JSF Application from Scratch - Customers

In this tutorial, we will build a simple JSF application using the NetBeans IDE. This tutorial
utilizes NetBeans 8.0.2 and GlassFish 4.1 for deployment. When downloading NetBeans, be
sure to grab either the “Java EE” or “All” bundle in order to ensure that you have all required
libraries.

** |f not using NetBeans, please see the source archive for the Customers application, and
copy/paste sources into your project.

Database

Once downloaded and installed, ensure that the Apache Derby database starts up when
opening NetBeans. To check for a database connection to Derby, click on the Services tab and
then expand Databases. There should be a connection for jdbc:derby://localhost:1527/sample.
After double clicking the connection, expand the APP schema to see the table listing. If the APP
user does not exist, or if the APP user does not have the CUSTOMER database table, then
create the database by running the script https://github.com/juneau001/AcmePools/blob/master/
sql/create_database-no-netbeans.sqgl in another Apache Derby user schema.

"Lk JUULUTIUY. JIULGHIUIL 1L 7 JAUITIT [@UHITUITE UIE DTS = ar
» &I jdbc:derby://localhost:1527 /acme;create=true [acm 2 ﬁ <w
v jdbc:derby://localhost:1527 /sample [app on Default 3 &
v 55 Other schemas 4
v APP 3
v __| Tables E7S H_;
» [COLUMN_MODEL .
» [] CUSTOMER 9
» [DISCOUNT_CODE 10
» [joB 1 -
» [] MANUFACTURER B &
»] MICRO_MARKET 13
» [] moviE 14
» [] POINTS 15 |
» (] pooL e

Application
Next, perform the following steps to create the application.
1) Create new “Maven Web Application” project within NetBeans. Fill in the following details:

Project Name: Customers
Project Location: Your Choice

Group ID: org.javaserverfaces
Version: 0.1
Package: org.javaserverfaces.customers

2) Settings:
Server: GlassFish 4.1
Java EE Version: Java EE 7

3) Create a new package that will be used for organization of the project’s entity classes.
Expand the “Source Packages” node, and right click on org.javaserverfaces.customers, select
New..->Packages... Name the new package org.javaserverfaces.customers.entity. Click
Finish.

4) Create an entity class for CUSTOMER database table. Right click on the newly created
package, and select New... -> Entity Classes from Database. When the “New Entity Classes
from Database” dialog opens, select the datasource “jdbc/sample” to connect to the sample
database. This will populate the “Available Tables” list. Select CUSTOMER, and add it to the
“Selected Tables” list. This will also cause the tables DISCOUNT_CODE and MICRO_MARKET
to populate for referential purposes. Click next...accept all defaults within the next screen, and
click “Finish”. The entity classes for the database tables will be generated.

Steps Database Tables

1. Choose File Type
2. Database Tables

3. Entity Classes Available Tables: Selected Tables:

4. Mapping Options COLUMN, MODEL e
JOB DISCOUNT CODE (class Disc
MANUFACTURER Add > MICRO MARKET
MOVIE
POINTS < Remove
POOL
POOL_CUSTOMER
PRIME_AUTOMOBILE Add All >>
PRIME_AUTO_QUOTE
PRIME_USER << Remove All
PRIME_VISITOR_COUNT
PRODUCT
PRODUCT_CODE

Data Source: | jdbc/sample

4»

VI Include Related Tables

4»

Any

Help < Back Next > Finisk Cancel

5) Create session bean EJBs for the entity classes. One may choose to create web services,
rather than EJBs, but in this tutorial we will utilize the latter. Right-click on “Source Packages”
and select “New” -> “Java Package”. Name the package
org.javaserverfaces.customers.session, then click Finish. Right-click on the newly created
package, and select “New” -> “Session Beans for Entity Classes” to open the “New Session
Beans for Entity Classes” dialog. Select “org.javaserverfaces.entity.Customer” from the
“Available Classes” list, and add it to the “Selected Classes” list. Doing so will cause the other
two classes to move into the :Selected Classes” list as well. Click Next, accept all defaults on
the next screen, and click “Finish”.

6) Create a JSF managed bean controller for the CustomerFacade. First, create a new
package to contain the managed bean controllers by right-clicking on “Source Packages”, and
select “New” -> “Java Package”. Name the package org.javaserverfaces.customers.jsf, then
click Finish. Next, right-click on the newly created package and select “New” -> “JSF Managed
Bean”, which will open the “New JSF Managed Bean” dialog. In the dialog, fill in the following:

Class Name: CustomerController

Name: customerController (CDI Name)

Scope: Session

Accept the remaining defaults and click “Finish.

The JSF Managed bean controller is the class that will communicate with the JSF view (web
page). Typically, each view within an application contains a JSF managed bean controller class.
The JSF view is able to interact with the public fields and methods of a managed bean controller
via the use of Expression Language (EL).

7) Add a list of customers to the main view of the application. In order to facilitate this listing,
we need to query the Customer entity for all records. To do so, let’s open the
CustomerController JSF managed bean, and inject the CustomerFacade EJB into the controller
by creating the following class field:

@EJB
CustomerFacade customerFacade;

Import the necessary classes, and then create a new private class field of type List<Customer>:
private List<Customer> customerList;

Import the necessary classes, and encapsulate the customerList field to create accessor
methods (getter and setter) by right-clicking on the field name, and choosing “Refactor” ->

“Encapsulate Fields”, and finally accepting the dialog defaults and choosing “Refactor”.

Lastly, create a public method which will be used for populating the customerList field. Name
the method populateCustomerList(), and provide the following implementation:

public void populateCustomerList(){
customerList = customerFacade.findAll();

}

We will be calling upon the populateCustomerList() method each time the JSF view containing
the customer listing is loaded into the browser. In turn, the populateCustomerList() method will
populate the customerList with the list of customers from the database, and they will then be
displayed in the DataTable, which we will create next.

8) Create the front end table (JSF DataTable) to list the customers in the database. Begin by
generating a new XHTML view within he “Web Pages” folder, and name the view
customerList.xhtml. Delete the contents of the new view, and paste in the following:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtmlI1/
DTD/xhtml1-strict.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm|"
xmins:f="http://xmins.jcp.org/jsf/core"
xmins:h="http://xmIns.jcp.org/jsf/html">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>TODO supply a title</title>

</h:head>
<f:metadata>
<f:viewAction action="#{customerController.populateCustomerList()}"/>
</f:metadata>
<h:body>
<h1>Customer Listing</h1>
<h:form id="customerListingForm">
<h:dataTable id="customerListing" value="#{customerController.customerList}"
var="customer" border="1">
<h:column id="name">
<h:outputText value="#{customer.name}"/>
</h:column>
<h:column id="email">
<h:outputText value="#{customer.email}"/>
</h:column>
<h:column id="phone">
<h:outputText value="#{customer.phone}"/>
</h:column>
<h:column id="address1">
<h:outputText value="#{customer.addressline1}"/>
</h:column>
<h:column id="address2">
<h:outputText value="#{customer.addressline2}"/>
</h:column>
<h:column id="city">
<h:outputText value="#{customer.city}"/>
</h:column>

<h:column id="state">
<h:outputText value="#{customer.state}"/>

</h:column>

<h:column id="zip">
<h:outputText value="#{customer.zip}"/>

</h:column>

</h:dataTable>
</h:form>
</h:body>
</html>

In the source above, the populateCustomerList() method, residing in the CustomerController
JSF managed bean class, is initiated when the view is loaded via the JSF ViewAction that is
located newer the top of the view. The JSF ViewAction must reside within an <f:metadata> tag.

The DataTable is populated via EL by obtaining the current list of users within the
CustomerController’s customerList field, as seen in bold. The var attribute of the DataTable
provides a handle for each record within the List. Therefore, we can access each field of every
customer record within the list, as seen within the <h:column> components that are contained
within the DataTable.

9) Ensure that the project properties are correct. Right-click on the project in NetBeans IDE,
and select “Properties”. Click “Sources” menu and be sure that either Java 1.7 or 1.8 is
selected as the Source/Binary format. Click “Compile” and be sure that JDK 1.7 or JDK 1.8 is
selected as the Java Platform. Click “Run” and ensure that GlassFish is selected as the Server,
and that Java EE 7 is selected as the Java EE Version. Exit the form by clicking “OK”.

At this point, open the NetBeans project's WEB-INF directory, and see if a faces-config.xml file
has been automatically generated for the project. NetBeans should automatically create this for
us when we choose the Create JSF Pages for Entity Classes option (next section), but we can
manually generate one by right-clicking on the project, and then choosing New...JavaServer
Faces -> Faces Config.

10) Deploy and test the application. Click on web.xml, and update the welcome-file to “faces/
customerList.xhtml” so that the new customer listing is displayed on start up. Right-click the
project in NetBeans IDE, and select “Run” to compile, build, and deploy the project to
GlassFish.

Creating a CRUD Application

Now that the entity classes have been created, and we have generated a simple view to
display customers, lets create a CRUD application based upon the Customer entity.
(Note: If not using NetBeans, you can copy the sources from the Customers source
archive into your application project.) Generate the JSF views by right-clicking the
project’s Web Pages folder and choosing New and then JSF Pages from Entity Classes.
When the dialog box opens, select each of the newly created entity classes, add them to
the Selected Entity Classes list, and then choose Next.

Utilizing Standard JSF Views (Recommended for Testing JSF 2.3)

On the next screen, change the Session Bean package to
org.javaserverfaces.customers.session, and change the JSF Classes Package to
org.javaserverfaces.customers.jsf. Enter a / into the field labeled “JSF Pages Folder”.
Check the box that reads “Override Existing Classes”. Select the “Choose Templates”
option; and choose Standard JavaServer Faces. Click Finish, and NetBeans IDE will
create three separate folders within the Web Pages folder, each named accordingly for
their associated entity classes. Within each folder, the following JSF pages are created:
Create.xhtml, Edit.xhtml, List.xhtml, and View.xhtml. NetBeans IDE
also automatically generates JSF controllers and Enterprise JavaBeans (EJB) beans for
each of the entity classes, and the newly generated pages are wired up to the controllers
and ready for use.

Edit the web.xml, adding the following for the welcome-file:
<welcome-file>faces/customer/List.xhtml</welcome-file>

Run the application, and perform some tests to ensure that everything works properly.

Open each view, and inspect the EL that is used to access the fields and methods of the
JSF managed bean classes. Each entity (Customer, DiscountCode, and MicroMarket)
each has its own set of views, and therefore, each also has its own JSF managed bean
controller class. CDI is used to access each of the JSF managed bean controller classes,
and this is made possible via the @Named annotation on each of the JSF managed bean
controller classes. The @Named annotation provides an accessor name for each class.

Utilizing a Third Party Ul Library (PrimeFaces)

Begin by removing each of the view directories that were generated in the previous
section. Next, Generate the JSF views by right-clicking the project’s Web Pages folder
and choosing New and then JSF Pages from Entity Classes. When the dialog box opens,
select each of the newly created entity classes, add them to the Selected Entity Classes
list, and then choose Next. On the next screen, change the Session Bean package to
org.javaserverfaces.customers.session, and change the JSF Classes Package to
org.javaserverfaces.customers.jsf. Enter a / into the field labeled “JSF Pages Folder”.
Check the box that reads “Override Existing Classes”. Select the “Choose Templates”
option; and choose PrimeFaces. Click Finish, and NetBeans IDE will create three
separate folders within the Web Pages folder, each named accordingly for their
associated entity classes. Within each folder, the following JSF pages are created:
Create.xhtml, Edit.xhtml, List.xhtml, and View.xhtml. NetBeans IDE
also automatically generates JSF controllers and Enterprise JavaBeans (EJB) beans for
each of the entity classes, and the newly generated pages are wired up to the controllers
and ready for use.

Run the application, and perform some tests to ensure that everything works properly.
Open a view within the editor and notice that the PrimeFaces namespace has been
imported, and all of the Ul components are from the PrimeFaces library.

https://netbeans.org/kb/docs/web/jsf20-intro.html

