
SQL Now!

NoSQL Now!
San Jose, California

August, 2013

Julian Hyde @julianhyde

About me

• Database: Oracle, Broadbase

• Streaming query: SQLstream

• Open source BI: Mondrian / Pentaho

• Open source SQL: LucidDB, Optiq

• Contributor to Apache Drill, Cascading
Lingual

http://manning.com/back/

http://manning.com/back/
http://manning.com/back/

http://manning.com/back/

45% off code
mlnosql13

http://manning.com/back/
http://manning.com/back/

3 things

1. Modern data challenges need both NoSQL
and SQL.

2. Optiq is not a database (and this is a Good
Thing).

3. How to use Optiq with your data.

A disturbance in the Force

SQL has been around a
very, very long time

NoSQL: trade-offs vs
SQL

Gain Lose

Scale out Optimization

Flexibility Data independence

Productivity Central control

Purchase cost Tool integration

SQL: key features

• Inspired by Codd’s 1970 “relational
database” paper

• Semantics based on relational operators
(scan, filter, project, join, agg, union, sort)

• All implementations transform queries

• Optimizer rewrites queries onto available
data structures and operators

Optiq

Optiq design principles

1. Do the stuff that SQL does well

2. Let other systems do what they do well

Conventional DB architecture

Optiq architecture

Examples

Example #1: CSV

• Uses CSV adapter (optiq-csv)

• Demo using sqlline

• Easy to run this for yourself:
$ git clone https://github.com/julianhyde/optiq-csv
$ cd optiq-csv
$ mvn install
$./sqlline

https://github.com/julianhyde/optiq-csv
https://github.com/julianhyde/optiq-csv

!connect jdbc:optiq:model=target/test-classes/model.json admin admin

!tables

!describe emps

SELECT * FROM emps;

EXPLAIN PLAN FOR SELECT * FROM emps;

SELECT depts.name, count(*)
FROM emps JOIN depts USING (deptno)
GROUP BY depts.name;

model.json:
{
 version: '1.0',
 defaultSchema: 'SALES',
 schemas: [
 {
 name: 'SALES',
 type: 'custom',
 factory: 'net.hydromatic.optiq.impl.csv.CsvSchemaFactory',
 operand: {
 directory: 'target/test-classes/sales'
 }
 }
]
}

More adapters

Adapters Embedded Planned

CSV Cascading (Lingual) HBase (Phoenix)

JDBC Apache Drill Spark

MongoDB Cassandra

Splunk Mondrian

linq4j

SQL on NoSQL

• No schema or schema-on-read

• Optiq MAP columns, dynamic schema

• Nested data (Drill, MongoDB)

• Optiq ARRAY columns

• Source system optimized for transactions &
focused reads, not analytic queries

• Optiq cache and materializations

• Mongo’s standard “zips” data set with all US
zip codes

• Raw ZIPS table with _MAP column

• ZIPS view extracts named fields, including
nested latitude and longitude, and converts
them to SQL types

Example #2: MongoDB

Splunk

• NoSQL database

• Every log file in the enterprise

• A single “table”

• A record for every line in every log file

• A column for every field that exists in
any log file

• No schema

Example #3:
Splunk + MySQL

SELECT p.product_name,
 COUNT(*) AS c
FROM splunk.splunk AS s
 JOIN mysql.products AS p
 ON s.product_id = p.product_id
WHERE s.action = 'purchase'
GROUP BY p.product_name
ORDER BY c DESC

Expression tree

Optimized tree

Analytics

Interactive analytics on
NoSQL?

• NoSQL operational DB (e.g. HBase,
MongoDB, Cassandra)

• Analytic queries aggregate over full scan

• Speed-of-thought response (< 5 seconds)

• Data freshness (< 10 minutes)

Simple analytics
problem

• 100M U.S. census records

• 1KB each record, 100GB total

• 4 SATA3 disks, total 1.2GB/s

• How to count all records in under 5s?

Simple analytics
problem

• 100M U.S. census records

• 1KB each record, 100GB total

• 4 SATA3 disks, total 1.2GB/s

• How to count all records in under 5s?

Simple analytics
problem

• 100M U.S. census records

• 1KB each record, 100GB total

• 4 SATA3 disks, total 1.2GB/s

• How to count all records in under 5s?

• Not possible?! It takes 80s just to read the
data.

Solution: Cheat!

Solution: Cheat!

• Compress data

• Column-oriented storage

• Store data in sorted order

• Put data in memory

• Cache previous query results

• Pre-compute (materialize) aggregates

Mondrian on Optiq on
NoSQL (under construction)

Hybrid analytic
architecture

1. NoSQL source system

2. Access via Optiq SQL

3. Optiq rewrites queries to use materialized data
(e.g. aggregate tables)

4. Cached results are treated as “in-memory
tables”

5. Materializations offline dynamically as underlying
data changes, and go online as they are refreshed

Summary

3 things (reprise)

1. SQL allows you to reorganize your data and
optimize your queries—while still using your
NoSQL database for what it does best.

2. Optiq is not a database. It lets you create
very powerful federated data architectures.

3. Access your data using Optiq adapters.
Write schemas in JSON or use schema SPI.
Connect via JDBC.

Questions?

Thanks!
@julianhyde

optiq https://github.com/julianhyde/optiq

optiq-csv https://github.com/julianhyde/optiq-csv

drill http://incubator.apache.org/drill/

lingual http://www.cascading.org/lingual/

mondrian http://mondrian.pentaho.com

blog http://julianhyde.blogspot.com/

book http://manning.com/back/ 45% off code mlnosql13

https://github.com/julianhyde/optiq
https://github.com/julianhyde/optiq
https://github.com/julianhyde/optiq-csv
https://github.com/julianhyde/optiq-csv
http://incubator.apache.org/drill/
http://incubator.apache.org/drill/
http://www.cascading.org/lingual/
http://www.cascading.org/lingual/
http://mondrian.pentaho.com
http://mondrian.pentaho.com
http://julianhyde.blogspot.com/
http://julianhyde.blogspot.com/
http://manning.com/back/
http://manning.com/back/

