Skip to content


Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


JSProve is a web-based peal proving program for even bell methods (single methods and spliced) from Minor to Maximus.


  • Load methods in from the MicroSiril Libraries (or specify new methods yourself)
  • Shorthand generator for single methods
  • All the work checker and change of method counter
  • Detailed music output
  • Music can be specified, if the particular row or row type is not already included by JSProve
  • Works in most modern browsers


Getting JSProve

Either visit to use the online version, or download the source code as a Zip file (from the link above) and open 'index.html' in your favourite browser (NOT Internet Explorer please!).

Proving a Single Method

On the 'Methods and Composition' tab:

  1. Remove any existing methods declared (the default ones are the methods in Mark Davies's 10-Spliced Surprise Major, though other collections are available too)
  2. Select the stage (i.e. Minor/Major/Royal/Maximus)
  3. Select the class (i.e. Surprise/Delight etc.)
  4. Click 'Load Method from Library' and find the method you want (hint: just start typing the name and it should appear)

OK, now you're all set to start proving. Notice that the method you have selected will have been given a symbol (most likely its initial; e.g B for Bristol, C for Cambridge etc).

  1. In the 'Shorthand' box start typing some calls in (hhh is defined for you - click 'Generate' and see what it does...). Note that the shorthand tool uses the first method in the list.

I'll leave you to play with that for a bit. Note that you can manually tinker withe the composition in the main box below. Indeed, that's how you will need to prove spliced, which leads me nicely on to...

Proving Spliced

Much like proving single methods, except that the Shorthand facility isn't of much use here (unless all your methods are in the same group, in which case you could use it to build the composition template, before swapping the methods in).

  1. Start by adding methods using the 'Load Method from Library' tool. Note that all the method symbols must be unique, so if you're proving a composition which has two methods starting with the same letter (London and Lincolnshire for example), denote a different letter to one of them, otherwise you'll get an error.
  2. Type out the composition in the main box. A standard 14 bob is denoted by a / and a 1234 single by a ;.




JSProve will prove the composition as you type.

Specifying your own calls

You may wish to change the default call type (from Plain Bob bobs and singles) or add your own. To do this, click the Calls tab. If you wish to continue using the Shorthand tool, make sure that you assign / for your bob and ; for the single. You can have as many call types as you wish; though be sure to use unique symbols for them.

Specifying your own music

JSProve will, by default, tell you all the 4-bell runs contained in the composition (both off the front and at the back) in a format like:

16:  6543****
24:  ****3456
18:  ****8765

as well as telling you if you've achieved some well-known changes if it's an 8-bell composition, i.e. Backrounds, Queens, Kings, Tittums and Whittingtons.

Of course, you will want to specify your own tastes in music, rather than just settle with my own; so if, for example, you like CRU's, then we'd best get them added for you...

  1. Click the Music tab
  2. Start adding music patterns (one per line) in the box. As the example states, if you want a row ending with 4678, add ****4678 on one line.
  3. At present, there is no save functionality within JSProve, so if you want to keep your music preferences, I would suggest copying them and pasting them into a text file somewhere on your machine, and then load them in from that when you use JSProve.


Please fork the code from the GitHub repository ( and submit a pull request, specifiying what your change does.


JSProve is a browser based peal prover for even-bell methods from Minor to Maximus, single and spliced.







No packages published

Contributors 4