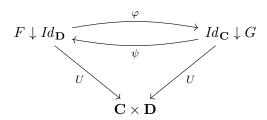
Comma Category Characterization of an Adjunction

Definition 1. Let $U: \mathbf{C} \downarrow \mathbf{D} \to \mathbf{C} \times \mathbf{D}$ be the forgetful functor from the comma category into the product category, defined on objects by U(A, B, f) = (A, B) and arrows by $U(\alpha, \beta) = (\alpha, \beta)$.

Lemma 1. Let $F: \mathbf{C} \rightleftarrows \mathbf{D}: G$ be to functors and φ, ψ an isomorphism as in the following commuting diagram



then $F \dashv G$.

Proof. Note, since $U(\varphi(A, B, f)) = U(A, B, f) = (A, B)$, there exists a φ' , such that for all $A, B, f, \varphi(A, B, f) = (A, B, \varphi'(f))$. And for arrows it follows $\varphi(\alpha, \beta) = (\alpha, \beta)$.

Now, how does φ act on arrows?

$$F \downarrow Id_{\mathbf{D}} \qquad Id_{\mathbf{C}} \downarrow G \qquad \qquad \mathbf{D} \qquad \mathbf{C}$$

$$(A, B, f) \qquad (A, B, \varphi'(f)) \qquad \qquad FA \xrightarrow{f} B \qquad A \xrightarrow{\varphi'(f)} GB$$

$$\downarrow_{(\alpha,\beta)} \xrightarrow{\varphi} \qquad \downarrow_{(\alpha,\beta)} \qquad \text{or} \qquad F\alpha \downarrow \qquad \downarrow_{\beta} \Longrightarrow \qquad \downarrow_{\alpha} \qquad \downarrow_{G\beta}$$

$$(A', B', f') \qquad (A, B, \varphi'(f')) \qquad \qquad FA' \xrightarrow{f'} B' \qquad A' \xrightarrow{\varphi'(f')} GB'$$

To show: $Hom_{\mathbf{D}}(FA, B) \cong Hom_{\mathbf{C}}(A, GB)$ natural in A and B.

• We define the isomorpism as follows: $\varphi' : Hom_{\mathbf{D}}(FA, B) \rightleftharpoons Hom_{\mathbf{C}}(A, GB) : \psi'$. φ', ψ' are an isomorphism because φ, ψ are an isomorphism.

• φ' natural in A, B, i.e.

$$\begin{array}{cccc}
A' & B & Hom_{\mathbf{D}}(FA,B) & \xrightarrow{\varphi'} & Hom_{\mathbf{C}}(A,GB) \\
\downarrow^{\alpha} & \downarrow^{\beta} & & \downarrow^{\beta \circ - \circ F\alpha} & \downarrow^{G\beta \circ - \circ \alpha} \\
A & B' & Hom_{\mathbf{D}}(FA',B') & \xrightarrow{\varphi'} & Hom_{\mathbf{C}}(A',GB')
\end{array}$$

$$\varphi'(\beta \circ f \circ F\alpha) \stackrel{\text{I}}{=} \varphi'(\beta \circ f) \circ \alpha$$

$$\stackrel{\text{II}}{=} G(\beta \circ f) \circ \varphi'(F\alpha)$$

$$= G\beta \circ Gf \circ \varphi'(F\alpha)$$

$$\stackrel{\text{III}}{=} G\beta \circ \varphi'(f) \circ \alpha$$

I
$$\varphi'(\beta \circ f \circ F\alpha) = \varphi'(\beta \circ f) \circ \alpha$$

$$FA \xrightarrow{\beta \circ f \circ F\alpha} B \qquad A \xrightarrow{\varphi'(\beta \circ f \circ F\alpha)} GB$$

$$F\alpha \downarrow \qquad \downarrow id \implies \downarrow \alpha \qquad \downarrow G(id)$$

$$FA' \xrightarrow{\beta \circ f} B' \qquad A' \xrightarrow{\varphi'(\beta \circ f)} GB'$$

II
$$\varphi'(\beta \circ f) \circ \alpha = G(\beta \circ f) \circ \varphi'(F\alpha)$$

$$FA \xrightarrow{F\alpha} B \qquad A \xrightarrow{\varphi'(F\alpha)} GB$$

$$F\alpha \downarrow \qquad \qquad \downarrow \beta \circ f \implies \downarrow \alpha \qquad \qquad \downarrow G(\beta \circ f)$$

$$FA' \xrightarrow{\beta \circ f} B' \qquad A' \xrightarrow{\varphi'(\beta \circ f)} GB'$$

III
$$Gf \circ \varphi'(\alpha) = \varphi' f \circ \alpha$$

• ψ' natural in A, B is similar.