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For each cone (KSOSPSD,KSOS ℓ2 ,KSOS ℓ1) we compare the computational time to solve a simple example
with its SOS formulation. We use an example analogous to the polynomial envelope problem from [4, Section
7.2], but replace the nonnegativity constraint by a conic inequality. Let qi∈J2..mK(x) be randomly generated
polynomials in Rn,2dr [x]. We seek a polynomial that gives the tightest approximation to the ℓ1 or ℓ2 norm
of (q2(x), . . . , qm(x)) for all x ∈ [−1, 1]n:

min
q1(x)∈Rn,2d[x]

∫
[−1,1]n

q1(x)dx : (1a)

q1(x) ≥ ||(q2(x), . . . , qm(x))||p ∀x ∈ [−1, 1]n, (1b)

with p ∈ {1, 2} in Equation (1b).
To restrict Equation (1b) over [−1, 1]n, we use weighted sum of squares (WSOS) formulations. A poly-

nomial q(x) is WSOS with respect to weights gi∈J1..KK(x) if it can be expressed in the form of q(x) =∑
i∈J1..KKgi(x)pi(x), where pi∈J1..KK(x) are SOS. Papp and Yildiz [4, Section 6] show that the dual WSOS

cone (we will write K∗
WSOS) may be represented by an intersection of K∗

SOS cones. We represent the dual
weighted cones K∗

WSOSPSD, K∗
WSOS ℓ2

and K∗
WSOS ℓ1

analogously using intersections of K∗
SOSPSD, K∗

SOS ℓ2
and

K∗
SOS ℓ1

respectively.
Let fi∈J1..mK denote the coefficients of qi∈J1..mK(x) and let w ∈ RU be a vector of quadrature weights on

[−1, 1]n. A low dimensional representation of Equation (1) may be written as:

min
f1∈RU

w⊤f1 : (f1, . . . , fm) ∈ K, (2)

where K is KWSOS ℓ2 or KWSOS ℓ1 . If p = 2, we compare the KWSOS ℓ2 formulation with two alternative
formulations involving KArw SOSPSD. We use either KWSOSPSD to model KArw SOSPSD, or KWSOS. For p = 1,
we build an SOS formulation by replacing (2) with:

min
f1,g2,...,gm,h2,...,hm∈RU

w⊤f1 : (3a)

f1 −
∑

i∈J2..mK(gi + hi) ∈ KWSOS, (3b)

fi − gi + hi = 0, gi,hi ∈ KWSOS ∀i ∈ J2..mK. (3c)

We select interpolation points using a heuristic adapted from [4, 5]. We uniformly sample N interpolation
points, where N ≫ U . We form a Vandermonde matrix of the same structure as the matrix P used to
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construct the lifting operator, but using the N sampled points for rows. We perform a QR factorization and
use the first U indices from the permutation vector of the factorization to select U out of N rows to keep.

All experiments are performed on hardware with an AMD Ryzen 9 3950X 16-Core Processor (32 threads)
and 128GB of RAM, running Ubuntu 20.10, and Julia 1.8 [1]. Optimization models are built using JuMP
[3] and solved with Hypatia 0.5.3 [2] using our specialized, predefined cones. Scripts we use to run our
experiments and raw results are available in the Hypatia repository.1 We use default settings in Hypatia and
set relative optimality and feasibility tolerances to 10−7.

In Tables 1 and 2, we show Hypatia’s termination status, number of iterations, and solve times for
n ∈ {1, 4} and varying values of dr and m. The termination status (st) columns of Tables 1 and 2 use the
following codes to classify solve runs:

co the solver claims the primal-dual certificate returned is optimal given its numerical tolerances,

tl a limit of 1800 seconds is reached,

rl a limit of approximately 120GB of RAM is reached,

sp the solver terminates due to slow progress during iterations,

er the solver reports a different numerical error,

sk we skip the instance because the solver reached a time or RAM limit on a smaller instance.

If p = 1, we let d = dr, where the maximum degree of q1(x) is 2d. If p = 2, we vary d ∈ {dr, 2dr} and add an
additional column obj in Table 1 to show the ratio of the objective value under the KWSOS (or equivalently
KWSOSPSD) formulation divided by the objective value under the KWSOS ℓ2 formulation. Note that in our
setup, the dimension of KWSOS ℓ2 only depends on d. A more flexible implementation could allow polynomial
components to have different degrees in KWSOS ℓ2 for the d = 2dr case.

For p = 2 and d = 2dr, the difference in objective values between KWSOS ℓ2 and alternative formulations
is less than 1% across all converged instances. For p = 2 and d = dr, the difference in the objective values
is around 10–43% across converged instances. However, the solve times for KWSOS ℓ2 with d = 2dr are
sometimes faster than the solve times of alternative formulations with d = dr and equal values of n, m,
and dr. This suggests that it may be beneficial to use KWSOS ℓ2 in place of SOS formulations, but with
higher maximum degree in the KWSOS ℓ2 cone. The solve times using KWSOSPSD are slightly faster than the
solve times using KWSOS. For the case where p = 1, the KWSOS ℓ1 formulation is faster than the KWSOS

formulation, particularly for larger values of m. We also observe that the number of iterations the algorithm
takes for KWSOS ℓ2 compared to alternative formulations varies, but larger for KWSOS ℓ1 compared to the
alternative SOS formulation.

1Instructions and scripts for reproducing our experiments are available at https://github.com/chriscoey/Hypatia.jl/
tree/master/benchmarks/natvsext.
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KSOS ℓ2 KSOS KSOSPSD

n dr m d st iter time st iter time st iter time obj

1

20

4
20 co 13 0.1 co 17 0.4 co 13 0.2 0.89

40 co 16 0.2 co 19 1.8 co 15 1.1 0.99

8
20 co 13 0.1 co 17 2.9 co 14 2.1 0.85

40 co 19 0.7 co 21 18.0 co 16 10.0 1.00

16
20 co 14 0.4 co 19 48.0 co 14 27.0 0.80

40 co 21 2.4 co 20 264.0 co 17 188.0 1.00

32
20 co 15 1.6 co 22 1189.0 co 17 843.0 0.78

40 co 23 13.0 tl 3 2033.0 tl 7 2075.0 0.03

64
20 co 17 8.5 rl ∗ ∗ rl ∗ ∗ ∗
40 co 20 59.0 sk ∗ ∗ sk ∗ ∗ ∗

40

4
40 co 14 0.2 co 17 1.4 co 14 1.0 0.89

80 co 19 1.0 co 19 7.7 co 17 6.2 0.99

8
40 co 16 0.6 co 19 15.0 co 15 9.1 0.82

80 co 21 3.1 co 21 93.0 co 17 62.0 1.00

16
40 co 17 2.0 co 20 246.0 co 16 152.0 0.79

80 co 27 13.0 co 21 1737.0 co 18 1206.0 1.00

32
40 co 18 7.6 tl 3 2031.0 tl 8 1803.0 0.02

80 co 27 53.0 rl ∗ ∗ rl ∗ ∗ ∗

64
40 co 19 36.0 sk ∗ ∗ sk ∗ ∗ ∗
80 co 26 226.0 sk ∗ ∗ sk ∗ ∗ ∗

4

2

4
2 co 13 0.2 co 18 0.9 co 15 0.6 0.75

4 co 21 33.0 co 43 133.0 co 37 97.0 1.00

8
2 co 13 0.4 co 21 11.0 co 18 7.7 0.64

4 co 21 102.0 tl 49 1816.0 tl 60 1811.0 1.00

16
2 co 15 2.3 co 30 242.0 co 25 203.0 0.59

4 co 21 437.0 sk ∗ ∗ sk ∗ ∗ ∗

32
2 co 15 10.0 tl 6 1848.0 tl 10 1972.0 15.00

4 co 22 1707.0 sk ∗ ∗ sk ∗ ∗ ∗

64
2 co 15 46.0 sk ∗ ∗ sk ∗ ∗ ∗
4 tl 10 1935.0 sk ∗ ∗ sk ∗ ∗ ∗

4

4
4 co 17 11.0 co 30 114.0 co 27 93.0 0.69

8 tl 10 1840.0 rl ∗ ∗ tl ∗ ∗ ∗
8 4 co 18 42.0 co 34 1494.0 co 29 1111.0 0.58

16 4 co 18 174.0 rl ∗ ∗ tl ∗ ∗ ∗
32 4 co 16 580.0 sk ∗ ∗ sk ∗ ∗ ∗
64 4 tl 10 1853.0 sk ∗ ∗ sk ∗ ∗ ∗

Table 1: Solve time in seconds and number of iterations (iter) for instances with p = 2.
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KSOS ℓ1 KSOS

n d m st iter time st iter time

1

40

8 co 17 0.5 co 15 0.5

16 co 21 1.3 co 15 1.9

32 co 25 3.2 co 15 11.0

64 co 29 7.6 co 17 87.0

128 co 32 17.0 co 18 610.0

80

8 co 21 2.6 co 18 2.6

16 co 24 5.6 co 17 13.0

32 co 27 13.0 co 18 89.0

64 co 31 31.0 co 18 600.0

128 co 38 83.0 tl ∗ ∗

4

2

8 co 17 0.5 co 17 0.4

16 co 18 1.0 co 16 1.3

32 co 24 2.8 co 17 7.8

64 co 27 6.4 co 17 57.0

128 co 30 14.0 co 17 400.0

4

8 co 25 28.0 co 21 54.0

16 co 28 86.0 co 22 318.0

32 co 29 198.0 tl 9 1823.0

64 co 31 423.0 sk ∗ ∗
128 co 42 1210.0 sk ∗ ∗

Table 2: Solve time in seconds and number of iterations (iter) for instances with p = 1.
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