Comma Category Characterization of an
Adjunction

Definition 1. Let U : C | D — C x D be the forgetful functor from the comma
category into the product category, defined on objects by U(A, B, f) = (A, B) and arrows

by U(a, B) = (a, B).

Lemma 1. Let F : C 2 D : G be to functors and p,v an isomorphism as in the
following commuting diagram
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Proof. Note, since U(p(A, B, f)) =U(A, B, f) = (4, B), there exists a ¢, such that for
all A, B, f, o(A,B, f)=(A,B,¢(f)). And for arrows it follows ¢(«, 8) = (a, ).

Now, how does ¢ act on arrows?
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To show: Homp(F A, B) = Homc(A,GB) natural in A and B.

e We define the isomorpism as follows: ¢’ : Homp(FA, B) 2 Homc(A,GB) : /.
¢, 1) are an isomorphism because ¢, 1 are an isomorphism.



e ' natural in A, B, i.e.
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e ¢’ natural in A, B is similar.



