
+

Cost-based Query Optimization

Maryann Xue (Intel)
Julian Hyde (Hortonworks)

Hadoop Summit, San Jose
June 2016

•@maryannxue
•Apache Phoenix PMC member
• Intel

•@julianhyde
•Apache Calcite VP
•Hortonworks

What is Apache Phoenix?
• A relational database layer for Apache HBase

– Query engine
• Transforms SQL queries into native HBase API calls
• Pushes as much work as possible onto the cluster for parallel

execution
– Metadata repository

• Typed access to data stored in HBase tables
– Transaction support
– Table Statistics
– A JDBC driver

Advanced Features
• Secondary indexes
• Strong SQL standard compliance
• Windowed aggregates
• Connectivity (e.g. remote JDBC driver, ODBC driver)

Created architectural pain… We decided to do it right!

Example 1: Optimizing Secondary Indexes

How we match secondary
indexes in Phoenix 4.8:

What about both?

SELECT * FROM Emp ORDER BY name

SELECT * FROM Emp WHERE empId > 100

CREATE TABLE Emps(empId INT PRIMARY KEY, name VARCHAR(100)); 
 
CREATE INDEX I_Emps_Name ON Emps(name);

SELECT * FROM Emp  
WHERE empId > 100 ORDER BY name

Q1

Q2

Q3

I_Emps_Name

Emps

We need to make a cost-based decision! Statistics can help.

?

Phoenix + Calcite
• Both are Apache projects
• Involves changes to both projects
• Work is being done on a branch of Phoenix, with changes to Calcite

as needed
• Goals:

– Remove code! (Use Calcite’s SQL parser, validator)
– Improve planning (Faster planning, faster queries)
– Improve SQL compliance
– Some “free” SQL features (e.g. WITH, scalar subquery, FILTER)
– Close to full compatibility with current Phoenix SQL and APIs

• Status: beta, expected GA: late 2016

 Current Phoenix Architecture

Parser

Algebra

Phoenix Schema Stage 1: ParseNode tree
Stage 2: Normalization,
secondary index rewrite
Stage 3: Expression tree

HBase Data

Runtime

Query Plan

 Calcite Architecture

Parser

Algebra

Schema SPI Operators, 
Rules, 
Statistics,
Cost model

Data

Engine

Data

Engine

Data

Engine

 Phoenix + Calcite Architecture

Parser

Algebra

Phoenix Schema Logical + Phoenix Operators, 
Builtin + Phoenix Rules, 
Phoenix Statistics,
Phoenix Cost model

Data

JDBC (optional)

HBase Data

Phoenix Runtime

Data

Other (optional)

Query Plan

Cost-based Query Optimizer  
with Apache Calcite

• Base all query optimization decisions on cost
– Filter push down; range scan vs. skip scan
– Hash aggregate vs. stream aggregate vs. partial stream aggregate
– Sort optimized out; sort/limit push through; fwd/rev/unordered

scan
– Hash join vs. merge join; join ordering
– Use of data table vs. index table
– All above (any many others) COMBINED

• Query optimizations are modeled as pluggable rules

Calcite Algebra

SELECT products.name, COUNT(*)  
FROM sales  
JOIN products USING (productId)  
WHERE sales.discount IS NOT NULL  
GROUP BY products.name  
ORDER BY COUNT(*) DESC

scan
[products]

scan
[sales]

join

filter

aggregate

sort

translate SQL to
relational
algebra

Example 2: FilterIntoJoinRule

SELECT products.name, COUNT(*)  
FROM sales  
JOIN products USING (productId)  
WHERE sales.discount IS NOT NULL  
GROUP BY products.name  
ORDER BY COUNT(*) DESC

scan
[products]

scan
[sales]

join

filter

aggregate

sort

scan
[products]

scan
[sales]

filter’

join’

aggregate

sort

FilterIntoJoinRule

translate SQL to
relational
algebra

Example 3: Phoenix Joins
• Hash join vs. Sort merge join

– Hash join good for: either input is small
– Sort merge join good for: both inputs are big
– Hash join downside: potential OOM
– Sort merge join downside: extra sorting required sometimes

• Better to exploit the sortedness of join input

• Better to exploit the sortedness of join output

Example 3: Calcite Algebra

SELECT empid, e.name, d.name, location  
FROM emps AS e  
JOIN depts AS d USING (deptno)  
ORDER BY d.deptno

scan
[emps]

scan
[depts]

join

sort

project

translate SQL to
relational
algebra

Example 3: Plan Candidates

scan
[emps]

scan
[depts]

hash-join

sort

project

scan
[emps]

scan
[depts]

sort

merge-join

projectCandidate 1:
hash-join

*also what standalone
Phoenix compiler
would generate.

Candidate 2:
merge-join

1. Very little difference in all other operators: project, scan, hash-join or merge-join
2. Candidate 1 would sort “emps join depts”, while candidate 2 would only sort “emps”

Win
SortRemoveRule
sorted on [deptno]

SortRemoveRule
sorted on [e.deptno]

Example 3: Improved Plan

scan ‘depts’

send ‘depts’ over to RS
& build hash-cache

scan ‘emps’ hash-join ‘depts’

sort joined table on ‘e.deptno’

scan ‘emps’

merge-join ‘emps’ and ‘depts’

sort by ‘deptno’
scan ‘depts’

Old vs. New

1. Exploited the sortedness of join input
2. Exploited the sortedness of join output

(and now, a brief look at Calcite)

Apache Calcite
• Apache top-level project since October, 2015
• Query planning framework

– Relational algebra, rewrite  
rules

– Cost model & statistics
– Federation via adapters
– Extensible

• Packaging
– Library
– Optional SQL parser, JDBC server
– Community-authored rules, adapters

Embedded Adapters Streaming
Apache Drill
Apache Hive
Apache Kylin
Apache Phoenix*
Cascading
Lingual

Apache Cassandra*
Apache Spark
CSV
In-memory
JDBC
JSON
MongoDB
Splunk
Web tables

Apache Flink*
Apache Samza
Apache Storm

Apache Calcite Avatica
• Database connectivity

stack
• Self-contained sub-

project of Calcite
• Fast, open, stable
• Powers Phoenix Query

Server

Calcite – APIs and SPIs

Cost, statistics

RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity

SQL parser

SqlNode 
SqlParser 
SqlValidator

Transformation rules

RelOptRule
• MergeFilterRule
• PushAggregateThroughUnionRule
• 100+ more
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation

Relational algebra

RelNode (operator)
• TableScan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sortedness)
• TBD (bucketedness/distribution)

JDBC driver (Avatica)

Metadata

Schema
Table
Function
• TableFunction
• TableMacro
Lattice

Calcite Planning Process
SQL
parse
tree

Planner

RelNode
Graph

Sql-to-Rel Converter

SqlNode
! RelNode
 + RexNode

Node for each node in Input
Plan
Each node is a Set of
alternate Sub Plans
Set further divided into
Subsets: based on traits like
sortedness

1. Plan Graph

Rule: specifies an Operator
sub-graph to match and logic
to generate equivalent ‘better’
sub-graph
New and original sub-graph
both remain in contention

2. Rules
RelNodes have Cost &
Cumulative Cost

3. Cost Model

Used to plug in Schema,
cost formulas
Filter selectivity
Join selectivity
NDV calculations

4. Metadata Providers

Rule Match Queue

Best RelNode Graph

Translate to
runtime

Logical Plan

Based on “Volcano” & “Cascades” papers [G. Graefe]

Add Rule matches to Queue
Apply Rule match transformations
to plan graph
Iterate for fixed iterations or until
cost doesn’t change
Match importance based on cost of
RelNode and height

Views and materialized views
• A view is a named

relational expression,
stored in the catalog,
that is expanded
while planning a
query.

• A materialized view is an equivalence,
stored in the catalog, between a table
and a relational expression. 
 
The planner substitutes the table into
queries where it will help, even if the
queries do not reference the
materialized view.

Query using a view

Scan [Emps]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Managers]

Aggregate [manager]

Scan [Emps]

SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno

CREATE VIEW Managers AS  
SELECT *  
FROM Emps  
WHERE EXISTS ( 
 SELECT *  
 FROM Emps AS underling  
 WHERE underling.manager = emp.id)

view scan to
be expanded

After view expansion

Scan [Emps] Aggregate [manager]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Emps]

SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno

CREATE VIEW Managers AS  
SELECT *  
FROM Emps  
WHERE EXISTS ( 
 SELECT *  
 FROM Emps AS underling  
 WHERE underling.manager = emp.id)

can be pushed
down

Materialized view

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [COUNT(*)]

CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c,  
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Materialized view, step 2: Rewrite query to
match

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [deptno, gender, 
 COUNT(*) AS c, SUM(sal) AS s]

Project [c]

CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c,  
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Materialized view, step 3: Substitute table

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Filter [deptno = 10 AND gender = ‘M’]

Project [c]

Scan [EmpSummary]

CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c,  
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

(and now, back to Phoenix)

Example 1, Revisited: Secondary Index
Optimizer internally creates a mapping (query, table) equivalent to:

Scan [Emps]

Filter [deptno BETWEEN 100 and 150]

Project [deptno, name]

Sort [deptno]

CREATE MATERIALIZED VIEW I_Emp_Deptno AS  
SELECT deptno, empno, name  
FROM Emps  
ORDER BY deptno

Scan [Emps]

Project [deptno, empno, name]

Sort [deptno, empno, name]

Filter [deptno BETWEEN 100 and 150]

Project [deptno, name]

Scan
[I_Emp_Deptno]1,000

1,000

200

1600 1,000

1,000

200

very simple
cost based
on row-count

Beyond Phoenix 4.8  
with Apache Calcite

• Get the missing SQL support
– WITH, UNNEST, Scalar subquery, etc.

• Materialized views
– To allow other forms of indices (maybe defined as external), e.g., a

filter view, a join view, or an aggregate view.
• Interop with other Calcite adapters

– Already used by Drill, Hive, Kylin, Samza, etc.
– Supports any JDBC source
– Initial version of Drill-Phoenix integration already working

Drillix: Interoperability with Apache Drill
SELECT deptno, sum(salary) FROM emps GROUP BY deptno

Stage 1:
Local Partial aggregation

Stage 3:
Final aggregation

Stage 2:
Shuffle partial results

Drill Aggregate [deptno, sum(salary)]

Drill Shuffle [deptno]

Phoenix Aggregate [deptno, sum(salary)]

Phoenix TableScan [emps]

Phoenix Tables on HBase

Thank you! Questions?

@maryannxue
@julianhyde

http://phoenix.apache.org
http://calcite.apache.org

http://phoenix.apache.org
http://calcite.apache.org

