SQL Now!

NoSQL Now! San Jose, California August, 2013

Julian Hyde @julianhyde

About me

- Database: Oracle, Broadbase
- Streaming query: SQLstream

- Open source Bl: Mondrian / Pentaho
- Open source SQL: LucidDB, Optiq
- Contributor to Apache Drill, Cascading Lingual

http://manning.com/back/

http://manning.com/back/

3 things

- Modern data challenges need both NoSQL and SQL.
- 2. Optiq is not a database (and this is a Good Thing).
- 3. How to use Optiq with your data.

A disturbance in the Force

SQL has been around a very, very long time

NoSQL: trade-offs vs SQL

Gain	Lose			
Scale out	Optimization			
Flexibility	Data independence			
Productivity	Central control			
Purchase cost	Tool integration			

SQL: key features

- Inspired by Codd's 1970 "relational database" paper
- Semantics based on relational operators (scan, filter, project, join, agg, union, sort)
- All implementations transform queries
- Optimizer rewrites queries onto available data structures and operators

Optiq

Optiq design principles

- I. Do the stuff that SQL does well
- 2. Let other systems do what they do well

Conventional DB architecture

Optiq architecture

Examples

Example #1: CSV

- Uses CSV adapter (optiq-csv)
- Demo using sqlline
- Easy to run this for yourself:

```
$ git clone https://github.com/julianhyde/optiq-csv
$ cd optiq-csv
$ mvn install
$ ./sqlline
```

```
!connect jdbc:optiq:model=target/test-classes/model.json admin admin
!tables
!describe emps
SELECT * FROM emps;
EXPLAIN PLAN FOR SELECT * FROM emps;
SELECT depts.name, count(*)
FROM emps JOIN depts USING (deptno)
GROUP BY depts.name;
model.json:
  version: '1.0',
  defaultSchema: 'SALES',
  schemas: [
      name: 'SALES',
      type: 'custom',
      factory: 'net.hydromatic.optiq.impl.csv.CsvSchemaFactory',
      operand:
        directory: 'target/test-classes/sales'
```

More adapters

Adapters	Embedded	Planned		
CSV	Cascading (Lingual)	HBase (Phoenix)		
JDBC	Apache Drill	Spark		
MongoDB		Cassandra		
Splunk		Mondrian		
linq4j				

SQL on NoSQL

- No schema or schema-on-read
 - Optiq MAP columns, dynamic schema
- Nested data (Drill, MongoDB)
 - Optiq ARRAY columns
- Source system optimized for transactions & focused reads, not analytic queries
 - Optiq cache and materializations

Example #2: MongoDB

- Mongo's standard "zips" data set with all US zip codes
- Raw ZIPS table with MAP column
- ZIPS view extracts named fields, including nested latitude and longitude, and converts them to SQL types

Splunk

- NoSQL database
- Every log file in the enterprise
- A single "table"
- A record for every line in every log file
- A column for every field that exists in any log file
- No schema

Example #3: Splunk + MySQL

```
SELECT p.product_name,
    COUNT(*) AS c

FROM splunk.splunk AS s
    JOIN mysql.products AS p
    ON s.product_id = p.product_id

WHERE s.action = 'purchase'

GROUP BY p.product_name

ORDER BY c DESC
```

Expression tree

Optimized tree

Analytics

Interactive analytics on NoSQL?

- NoSQL operational DB (e.g. HBase, MongoDB, Cassandra)
- Analytic queries aggregate over full scan
- Speed-of-thought response (< 5 seconds)
- Data freshness (< 10 minutes)

Simple analytics problem

- 100M U.S. census records
- IKB each record, 100GB total
- 4 SATA3 disks, total 1.2GB/s
- How to count all records in under 5s?

Simple analytics problem

- 100M U.S. census records
- IKB each record, 100GB total
- 4 SATA3 disks, total 1.2GB/s
- How to count all records in under 5s?

Simple analytics problem

- 100M U.S. census records
- IKB each record, I00GB total
- 4 SATA3 disks, total 1.2GB/s
- How to count all records in under 5s?

 Not possible?! It takes 80s just to read the data.

Solution: Cheat!

Solution: Cheat!

- Compress data
- Column-oriented storage
- Store data in sorted order
- Put data in memory
- Cache previous query results
- Pre-compute (materialize) aggregates

Top 5 Product Lines by Territory

1 Filter in use

✓ Your report is ready. Rows: 20 Columns: 9 XML | Log | MDX | Clear Cache

		Years								
		2003			2004		2005			
Territory	Line	Sales	Quantity	Unit Sales	Sales	Quantity	Unit Sales	Sales	Quantity	Unit Sales
APAC	Classic Cars	\$115,011	1,052	\$109	\$199,372	1,785	<u>\$112</u>	\$97,574	1,015	\$96
	Vintage Cars	\$111,639	1,243	<u>\$90</u>	\$147,212	1,587	<u>\$93</u>	\$105,688	1,067	<u>\$99</u>
	Motorcycles	\$60,789	<u>654</u>	<u>\$93</u>	\$63,159	<u>540</u>	\$117	\$65,870	<u>658</u>	\$100
	Trucks and Buses	\$11,298	91	\$124	\$80,634	801	\$101	\$53,735	488	\$110
	Planes	\$42,663	456	<u>\$94</u>	\$67,681	723	<u>\$94</u>	\$11,082	<u>151</u>	<u>\$73</u>
APAC Total		\$341,400	3,496	\$98	\$558,057	5,436	\$103	\$333,948	3,379	\$99
	Classic Cars	\$691,273	5 ,853	\$118	\$1,015,790	<u>8,976</u>	<u>\$113</u>	\$384,538	3,463	\$111
	Vintage Cars	\$263,695	3,094	<u>\$85</u>	\$504,062	5,472	\$92	\$83,324	1,094	<u>\$76</u>
EMEA	Motorcycles	\$141,836	1,428	\$99	\$204,042	2,177	\$94	\$161,260	1,501	\$107
	Trucks and Buses	\$228,699	2,261	\$101	\$185,421	1,558	\$119	\$86,859	836	\$104
	Planes	\$154,519	1,723	<u>\$90</u>	\$209,128	2,326	\$90	\$128,008	1,464	\$87
EMEA Tot	tal	\$1,480,021	14,359	\$103	\$2,118,443	20,509	\$103	\$843,989	8,358	\$101
Japan	Classic Cars	\$120,696	898	\$134	\$42,071	<u>307</u>	<u>\$137</u>	\$18,835	122	<u>\$154</u>
	Planes	\$60,556	<u>677</u>	\$89	<u>\$49,177</u>	<u>547</u>	\$90		-	-
	Trucks and Buses	\$44,498	415	\$107	\$13,349	102	\$131	-	-	-
	Motorcycles	\$16,485	205	<u>\$80</u>	<u>\$31,959</u>	380	<u>\$84</u>	\$4,176	44	<u>\$95</u>
	Vintage Cars	\$22,888	308	<u>\$74</u>	<u>\$21,470</u>	229	<u>\$94</u>	\$7,979	<u>84</u>	<u>\$95</u>
Japan To	tal	\$265,123	2,503	\$106	\$158,026	1,565	\$101	\$30,990	250	\$124
NA	Classic Cars	\$587,428	4,959	\$118	\$581,043	5,017	\$116	\$237,791	2,105	\$113
	Vintage Cars	\$281,727	3,268	<u>\$86</u>	\$324,815	3,576	\$91	\$191,727	1,871	\$102
	Motorcycles	\$178,109	1,744	\$102	\$291,421	2,809	\$104	\$55,020	568	\$97
	Trucks and Buses	\$135,936	1,289	\$105	\$252,572	2,563	\$99	\$61,281	597	\$103
	Planes	\$90,016	<u>977</u>	\$92	\$202,942	2,224	<u>\$91</u>	\$60,985	<u>592</u>	\$103
NA Total		\$1,273,216	12,237	\$104	\$1,652,792	16,189	\$102	\$606,803	5,733	\$106
Grand To	tal	\$3,359,761	32,595	\$103	\$4,487,319	43,699	\$103	\$1,815,730	17,720	\$102

Mondrian on Optiq on NoSQL (under construction)

Hybrid analytic architecture

- I. NoSQL source system
- 2. Access via Optiq SQL
- 3. Optiq rewrites queries to use materialized data (e.g. aggregate tables)
- 4. Cached results are treated as "in-memory tables"
- 5. Materializations offline dynamically as underlying data changes, and go online as they are refreshed

Summary

3 things (reprise)

- 1. SQL allows you to reorganize your data and optimize your queries—while still using your NoSQL database for what it does best.
- 2. Optiq is not a database. It lets you create very powerful federated data architectures.
- 3. Access your data using Optiq adapters. Write schemas in JSON or use schema SPI. Connect via JDBC.

Questions?

Thanks!

@julianhyde

optiq https://github.com/julianhyde/optiq
optiq-csv https://github.com/julianhyde/optiq-csv

drill http://incubator.apache.org/drill/

lingual http://www.cascading.org/lingual/

mondrian http://mondrian.pentaho.com

blog http://julianhyde.blogspot.com/

book http://manning.com/back/ 45% off code mlnosql13