

Drill / SQL / Optiq

Julian Hyde

Apache Drill User Group
2013-03-13

SQL

SQL: Pros & cons

Fact:
 SQL is older than Macaulay Culkin

Less interesting but more relevant:
 Can be written by (lots of) humans
 Can be written by machines
 Requires query optimization
 Allows query optimization
 Based on “flat” relations and basic relational

operations
 Can be extended

Quick intro to Optiq

Introducing Optiq

Framework

Derived from LucidDB

Minimal query mediator:
 No storage
 No runtime
 No metadata
 Query planning engine
 Core operators & rewrite rules
 Optional SQL parser/validator

MySQL

Splunk

Expression tree
SELECT p.“product_name”, COUNT(*) AS c
FROM “splunk”.”splunk” AS s
 JOIN “mysql”.”products” AS p
 ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

scan

Table: splunk

Table: products

Splunk

Expression tree
(optimized)

SELECT p.“product_name”, COUNT(*) AS c
FROM “splunk”.”splunk” AS s
 JOIN “mysql”.”products” AS p
 ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

Table: splunk

MySQL

scan
Table: products

Metadata SPI

 interface Table
− RelDataType getRowType()

 interface TableFunction
− List<Parameter> getParameters()
− Table apply(List arguments)
− e.g. ViewTableFunction

 interface Schema
− Map<String, List<TableFunction>>

getTableFunctions()

Operators and rules

 Rule: interface RelOptRule
 Operator: interface RelNode
 Core operators: TableAccess, Project,

Filter, Join, Aggregate, Order, Union,
Intersect, Minus, Values

 Some rules: MergeFilterRule,
PushAggregateThroughUnionRule,
RemoveCorrelationForScalarProjectRule +
100 more

Planning algorithm

 Start with a logical plan and a set of
rewrite rules

 Form a list of rewrite rules that are
applicable (based on pattern-matching)

 Fire the rule that is likely to do the most
good

 Rule generates an expression that is
equivalent (and hopefully cheaper)

 Queue up new rule matches
 Repeat until cheap enough

Concepts

 Cost
 Equivalence sets
 Calling convention
 Logical vs Physical
 Traits
 Implementation

Outside the kernel

 SQL
parser/validator

 JDBC driver
 SQL function

library (validation
+ code-
generation)

 Lingual
(Cascading
adapter)

 Splunk adapter
 Drill adapter
 Clone (compact

in-memory
tables)

 JSON-based
catalog

 Views

JDBC server

SQL parser /
validator
Query

planner

3rd party
data

3rd party
data

JDBC client

3rd

party
ops

3rd

party
ops

Optional

Pluggable

Core

Metadata
SPI

Pluggable
rules

Optiq roadmap

 Building blocks for analytic DB:
− In-memory tables in a distributed cache
− Materialized views
− Partitioned tables

 Faster planning
 Easier rule development
 ODBC driver
 Adapters for XXX, YYY

Applying Optiq to Drill

1. Enhance SQL
2. Query translation

Drill vs Traditional SQL

 SQL:
− Flat data
− Schema up front

 Drill:
− Nested data (list & map)
− No schema

 We'd like to write:
− SELECT name, toppings[2] FROM donuts

WHERE ppu > 0.6
 Solution: ARRAY, MAP, ANY types

ARRAY & MAP SQL types

 ARRAY is like java.util.List
 MAP is like java.util.LinkedHashMap

Examples:
 VALUES ARRAY ['a', 'b', 'c']
 VALUES MAP ['Washington', 1, 'Obama', 44]
 SELECT name, address[1], address[2], state

FROM Employee
 SELECT * FROM Donuts WHERE

CAST(donuts['ppu'] AS DOUBLE) > 0.6

ANY SQL type

 ANY means “type to be determined at runtime”
 Validator narrows down possible type based

on operators used
 Similar to converting Java's type system into

JavaScript's. (Not easy.)

Sugaring the donut

Query:
 SELECT c['ppu'], c['toppings'][1] FROM

Donuts

Additional syntactic sugar:
 c.x means c['x']

So:
 CREATE TABLE Donuts(c ANY)
 SELECT c.ppu, c.toppings[1] FROM

Donuts

Better:
 CREATE TABLE Donuts(_MAP

MAP(VARCHAR TO ANY))
 SELECT ppu, toppings[1] FROM Donuts

UNNEST

Employees nested inside departments:
 CREATE TYPE employee (empno INT, name

VARCHAR(30));
 CREATE TABLE dept (deptno INT, name

VARCHAR(30),
 employees EMPLOYEE ARRAY);

Unnest:
 SELECT d.deptno, d.name, e.empno, e.name

FROM department AS d
 CROSS JOIN UNNEST(d.employees) AS e

SQL standard provides other operations on
collections:

 COLLECT, FUSION, MEMBER OF

More:
http://farrago.sourceforge.net/design/Collectio
nTypes.html

Applying Optiq to Drill

1. Enhance SQL
2. Query translation

Query translation

SQL:
 select d['name'] as name, d['xx'] as xx

from (
 select _MAP['donuts'] as d from donuts)
where cast(d['ppu'] as double) > 0.6

Drill:
 { head: { … },

 storage: { … },
 query: [{
 op: “sequence”, do: [
 { op: “scan”, … selection: { path:
"/donuts.json", … }},
 { op: “transform”, transforms: [{ ref:
"d", expr: "donuts"}] },
 { op: “filter”, expr: “d.ppu > 0.6” },
 { op: “transform”, transforms: [{ ref:
“name”, expr: “d.name”, … }] }] }

Planner log

Original rel:

AbstractConverter(subset=[rel#14:Subset#3.AR
RAY], convention=[ARRAY])

 ProjectRel(subset=[rel#10:Subset#3.NONE],
NAME=[ITEM($0, 'name')], XX=[ITEM($0,
'xx')])

 FilterRel(subset=[rel#8:Subset#2.NONE],
condition=[>(CAST(ITEM($0, 'ppu')):DOUBLE
NOT NULL, 0.6)])

 ProjectRel(subset=[rel#6:Subset#1.NONE],
D=[ITEM($0, 'donuts')])

 DrillScan(subset=[rel#4:Subset#0.DRILL],
table=[[DONUTS, DONUTS]])

…

Cheapest plan:

EnumerableDrillRel

 DrillProjectRel(NAME=[ITEM($0, 'name')],
XX=[ITEM($0, 'xx')])

 DrillProjectRel(D=[ITEM($0, 'donuts')])

DrillFilterRel(condition=[>(CAST(ITEM(ITEM($
0, 'donuts'), 'ppu')):DOUBLE NOT NULL, 0.6)])

 DrillScan(table=[[DONUTS, DONUTS]])

Next

 Translate join, aggregate, sort, set ops
 Operator overloading with ANY
 Mondrian on Drill

Thank you!

https://github.com/julianhyde/share/tree/master/slides
https://github.com/julianhyde/incubator-drill
https://github.com/julianhyde/optiq
http://incubator.apache.org/drill

@julianhyde

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

