Skip to content

junzis/course-regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Regression for data science

This is a mini-course on regression, originally designed as part of the AI education program for TU Delft. I made it open for everyone who are insterested in learning regression in machine learning.

Clone the repository using git, or download it by click Code -> Download Zip at the top of this repository page.


Overview

Generally, We use regression to study relationships among dependent and independent variables presented in the data. When these regression models are used for predicting unseen input, the approach is categorized as supervised machine learning.

In this mini-course, you will learn the following topics:

  • Simple linear regression (single input, single output, linear relationship, deterministic)
  • Multiple linear regression (multiple inputs, single output, linear relationship, deterministic)
  • Polynomial linear regression (multiple inputs, single output, non-linear relationship, deterministic)
  • Logistic regression (continuous input(s), binary output, deterministic)
  • Bayesian regression (regression using stochastic process)

In between these specific regression topics, there are a few regression-related topics:

  • Regression metrics (how to evaluate your regression model?)
  • Gradient descent algorithm (how to perform optimization numerically?)
  • Bias variance trade-off (why you model under-fits or over-fits?)
  • Regularization (how to mitigate the over-fitting problem?)

Materials for the lecture

The lectures are split into 11 short videos (edited to approximately 10 minutes on average). Feel free to use 1.25x or 1.5x speed to watch. Most topics are taught with the same dataset (about airplanes) that I have created for this lecture.

Each course video is accompanied by a Python Jupyter notebook in this repository.

List of videos

  1. Introduction
  2. Data
  3. Simple linear regression
  4. Regression metrics
  5. Multiple regression
  6. Gradient descent
  7. Polynomial linear regression
  8. Bias variance tradeoff
  9. Regularization
  10. Logistic regression
  11. Bayesian regression

About

Notebooks for CS4305TU Regression Lectures

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published