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Dreamix: Video Diffusion Models are General Video Editors

Mixed Video-Image Finetuning
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Mixed Video-Image Finetuning

Finetuning the video diffusion model on the input video alone limits the extent of motion change. Instead, we use a mixed

objective that beside the original objective (bottom left) also finetunes on the unordered set of frames. This is done by using

“masked temporal attention”, preventing the temporal attention and convolution from being finetuned (bottom right). This

allows adding motion to a static video.

Inference Overview

Application Dependent Dreamix Video
Pre-processing Editor

Video Editing

add noise
Image-to-Video 7 s P e | eating pizza”

l Down sample + ‘;4 bear

@ (don't pass input)

Subject Driven
Video Generation

Our method supports multiple applications by application dependent pre-processing (left), converting
uniform video format. For image-to-video, the input image is duplicated and transformed using pe
synthesizing a coarse video with some camera motion. For subject driven video generation, the in
alone take care of the fidelity. This coarse video is then edited using our general "Dreamix Video Edit
the video by downsampling followed by adding noise. We then apply the finetuned text-guided vidt
upscales the video to the final spatio-temporal resolution
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e Accelerating Large Language Model Decoding with Speculative Sampling
o =7{CH AO{EEOM C[2E £ S2[7| {3l MetstE ME2 sampling 7| (from DeepMind)
o =M= Ot Z5LIC

e Generating a short draft of length K. This can be attained with either a parallel model (Stern

et al., 2018) or by calling a faster, auto-regressive model K times. We shall refer to this model
as the draft model, and focus on the case where it is auto-regressive.

e Scoring the draft using the larger, more powerful model from we wish to sample from. We shall
refer to this model as the target model.

e Using a moditied rejection sampling scheme, accept a subset of the K draft tokens from left to
right, recovering the distribution of the target model in the process.
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e Accelerating Large Language Model Decoding with Speculative Sampling

o M| A Google?| Fast Inference from Transformers via Speculative
Decoding & 72| Z&2. LAMDA vs. Chinchilla

Table 1 | Chinchilla performance and speed on XSum and HumanEval with naive and speculative
sampling at batch size 1 and K = 4. XSum was executed with nucleus parameter p = 0.8, and
HumanEval with p = 0.95 and temperature 0.8.

Sampling Method Benchmark Result Mean Token Time Speed Up

ArS (Nucleus) 0.112 14.1ms/Token 1x
SpS (Nucleus) XSum (ROUGE-2) (114 7.52ms/Token 1.92x

ArS (Greedy) 0.157 14.1ms/Token 1x
SpS (Greedy) XSum (ROUGE-2) 0.156 7.00ms/Token 2.01x

ArS (Nucleus) 45.1% 14.1ms/Token 1x
SpS (Nucleus) HumanEval (100 Shot) -, 400 5 73m¢/Token 2.46x
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Figure 5. A simplified trace diagram for a full encoder-decoder Transformer stack. In this case we have enough computational power so
that the calls to M), all take about the same time. The top row shows decoding with our method with v = 7 so each of the calls to M,
(the purple blocks) is preceded by 7 calls to M, (the blue blocks). The yellow block on the left is the call to the encoder for M, and the
orange block is the call to the encoder for M. Likewise the middle row shows our method with gamma = 3, and the bottom row shows
standard decoding.
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e SingSong: Generating musical accompaniments from singing

e Keyword : vocal accompaniment

e Sample URL : https://storage.googleapis.com/sing-song/index.htm|

e vocal (‘e2f)E Y™ =E =M accompaniment (BIF)E BIE0s= 22

e pre-trained w2v-BERT2 SoundStream= 0|&35}01 semantic 822} acoustic features F
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* SingSong: Generating musical accompaniments from singing
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Figure 1. SingSong generates instrumental music to accompany input vocals, thereby allowing users to create music featuring their
own voice. (Left) We manufacture large volumes of synthetic data for this task by applying an off-the-shelf source separation algorithm
to a large corpus of music audio, which we use to train a generative model over instrumentals given vocals. (Right) At inference time,
: ong takes vocals from users and outputs an instrumental to accompany to those vocals, which can be naively mixed with the input
to create coherent music. *Note that, during training, we compute loss on discrete audio features rather than waveforms (Section 3.3).
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Figure 2. We adapt AudioLLM (Borsos et al., 2022) to be suitable for training conditional “audio-to-audio” generative models of
instrumentals given vocals. During training, we use source-separated vocals and instrumentals as inputs and targets respectively. We add
white noise to the input to conceal residual artifacts of the instrumental present in the source-separated vocals. For the targets, we reuse
the discrete featurization scheme from AudiolLM, extracting semantic codes from a pre-trained w2v-BERT model (Chung et al., 2021)
and coarse acoustic codes from a pre-trained SoundStream codec (Zeghidour et al., 2021). We experiment with several featurizations
of the input—our best model uses only semantic codes of the noisy vocals. We train TS (Raffel et al., 2020), an encoder-decoder
Transformer (Vaswani et al., 2017), to predict target codes given input codes. During inference (not shown), we use this model to generate
coarse acoustic codes, then use a separately-trained model to generate fine codes given coarse, and finally decode both with SoundStream.
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* SingSong: Generating musical accompaniments from singing
o A= Frechet Audio Distance (FAD)E 0|256104 H|W5tHLE MSE RALS &

o 54 O|O|E{= 46k AlZHe] 22 W7H= MUSDB 18 dataset (10A|Z2t2] vocal,
instrumental "stems")

FAD.

1.61
1.14

1.64  0.37
3.30  0.11
L.87  0.95
1.65  0.36
1.17  0.19

096 0.32

Table 1. Quanttative evaluation for our experiments. FAD is
the Fréchet Audio Distance on MUSDB 18-test between ground
truth mixes and mixes of ground truth vocals and instrumentals
generated by models using either 1solated vocals (FAD,) or source-
separated vocals (FADy,) as inputs. Since FAD; corresponds better
to the anticipated usage, and FAD; 1s closer to how the model 1s
trained, a generalization gap (A) exists between the two. Adding
noise to the input vocals (Noisy), removing the vocal acoustic

codes (5-SA), and increasing model size (XL) all help to improve
generation to 1solated vocal inputs (FAD;). Full details of featur-
1zations can be found in Section 4.5. For all experiments, FAD on
MUSDBI18-dev 1s used as an early stopping metric.
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nstructTTS: Modelling Expressive TTS in Discrete Latent Space with Natural Languagé"k
Prompt

o Keyword : TTS, prompt, diffusion
e Sample URL : http://dongchaoyang.top/InstructTTS/

e content text2} style promptE YEH2E expressivest TTSE HEHT= EE

o 7|&2| expressive TTS HHZH M2| one-to-many 2XIE prompt 7[|2H2| style 2 s{{&
* PromptTTSL} CHE B2 PromptTTS= 5702 AEFR(MEE, x|, &, 37|, ZE)2E SFEX[RF InstructTTS
= F34!

e Style encoder28E promptZ 2E| semantic 32 E F&5t1 VQE 0/85t0] mel LA ZEZE 0|8
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* [nstructTTS: Modelling Expressive TTS in Discrete Latent Space with N

Language Style Prompt

o A Q= AT : PromptTTS: Controllable Text-to-Speech with Text
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(a) The overview of InstructTTS. (b) The details of style encoder. (c) The details of Mel-VQ-Diffusion.

Fig. 1. (a) shows the model architecture of our proposed InstructTTS. Where SALN denotes the style-adaptive layer normalization adaptor [14]. (b) shows
the details of our proposed style encoder, which aims to extract style features from GT mel-spectrogram (training stage) or style prompt (inference stage). In
Figure 1 (c), we give an example of discrete diffusion decoder to generate VQ mel-spectrogram acousic features (we name it as Mel-VQ-Diffusion).
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Fig. 3.
models.

The overall architecture of the VQ-VAE and Neural audio codec
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o Text-To-Audio Papers

e Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced
Diffusion Models

o AudioLDM: Text-to-Audio Generation with Latent Diffusion Models

e ModUsai: Text-to-Music Generation with Long-Context Latent Ditfusion
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