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SQL: Pros & cons

Fact:
 SQL is older than Macaulay Culkin

Less interesting but more relevant:
 Can be written by (lots of) humans
 Can be written by machines
 Requires query optimization
 Allows query optimization
 Based on “flat” relations and basic relational 

operations
 Can be extended



  

Quick intro to Optiq



  

Introducing Optiq

Framework

Derived from LucidDB

Minimal query mediator:
 No storage
 No runtime
 No metadata
 Query planning engine
 Core operators & rewrite rules
 Optional SQL parser/validator



  

MySQL

Splunk

Expression tree
SELECT p.“product_name”, COUNT(*) AS c
FROM “splunk”.”splunk” AS s
    JOIN “mysql”.”products” AS p
    ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

scan

Table: splunk

Table: products



  

Splunk

Expression tree
(optimized)

SELECT p.“product_name”, COUNT(*) AS c
FROM “splunk”.”splunk” AS s
    JOIN “mysql”.”products” AS p
    ON s.”product_id” = p.”product_id”
WHERE s.“action” = 'purchase'
GROUP BY p.”product_name”
ORDER BY c DESC

join

Key: product_id

group

Key: product_name
Agg: count

filter

Condition:
action =

'purchase'

sort

Key: c DESC

scan

Table: splunk

MySQL

scan
Table: products



  

Metadata SPI

 interface Table
− RelDataType getRowType()

 interface TableFunction
− List<Parameter> getParameters()
− Table apply(List arguments)
− e.g. ViewTableFunction

 interface Schema
− Map<String, List<TableFunction>> 

getTableFunctions()



  

Operators and rules

 Rule: interface RelOptRule
 Operator: interface RelNode
 Core operators: TableAccess, Project, 

Filter, Join, Aggregate, Order, Union, 
Intersect, Minus, Values

 Some rules: MergeFilterRule, 
PushAggregateThroughUnionRule, 
RemoveCorrelationForScalarProjectRule + 
100 more



  

Planning algorithm

 Start with a logical plan and a set of 
rewrite rules

 Form a list of rewrite rules that are 
applicable (based on pattern-matching)

 Fire the rule that is likely to do the most 
good

 Rule generates an expression that is 
equivalent (and hopefully cheaper)

 Queue up new rule matches
 Repeat until cheap enough



  

Concepts

 Cost
 Equivalence sets
 Calling convention
 Logical vs Physical
 Traits
 Implementation



  

Outside the kernel

 SQL 
parser/validator

 JDBC driver
 SQL function 

library (validation 
+ code-
generation)

 Lingual 
(Cascading 
adapter)

 Splunk adapter
 Drill adapter
 Clone (compact 

in-memory 
tables)

 JSON-based 
catalog

 Views

JDBC server

SQL parser /
validator
Query

planner

3rd party
data

3rd party
data

JDBC client

3rd

party
ops

3rd

party
ops

Optional     

Pluggable     

Core     

Metadata
SPI

Pluggable
rules



  

Optiq roadmap

 Building blocks for analytic DB:
− In-memory tables in a distributed cache
− Materialized views
− Partitioned tables

 Faster planning
 Easier rule development
 ODBC driver
 Adapters for XXX, YYY



  

Applying Optiq to Drill

1. Enhance SQL
2. Query translation



  

Drill vs Traditional SQL

 SQL:
− Flat data
− Schema up front

 Drill:
− Nested data (list & map)
− No schema

 We'd like to write:
− SELECT name, toppings[2] FROM donuts 

WHERE ppu > 0.6
 Solution: ARRAY, MAP, ANY types



  

ARRAY & MAP SQL types

 ARRAY is like java.util.List
 MAP is like java.util.LinkedHashMap

Examples:
 VALUES ARRAY ['a', 'b', 'c']
 VALUES MAP ['Washington', 1, 'Obama', 44]
 SELECT name, address[1], address[2], state 

FROM Employee
 SELECT * FROM Donuts WHERE 

CAST(donuts['ppu'] AS DOUBLE) > 0.6



  

ANY SQL type

 ANY means “type to be determined at runtime”
 Validator narrows down possible type based 

on operators used
 Similar to converting Java's type system into 

JavaScript's. (Not easy.)



  

Sugaring the donut

Query:
 SELECT c['ppu'], c['toppings'][1] FROM 

Donuts

Additional syntactic sugar:
 c.x means c['x']

So:
 CREATE TABLE Donuts(c ANY)
 SELECT c.ppu, c.toppings[1] FROM 

Donuts

Better:
 CREATE TABLE Donuts(_MAP 

MAP(VARCHAR TO ANY))
 SELECT ppu, toppings[1] FROM Donuts



  

UNNEST

Employees nested inside departments:
 CREATE TYPE employee (empno INT, name 

VARCHAR(30));
 CREATE TABLE dept (deptno INT, name 

VARCHAR(30),
  employees EMPLOYEE ARRAY);

Unnest:
 SELECT d.deptno, d.name, e.empno, e.name

FROM department AS d
  CROSS JOIN UNNEST(d.employees) AS e

SQL standard provides other operations on 
collections:

 COLLECT, FUSION, MEMBER OF

More: 
http://farrago.sourceforge.net/design/Collectio
nTypes.html



  

Applying Optiq to Drill

1. Enhance SQL
2. Query translation



  

Query translation

SQL:
 select d['name'] as name, d['xx'] as xx

from (
  select _MAP['donuts'] as d from donuts)
where cast(d['ppu'] as double) > 0.6

Drill:
 {   head: { … },

    storage: { … },
    query: [ {
        op: “sequence”,    do: [
            { op: “scan”, … selection: { path: 
"/donuts.json", … }},
            { op: “transform”, transforms: [ { ref: 
"d", expr: "donuts"} ] },
            { op: “filter”, expr: “d.ppu > 0.6” },
            { op: “transform”, transforms: [ { ref: 
“name”, expr: “d.name”, … } ] } ] }



  

Planner log

Original rel:

AbstractConverter(subset=[rel#14:Subset#3.AR
RAY], convention=[ARRAY])

  ProjectRel(subset=[rel#10:Subset#3.NONE], 
NAME=[ITEM($0, 'name')], XX=[ITEM($0, 
'xx')])

    FilterRel(subset=[rel#8:Subset#2.NONE], 
condition=[>(CAST(ITEM($0, 'ppu')):DOUBLE 
NOT NULL, 0.6)])

      ProjectRel(subset=[rel#6:Subset#1.NONE], 
D=[ITEM($0, 'donuts')])

        DrillScan(subset=[rel#4:Subset#0.DRILL], 
table=[[DONUTS, DONUTS]])

…

Cheapest plan:

EnumerableDrillRel

  DrillProjectRel(NAME=[ITEM($0, 'name')], 
XX=[ITEM($0, 'xx')])

    DrillProjectRel(D=[ITEM($0, 'donuts')])

      
DrillFilterRel(condition=[>(CAST(ITEM(ITEM($
0, 'donuts'), 'ppu')):DOUBLE NOT NULL, 0.6)])

        DrillScan(table=[[DONUTS, DONUTS]])



  

Next

 Translate join, aggregate, sort, set ops
 Operator overloading with ANY
 Mondrian on Drill



  

Thank you!

https://github.com/julianhyde/share/tree/master/slides
https://github.com/julianhyde/incubator-drill
https://github.com/julianhyde/optiq
http://incubator.apache.org/drill

@julianhyde
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