rigorous formal semantics
○ What are the formal properties of streaming systems in general?
○ Watermarks, latency, materialization, etc.
○ Greater understanding of differences between different systems.

Summary
● Guiding principles

○ Unified semantics for SQL over tables and streams
○ Minimal additions to the standard
○ Use as much as possible of SQL in a streaming context

● Our proposal
1. Time-varying relations
2. Event time semantics

○ Ext 1: Event time attributes
○ Ext 2: Event time windowing functions

3. Controlling the materialization of time-varying results
○ Ext 3: Stream materialization
○ Ext 4: Watermark delays for completeness
○ Ext 5: Periodic delays for rate limiting

← DDL for watermarks, etc.
← TUMBLE, HOP, etc. via table-valued functions

← EMIT STREAM
← EMIT AFTER WATERMARK
← EMIT AFTER DELAY

Thank you!
Questions?

