Permalink
Cannot retrieve contributors at this time
493 lines (468 sloc)
16.5 KB
| /* | |
| * A fast javascript implementation of simplex noise by Jonas Wagner | |
| Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. | |
| Which is based on example code by Stefan Gustavson (stegu@itn.liu.se). | |
| With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). | |
| Better rank ordering method by Stefan Gustavson in 2012. | |
| Copyright (c) 2021 Jonas Wagner | |
| Permission is hereby granted, free of charge, to any person obtaining a copy | |
| of this software and associated documentation files (the "Software"), to deal | |
| in the Software without restriction, including without limitation the rights | |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| copies of the Software, and to permit persons to whom the Software is | |
| furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in all | |
| copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| SOFTWARE. | |
| */ | |
| const F2 = 0.5 * (Math.sqrt(3.0) - 1.0); | |
| const G2 = (3.0 - Math.sqrt(3.0)) / 6.0; | |
| const F3 = 1.0 / 3.0; | |
| const G3 = 1.0 / 6.0; | |
| const F4 = (Math.sqrt(5.0) - 1.0) / 4.0; | |
| const G4 = (5.0 - Math.sqrt(5.0)) / 20.0; | |
| const grad3 = new Float32Array([1, 1, 0, | |
| -1, 1, 0, | |
| 1, -1, 0, | |
| -1, -1, 0, | |
| 1, 0, 1, | |
| -1, 0, 1, | |
| 1, 0, -1, | |
| -1, 0, -1, | |
| 0, 1, 1, | |
| 0, -1, 1, | |
| 0, 1, -1, | |
| 0, -1, -1]); | |
| const grad4 = new Float32Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, | |
| 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, | |
| 1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, | |
| -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1, | |
| 1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, | |
| -1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1, | |
| 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, | |
| -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0]); | |
| /** | |
| * A random() function, must return a numer in the interval [0,1), just like Math.random(). | |
| */ | |
| export type RandomFn = () => number; | |
| /** Deterministic simplex noise generator suitable for 2D, 3D and 4D spaces. */ | |
| export class SimplexNoise { | |
| private p: Uint8Array; | |
| private perm: Uint8Array; | |
| private permMod12: Uint8Array; | |
| /** | |
| * Creates a new `SimplexNoise` instance. | |
| * This involves some setup. You can save a few cpu cycles by reusing the same instance. | |
| * @param randomOrSeed A random number generator or a seed (string|number). | |
| * Defaults to Math.random (random irreproducible initialization). | |
| */ | |
| constructor(randomOrSeed: RandomFn|string|number = Math.random) { | |
| const random = typeof randomOrSeed == 'function' ? randomOrSeed : alea(randomOrSeed); | |
| this.p = buildPermutationTable(random); | |
| this.perm = new Uint8Array(512); | |
| this.permMod12 = new Uint8Array(512); | |
| for (let i = 0; i < 512; i++) { | |
| this.perm[i] = this.p[i & 255]; | |
| this.permMod12[i] = this.perm[i] % 12; | |
| } | |
| } | |
| /** | |
| * Samples the noise field in 2 dimensions | |
| * @param x | |
| * @param y | |
| * @returns a number in the interval [-1, 1] | |
| */ | |
| noise2D(x: number, y: number): number { | |
| const permMod12 = this.permMod12; | |
| const perm = this.perm; | |
| let n0 = 0; // Noise contributions from the three corners | |
| let n1 = 0; | |
| let n2 = 0; | |
| // Skew the input space to determine which simplex cell we're in | |
| const s = (x + y) * F2; // Hairy factor for 2D | |
| const i = Math.floor(x + s); | |
| const j = Math.floor(y + s); | |
| const t = (i + j) * G2; | |
| const X0 = i - t; // Unskew the cell origin back to (x,y) space | |
| const Y0 = j - t; | |
| const x0 = x - X0; // The x,y distances from the cell origin | |
| const y0 = y - Y0; | |
| // For the 2D case, the simplex shape is an equilateral triangle. | |
| // Determine which simplex we are in. | |
| let i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
| if (x0 > y0) { | |
| i1 = 1; | |
| j1 = 0; | |
| } // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
| else { | |
| i1 = 0; | |
| j1 = 1; | |
| } // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
| // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
| // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
| // c = (3-sqrt(3))/6 | |
| const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
| const y1 = y0 - j1 + G2; | |
| const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
| const y2 = y0 - 1.0 + 2.0 * G2; | |
| // Work out the hashed gradient indices of the three simplex corners | |
| const ii = i & 255; | |
| const jj = j & 255; | |
| // Calculate the contribution from the three corners | |
| let t0 = 0.5 - x0 * x0 - y0 * y0; | |
| if (t0 >= 0) { | |
| const gi0 = permMod12[ii + perm[jj]] * 3; | |
| t0 *= t0; | |
| n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient | |
| } | |
| let t1 = 0.5 - x1 * x1 - y1 * y1; | |
| if (t1 >= 0) { | |
| const gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3; | |
| t1 *= t1; | |
| n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1); | |
| } | |
| let t2 = 0.5 - x2 * x2 - y2 * y2; | |
| if (t2 >= 0) { | |
| const gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3; | |
| t2 *= t2; | |
| n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2); | |
| } | |
| // Add contributions from each corner to get the final noise value. | |
| // The result is scaled to return values in the interval [-1,1]. | |
| return 70.0 * (n0 + n1 + n2); | |
| } | |
| /** | |
| * Samples the noise field in 3 dimensions | |
| * @param x | |
| * @param y | |
| * @param z | |
| * @returns a number in the interval [-1, 1] | |
| */ | |
| noise3D(x:number, y:number, z:number): number { | |
| const permMod12 = this.permMod12; | |
| const perm = this.perm; | |
| let n0, n1, n2, n3; // Noise contributions from the four corners | |
| // Skew the input space to determine which simplex cell we're in | |
| const s = (x + y + z) * F3; // Very nice and simple skew factor for 3D | |
| const i = Math.floor(x + s); | |
| const j = Math.floor(y + s); | |
| const k = Math.floor(z + s); | |
| const t = (i + j + k) * G3; | |
| const X0 = i - t; // Unskew the cell origin back to (x,y,z) space | |
| const Y0 = j - t; | |
| const Z0 = k - t; | |
| const x0 = x - X0; // The x,y,z distances from the cell origin | |
| const y0 = y - Y0; | |
| const z0 = z - Z0; | |
| // For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
| // Determine which simplex we are in. | |
| let i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
| let i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
| if (x0 >= y0) { | |
| if (y0 >= z0) { | |
| i1 = 1; | |
| j1 = 0; | |
| k1 = 0; | |
| i2 = 1; | |
| j2 = 1; | |
| k2 = 0; | |
| } // X Y Z order | |
| else if (x0 >= z0) { | |
| i1 = 1; | |
| j1 = 0; | |
| k1 = 0; | |
| i2 = 1; | |
| j2 = 0; | |
| k2 = 1; | |
| } // X Z Y order | |
| else { | |
| i1 = 0; | |
| j1 = 0; | |
| k1 = 1; | |
| i2 = 1; | |
| j2 = 0; | |
| k2 = 1; | |
| } // Z X Y order | |
| } | |
| else { // x0<y0 | |
| if (y0 < z0) { | |
| i1 = 0; | |
| j1 = 0; | |
| k1 = 1; | |
| i2 = 0; | |
| j2 = 1; | |
| k2 = 1; | |
| } // Z Y X order | |
| else if (x0 < z0) { | |
| i1 = 0; | |
| j1 = 1; | |
| k1 = 0; | |
| i2 = 0; | |
| j2 = 1; | |
| k2 = 1; | |
| } // Y Z X order | |
| else { | |
| i1 = 0; | |
| j1 = 1; | |
| k1 = 0; | |
| i2 = 1; | |
| j2 = 1; | |
| k2 = 0; | |
| } // Y X Z order | |
| } | |
| // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
| // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
| // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
| // c = 1/6. | |
| const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
| const y1 = y0 - j1 + G3; | |
| const z1 = z0 - k1 + G3; | |
| const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords | |
| const y2 = y0 - j2 + 2.0 * G3; | |
| const z2 = z0 - k2 + 2.0 * G3; | |
| const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords | |
| const y3 = y0 - 1.0 + 3.0 * G3; | |
| const z3 = z0 - 1.0 + 3.0 * G3; | |
| // Work out the hashed gradient indices of the four simplex corners | |
| const ii = i & 255; | |
| const jj = j & 255; | |
| const kk = k & 255; | |
| // Calculate the contribution from the four corners | |
| let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; | |
| if (t0 < 0) n0 = 0.0; | |
| else { | |
| const gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3; | |
| t0 *= t0; | |
| n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0); | |
| } | |
| let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; | |
| if (t1 < 0) n1 = 0.0; | |
| else { | |
| const gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3; | |
| t1 *= t1; | |
| n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1); | |
| } | |
| let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; | |
| if (t2 < 0) n2 = 0.0; | |
| else { | |
| const gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3; | |
| t2 *= t2; | |
| n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2); | |
| } | |
| let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; | |
| if (t3 < 0) n3 = 0.0; | |
| else { | |
| const gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3; | |
| t3 *= t3; | |
| n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3); | |
| } | |
| // Add contributions from each corner to get the final noise value. | |
| // The result is scaled to stay just inside [-1,1] | |
| return 32.0 * (n0 + n1 + n2 + n3); | |
| } | |
| /** | |
| * Samples the noise field in 4 dimensions | |
| * @param x | |
| * @param y | |
| * @param z | |
| * @returns a number in the interval [-1, 1] | |
| */ | |
| noise4D(x:number, y:number, z:number, w:number): number { | |
| const perm = this.perm; | |
| let n0, n1, n2, n3, n4; // Noise contributions from the five corners | |
| // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in | |
| const s = (x + y + z + w) * F4; // Factor for 4D skewing | |
| const i = Math.floor(x + s); | |
| const j = Math.floor(y + s); | |
| const k = Math.floor(z + s); | |
| const l = Math.floor(w + s); | |
| const t = (i + j + k + l) * G4; // Factor for 4D unskewing | |
| const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space | |
| const Y0 = j - t; | |
| const Z0 = k - t; | |
| const W0 = l - t; | |
| const x0 = x - X0; // The x,y,z,w distances from the cell origin | |
| const y0 = y - Y0; | |
| const z0 = z - Z0; | |
| const w0 = w - W0; | |
| // For the 4D case, the simplex is a 4D shape I won't even try to describe. | |
| // To find out which of the 24 possible simplices we're in, we need to | |
| // determine the magnitude ordering of x0, y0, z0 and w0. | |
| // Six pair-wise comparisons are performed between each possible pair | |
| // of the four coordinates, and the results are used to rank the numbers. | |
| let rankx = 0; | |
| let ranky = 0; | |
| let rankz = 0; | |
| let rankw = 0; | |
| if (x0 > y0) rankx++; | |
| else ranky++; | |
| if (x0 > z0) rankx++; | |
| else rankz++; | |
| if (x0 > w0) rankx++; | |
| else rankw++; | |
| if (y0 > z0) ranky++; | |
| else rankz++; | |
| if (y0 > w0) ranky++; | |
| else rankw++; | |
| if (z0 > w0) rankz++; | |
| else rankw++; | |
| // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. | |
| // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w | |
| // impossible. Only the 24 indices which have non-zero entries make any sense. | |
| // We use a thresholding to set the coordinates in turn from the largest magnitude. | |
| // Rank 3 denotes the largest coordinate. | |
| // Rank 2 denotes the second largest coordinate. | |
| // Rank 1 denotes the second smallest coordinate. | |
| // The integer offsets for the second simplex corner | |
| const i1 = rankx >= 3 ? 1 : 0; | |
| const j1 = ranky >= 3 ? 1 : 0; | |
| const k1 = rankz >= 3 ? 1 : 0; | |
| const l1 = rankw >= 3 ? 1 : 0; | |
| // The integer offsets for the third simplex corner | |
| const i2 = rankx >= 2 ? 1 : 0; | |
| const j2 = ranky >= 2 ? 1 : 0; | |
| const k2 = rankz >= 2 ? 1 : 0; | |
| const l2 = rankw >= 2 ? 1 : 0; | |
| // The integer offsets for the fourth simplex corner | |
| const i3 = rankx >= 1 ? 1 : 0; | |
| const j3 = ranky >= 1 ? 1 : 0; | |
| const k3 = rankz >= 1 ? 1 : 0; | |
| const l3 = rankw >= 1 ? 1 : 0; | |
| // The fifth corner has all coordinate offsets = 1, so no need to compute that. | |
| const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords | |
| const y1 = y0 - j1 + G4; | |
| const z1 = z0 - k1 + G4; | |
| const w1 = w0 - l1 + G4; | |
| const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords | |
| const y2 = y0 - j2 + 2.0 * G4; | |
| const z2 = z0 - k2 + 2.0 * G4; | |
| const w2 = w0 - l2 + 2.0 * G4; | |
| const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords | |
| const y3 = y0 - j3 + 3.0 * G4; | |
| const z3 = z0 - k3 + 3.0 * G4; | |
| const w3 = w0 - l3 + 3.0 * G4; | |
| const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords | |
| const y4 = y0 - 1.0 + 4.0 * G4; | |
| const z4 = z0 - 1.0 + 4.0 * G4; | |
| const w4 = w0 - 1.0 + 4.0 * G4; | |
| // Work out the hashed gradient indices of the five simplex corners | |
| const ii = i & 255; | |
| const jj = j & 255; | |
| const kk = k & 255; | |
| const ll = l & 255; | |
| // Calculate the contribution from the five corners | |
| let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; | |
| if (t0 < 0) n0 = 0.0; | |
| else { | |
| const gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4; | |
| t0 *= t0; | |
| n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0); | |
| } | |
| let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; | |
| if (t1 < 0) n1 = 0.0; | |
| else { | |
| const gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4; | |
| t1 *= t1; | |
| n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1); | |
| } | |
| let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; | |
| if (t2 < 0) n2 = 0.0; | |
| else { | |
| const gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4; | |
| t2 *= t2; | |
| n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2); | |
| } | |
| let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; | |
| if (t3 < 0) n3 = 0.0; | |
| else { | |
| const gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4; | |
| t3 *= t3; | |
| n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3); | |
| } | |
| let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; | |
| if (t4 < 0) n4 = 0.0; | |
| else { | |
| const gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4; | |
| t4 *= t4; | |
| n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4); | |
| } | |
| // Sum up and scale the result to cover the range [-1,1] | |
| return 27.0 * (n0 + n1 + n2 + n3 + n4); | |
| } | |
| } | |
| export default SimplexNoise; | |
| /** | |
| * Builds a random permutation table. | |
| * This is exported only for (internal) testing purposes. | |
| * Do not rely on this export. | |
| * @private | |
| */ | |
| export function buildPermutationTable(random: RandomFn): Uint8Array { | |
| const p = new Uint8Array(256); | |
| for (let i = 0; i < 256; i++) { | |
| p[i] = i; | |
| } | |
| for (let i = 0; i < 255; i++) { | |
| const r = i + ~~(random() * (256 - i)); | |
| const aux = p[i]; | |
| p[i] = p[r]; | |
| p[r] = aux; | |
| } | |
| return p; | |
| } | |
| /* | |
| The ALEA PRNG and masher code used by simplex-noise.js | |
| is based on code by Johannes Baagøe, modified by Jonas Wagner. | |
| See alea.md for the full license. | |
| */ | |
| function alea(seed: string|number): RandomFn { | |
| let s0 = 0; | |
| let s1 = 0; | |
| let s2 = 0; | |
| let c = 1; | |
| const mash = masher(); | |
| s0 = mash(' '); | |
| s1 = mash(' '); | |
| s2 = mash(' '); | |
| s0 -= mash(seed); | |
| if (s0 < 0) { | |
| s0 += 1; | |
| } | |
| s1 -= mash(seed); | |
| if (s1 < 0) { | |
| s1 += 1; | |
| } | |
| s2 -= mash(seed); | |
| if (s2 < 0) { | |
| s2 += 1; | |
| } | |
| return function() { | |
| const t = 2091639 * s0 + c * 2.3283064365386963e-10; // 2^-32 | |
| s0 = s1; | |
| s1 = s2; | |
| return s2 = t - (c = t | 0); | |
| }; | |
| } | |
| function masher() { | |
| let n = 0xefc8249d; | |
| return function(data: number|string) { | |
| data = data.toString(); | |
| for (let i = 0; i < data.length; i++) { | |
| n += data.charCodeAt(i); | |
| let h = 0.02519603282416938 * n; | |
| n = h >>> 0; | |
| h -= n; | |
| h *= n; | |
| n = h >>> 0; | |
| h -= n; | |
| n += h * 0x100000000; // 2^32 | |
| } | |
| return (n >>> 0) * 2.3283064365386963e-10; // 2^-32 | |
| }; | |
| } |