Sum of squares generalizations for conic sets Numerical example

Lea Kapelevich, Chris Coey, Juan Pablo Vielma

December 17, 2021

For each cone $(K_{\text{SOSPSD}}, K_{\text{SOS} \ell_2}, K_{\text{SOS} \ell_1})$ we compare the computational time to solve a simple example with its SOS formulation. We use an example analogous to the polynomial envelope problem from [4, Section 7.2], but replace the nonnegativity constraint by a conic inequality. Let $q_{i \in [\![2..m]\!]}(\mathbf{x})$ be randomly generated polynomials in $\mathbb{R}_{n,2d_r}[\mathbf{x}]$. We seek a polynomial that gives the tightest approximation to the ℓ_1 or ℓ_2 norm of $(q_2(\mathbf{x}), \ldots, q_m(\mathbf{x}))$ for all $\mathbf{x} \in [-1, 1]^n$:

$$\min_{q_1(\mathbf{x})\in\mathbb{R}_{n,2d}[\mathbf{x}]} \int_{[-1,1]^n} q_1(\mathbf{x}) d\mathbf{x} : \tag{1a}$$

 $q_1(\mathbf{x}) \ge ||(q_2(\mathbf{x}), \dots, q_m(\mathbf{x}))||_p \qquad \forall \mathbf{x} \in [-1, 1]^n,$ (1b)

with $p \in \{1, 2\}$ in Equation (1b).

To restrict Equation (1b) over $[-1,1]^n$, we use weighted sum of squares (WSOS) formulations. A polynomial $q(\mathbf{x})$ is WSOS with respect to weights $g_{i \in [\![1..K]\!]}(\mathbf{x})$ if it can be expressed in the form of $q(\mathbf{x}) = \sum_{i \in [\![1..K]\!]} g_i(\mathbf{x}) p_i(\mathbf{x})$, where $p_{i \in [\![1..K]\!]}(\mathbf{x})$ are SOS. Papp and Yildiz [4, Section 6] show that the dual WSOS cone (we will write K^*_{WSOS}) may be represented by an intersection of K^*_{SOS} cones. We represent the dual weighted cones K^*_{WSOSPSD} , $K^*_{\text{WSOS}\ell_2}$ and $K^*_{\text{WSOS}\ell_1}$ analogously using intersections of K^*_{SOSPSD} , $K^*_{\text{SOS}\ell_2}$ and $K^*_{\text{SOS}\ell_1}$ respectively.

Let $\mathbf{f}_{i \in [\![1..m]\!]}$ denote the coefficients of $q_{i \in [\![1..m]\!]}(\mathbf{x})$ and let $\mathbf{w} \in \mathbb{R}^U$ be a vector of quadrature weights on $[-1, 1]^n$. A low dimensional representation of Equation (1) may be written as:

$$\min_{\mathbf{f}_1 \in \mathbb{R}^U} \mathbf{w}^\top \mathbf{f}_1 : \quad (\mathbf{f}_1, \dots, \mathbf{f}_m) \in K,$$
(2)

where K is $K_{\text{WSOS} \ell_2}$ or $K_{\text{WSOS} \ell_1}$. If p = 2, we compare the $K_{\text{WSOS} \ell_2}$ formulation with two alternative formulations involving $K_{\text{Arw} \text{ SOSPSD}}$. We use either K_{WSOSPSD} to model $K_{\text{Arw} \text{ SOSPSD}}$, or K_{WSOS} . For p = 1, we build an SOS formulation by replacing (2) with:

$$\min_{\mathbf{f}_1, \mathbf{g}_2, \dots, \mathbf{g}_m, \mathbf{h}_2, \dots, \mathbf{h}_m \in \mathbb{R}^U} \mathbf{w}^\top \mathbf{f}_1 :$$
(3a)

$$\mathbf{f}_1 - \sum_{i \in [\![2..m]\!]} (\mathbf{g}_i + \mathbf{h}_i) \in K_{\text{WSOS}},\tag{3b}$$

$$\mathbf{f}_i - \mathbf{g}_i + \mathbf{h}_i = 0, \quad \mathbf{g}_i, \mathbf{h}_i \in K_{\text{WSOS}} \qquad \qquad \forall i \in [\![2..m]\!]. \tag{3c}$$

We select interpolation points using a heuristic adapted from [4, 5]. We uniformly sample N interpolation points, where $N \gg U$. We form a Vandermonde matrix of the same structure as the matrix **P** used to construct the lifting operator, but using the N sampled points for rows. We perform a QR factorization and use the first U indices from the permutation vector of the factorization to select U out of N rows to keep.

All experiments are performed on hardware with an AMD Ryzen 9 3950X 16-Core Processor (32 threads) and 128GB of RAM, running Ubuntu 20.10, and Julia 1.8 [1]. Optimization models are built using JuMP [3] and solved with Hypatia 0.5.3 [2] using our specialized, predefined cones. Scripts we use to run our experiments and raw results are available in the Hypatia repository.¹ We use default settings in Hypatia and set relative optimality and feasibility tolerances to 10^{-7} .

In Tables 1 and 2, we show Hypatia's termination status, number of iterations, and solve times for $n \in \{1, 4\}$ and varying values of d_r and m. The termination status (st) columns of Tables 1 and 2 use the following codes to classify solve runs:

co the solver claims the primal-dual certificate returned is optimal given its numerical tolerances,

tl a limit of 1800 seconds is reached,

rl a limit of approximately 120GB of RAM is reached,

sp the solver terminates due to slow progress during iterations,

er the solver reports a different numerical error,

sk we skip the instance because the solver reached a time or RAM limit on a smaller instance.

If p = 1, we let $d = d_r$, where the maximum degree of $q_1(\mathbf{x})$ is 2d. If p = 2, we vary $d \in \{d_r, 2d_r\}$ and add an additional column *obj* in Table 1 to show the ratio of the objective value under the K_{WSOS} (or equivalently K_{WSOSPSD}) formulation divided by the objective value under the $K_{\text{WSOS} \ell_2}$ formulation. Note that in our setup, the dimension of $K_{\text{WSOS} \ell_2}$ only depends on d. A more flexible implementation could allow polynomial components to have different degrees in $K_{\text{WSOS} \ell_2}$ for the $d = 2d_r$ case.

For p = 2 and $d = 2d_r$, the difference in objective values between $K_{\text{WSOS}\ell_2}$ and alternative formulations is less than 1% across all converged instances. For p = 2 and $d = d_r$, the difference in the objective values is around 10–43% across converged instances. However, the solve times for $K_{\text{WSOS}\ell_2}$ with $d = 2d_r$ are sometimes faster than the solve times of alternative formulations with $d = d_r$ and equal values of n, m, and d_r . This suggests that it may be beneficial to use $K_{\text{WSOS}\ell_2}$ in place of SOS formulations, but with higher maximum degree in the $K_{\text{WSOS}\ell_2}$ cone. The solve times using K_{WSOSPSD} are slightly faster than the solve times using K_{WSOS} . For the case where p = 1, the $K_{\text{WSOS}\ell_1}$ formulation is faster than the K_{WSOS} formulation, particularly for larger values of m. We also observe that the number of iterations the algorithm takes for $K_{\text{WSOS}\ell_2}$ compared to alternative formulations varies, but larger for $K_{\text{WSOS}\ell_1}$ compared to the alternative SOS formulation.

¹Instructions and scripts for reproducing our experiments are available at https://github.com/chriscoey/Hypatia.jl/tree/master/benchmarks/natvsext.

				$K_{SOS \ell_2}$			K _{SOS}			K _{SOSPSD}			
n	d_r	m	d	st	iter	time	\mathbf{st}	iter	time	\mathbf{st}	iter	time	obj
1	20	4	20	со	13	0.1	со	17	0.4	со	13	0.2	0.89
			40	со	16	0.2	со	19	1.8	со	15	1.1	0.99
		8	20	co	13	0.1	со	17	2.9	со	14	2.1	0.85
			40	со	19	0.7	co	21	18.0	co	16	10.0	1.00
		16	20	со	14	0.4	со	19	48.0	co	14	27.0	0.80
			40	со	21	2.4	со	20	264.0	со	17	188.0	1.00
		32	20	co	15	1.6	со	22	1189.0	со	17	843.0	0.78
			40	co	23	13.0	\mathbf{tl}	3	2033.0	\mathbf{tl}	7	2075.0	0.03
		64	20	co	17	8.5	\mathbf{rl}	*	*	\mathbf{rl}	*	*	*
			40	со	20	59.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
			40	со	14	0.2	со	17	1.4	со	14	1.0	0.89
		4	80	со	19	1.0	со	19	7.7	со	17	6.2	0.99
		8	40	со	16	0.6	со	19	15.0	со	15	9.1	0.82
			80	со	21	3.1	со	21	93.0	со	17	62.0	1.00
	40	16	40	со	17	2.0	со	20	246.0	со	16	152.0	0.79
			80	со	27	13.0	со	21	1737.0	со	18	1206.0	1.00
		20	40	co	18	7.6	\mathbf{tl}	3	2031.0	\mathbf{tl}	8	1803.0	0.02
		32	80	co	27	53.0	rl	*	*	rl	*	*	*
		0.4	40	co	19	36.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
		64	80	со	26	226.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
	2	4	2	со	13	0.2	со	18	0.9	со	15	0.6	0.75
			4	со	21	33.0	со	43	133.0	со	37	97.0	1.00
		8	2	со	13	0.4	со	21	11.0	со	18	7.7	0.64
			4	со	21	102.0	tl	49	1816.0	\mathbf{tl}	60	1811.0	1.00
		16	2	со	15	2.3	со	30	242.0	co	25	203.0	0.59
		10	4	со	21	437.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
		20	2	co	15	10.0	\mathbf{tl}	6	1848.0	\mathbf{tl}	10	1972.0	15.00
		52	4	co	22	1707.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
		64	2	co	15	46.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
4			4	\mathbf{tl}	10	1935.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*
	4	4	4	со	17	11.0	со	30	114.0	со	27	93.0	0.69
			8	\mathbf{tl}	10	1840.0	\mathbf{rl}	*	*	\mathbf{tl}	*	*	*
		8	4	co	18	42.0	со	34	1494.0	co	29	1111.0	0.58
		16	4	co	18	174.0	\mathbf{rl}	*	*	\mathbf{tl}	*	*	*
		32	4	co	16	580.0	\mathbf{sk}	*	*	$_{\rm sk}$	*	*	*
		64	4	\mathbf{tl}	10	1853.0	\mathbf{sk}	*	*	\mathbf{sk}	*	*	*

Table 1: Solve time in seconds and number of iterations (iter) for instances with p = 2.

			$K_{\rm SC}$	$OS \ell_1$		K _{SOS}			
n	d	m	\mathbf{st}	iter	time	\mathbf{st}	iter	time	
		8	со	17	0.5	со	15	0.5	
		16	co	21	1.3	co	15	1.9	
	40	32	со	25	3.2	co	15	11.0	
		64	со	29	7.6	со	17	87.0	
1		128	со	32	17.0	со	18	610.0	
1		8	со	21	2.6	со	18	2.6	
		16	со	24	5.6	co	17	13.0	
	80	32	со	27	13.0	co	18	89.0	
		64	со	31	31.0	co	18	600.0	
		128	со	38	83.0	tl	*	*	
		8	со	17	0.5	со	17	0.4	
		16	со	18	1.0	со	16	1.3	
	2	32	со	24	2.8	со	17	7.8	
		64	co	27	6.4	co	17	57.0	
4		128	со	30	14.0	со	17	400.0	
1		8	со	25	28.0	со	21	54.0	
		16	со	28	86.0	co	22	318.0	
	4	32	со	29	198.0	\mathbf{tl}	9	1823.0	
		64	со	31	423.0	\mathbf{sk}	*	*	
		128	со	42	1210.0	sk	*	*	

Table 2: Solve time in seconds and number of iterations (iter) for instances with p = 1.

References

- Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM review 59(1):65–98
- [2] Coey C, Kapelevich L, Vielma JP (2021) Solving natural conic formulations with Hypatia.jl. 2005.01136
- [3] Lubin M, Dunning I (2015) Computing in Operations Research using Julia. INFORMS Journal on Computing 27(2):238-248, DOI 10.1287/ijoc.2014.0623
- [4] Papp D, Yildiz S (2019) Sum-of-squares optimization without semidefinite programming. SIAM Journal on Optimization 29(1):822–851
- [5] Sommariva A, Vianello M (2009) Computing approximate Fekete points by QR factorizations of Vandermonde matrices. Computers & Mathematics with Applications 57(8):1324–1336