Comma Category Characterization of an Adjunction

Definition 1 (Comma Category). We define the comma category $\mathbf{F} \downarrow \mathbf{G}$ of two functors $F : \mathbf{C} \to \mathbf{E}$ and $G : \mathbf{D} \to \mathbf{E}$ as follows. Its objects are triples (A, B, f), where A is an object in \mathbf{C} , B is an object in \mathbf{D} , and $f : F(A) \to G(B)$ is an arrow in \mathbf{E} . Furthermore, an arrow $(i, j) : (A, B, f) \to (A', B', g)$ in $\mathbf{F} \downarrow \mathbf{G}$ is a pair of arrows $i : A \to A'$ and $j : B \to B'$, such that the following diagram commutes:

Theorem 1. Let $F : \mathbf{D} \rightleftharpoons \mathbf{C} : G$ be two functors and $\varphi : F \downarrow Id_{\mathbf{C}} \rightleftharpoons Id_{\mathbf{D}} \downarrow G : \psi$ an isomorphism that is the identity on arrows then $F \dashv G$.

Proof. We define the adjunction $F \dashv G$ by an isomorphism between the hom-sets $Hom_{\mathbf{C}}(FA, B)$ and $Hom_{\mathbf{D}}(A, GB)$ that is natural in A and B. We define both sides of the isomorphism $\varphi' : Hom_{\mathbf{C}}(FA, B) \rightleftharpoons Hom_{\mathbf{D}}(A, GB) : \psi'$ by $\varphi'(f) = \pi_3(\varphi(A, B, f))$ and $\psi'(g) = \pi_3(\psi(A, B, g))$, where π_3 extracts the arrow f from an object (A, B, f) in the comma category.

• φ' and ψ' are an isomorphism, i.e., $\psi' \circ \varphi' = id$ and $\varphi' \circ \psi' = id$. For all $f: FA \to B$ and $g: A \to GB$, it follows

$$\begin{split} \psi'(\varphi'(f)) &= \psi'(\pi_3(\varphi(A, B, f))) & \varphi'(\psi'(g)) = \varphi'\pi_3(\psi(A, B, f))) \\ &= \pi_3(\psi(A, B, \pi_3(\varphi(A, B, f)))) & = \pi_3(\varphi(A, B, \pi_3(\psi(A, B, g)))) \\ &= \pi_3(\psi(\varphi(A, B, f))) & = \pi_3(\varphi(\psi(A, B, g))) \\ &= \pi_3(A, B, f) & = \pi_3(A, B, g) \\ &= f & = g. \end{split}$$

• φ' is natural in A, B, i.e., for all $i : A \to A', j : B \to B'$, and $f : FA \to B$, $\varphi'(j \circ f \circ Fi) = Gj \circ \varphi'(f) \circ i$ as in the following commuting diagram

$$Hom_{\mathbf{C}}(FA, B) \xrightarrow{\varphi'} Hom_{\mathbf{D}}(A, GB)$$

$$\downarrow^{j \circ - \circ Fi} \qquad \qquad \downarrow^{Gj \circ - \circ i}$$

$$Hom_{\mathbf{C}}(FA', B') \xrightarrow{\varphi'} Hom_{\mathbf{D}}(A', GB').$$

First, observe how φ acts on arrows. An arrow $(i, j) : (A, B, f) \to (A', B', g)$ in $F \downarrow Id_{\mathbb{C}}$ is mapped to an arrow $(i, j) : (A, B, \varphi'(f)) \to (A', B', \varphi'(g))$ in $Id_{\mathbb{D}} \downarrow G$. This means, for a commuting square in the \mathbb{C} , we obtain a commuting square in \mathbb{D} :

$$\begin{array}{ccc} FA & \xrightarrow{f} & B & & A \xrightarrow{\varphi'(f)} GB \\ F_i & & \downarrow_j & \Longrightarrow & \downarrow_i & \downarrow_{Gj} \\ FA' & \xrightarrow{g} & B' & & A' \xrightarrow{\varphi'(g)} GB' \end{array}$$

In other words, we can use φ to do basic rewrite steps on φ' if we provide a suitable commuting squares in **C**.

With this technique, we prove the naturality of φ' with three rewrite steps and functoriality of G:

$$\begin{aligned} \varphi'(j \circ f \circ Fi) \stackrel{\mathrm{I}}{=} \varphi'(j \circ f) \circ i \\ \stackrel{\mathrm{II}}{=} G(j \circ f) \circ \varphi'(Fi) \\ = Gj \circ Gf \circ \varphi'(Fi) \\ \stackrel{\mathrm{III}}{=} Gj \circ \varphi'(f) \circ i \end{aligned}$$

I $\varphi'(j \circ f \circ Fi) = \varphi'(j \circ f) \circ i$

$$(A, B', j \circ f \circ Fi) \qquad (A, B', \varphi'(j \circ f \circ Fi))$$

$$\downarrow^{(i,id)} \xrightarrow{\varphi} \qquad \downarrow^{(i,id)}$$

$$(A', B', j \circ f) \qquad (A', B', \varphi'(j \circ f))$$

$$FA \xrightarrow{j \circ f \circ Fi} B' \qquad A \xrightarrow{\varphi'(j \circ f \circ Fi)} GB'$$

$$Fi \qquad \downarrow_{id} \implies \downarrow_{i} \qquad \downarrow_{G(id)}$$

$$FA' \xrightarrow{j \circ f} B' \qquad A' \xrightarrow{\varphi'(j \circ f)} GB'$$

II $\varphi'(j \circ f) \circ i = G(j \circ f) \circ \varphi'(Fi)$

$$(A, FA', Fi) \qquad (A, FA', \varphi'(Fi))$$

$$\downarrow^{(i,j\circ f)} \longmapsto \downarrow^{(i,j\circ f)}$$

$$(A', B', j \circ f) \qquad (A, B', \varphi'(j \circ f))$$

$$FA \xrightarrow{Fi} FA' \qquad A \xrightarrow{\varphi'(Fi)} GFA'$$

$$Fi \downarrow \qquad \downarrow^{j\circ f} \implies \downarrow^{i} \qquad \downarrow^{G(j\circ f)}$$

$$FA' \xrightarrow{j\circ f} B' \qquad A' \xrightarrow{\varphi'(j\circ f)} GB'$$

III $Gf \circ \varphi'(i) = \varphi' f \circ i$

$$(A, FA', Fi) \qquad (A, FA', \varphi'(Fi))$$

$$\downarrow^{(i,f)} \xrightarrow{\varphi} \qquad \downarrow^{(i,f)}$$

$$(A', B', f) \qquad (A, B', \varphi'(f))$$

$$FA \xrightarrow{Fi} FA' \qquad A \xrightarrow{\varphi'(Fi)} GFA'$$

$$Fi \downarrow \qquad \downarrow f \implies \downarrow i \qquad \downarrow Gf$$

$$FA' \xrightarrow{f} B' \qquad A' \xrightarrow{\varphi'(f)} GB'$$

• ψ' natural in A, B is analogous to naturality of φ' .