
OMNeT++
 Installation Guide
Version 5.6.2

Copyright © 2016 András Varga and OpenSim Ltd.

Table of Contents
1. General Information .. 1
2. Windows .. 2
3. macOS ... 5
4. Linux ... 10
5. Ubuntu .. 17
6. Fedora 25 .. 21
7. Red Hat ... 23
8. OpenSUSE .. 25
9. Generic Unix ... 27
10. Build Options .. 34

iii

Chapter 1. General Information

1.1. Introduction

This document describes how to install OMNeT++ on various platforms. One chapter
is dedicated to each operating system.

1.2. Supported Platforms

OMNeT++ has been tested and is supported on the following operating systems:

• Windows 7 and 10 / 64-bit

• MacOS 10.12

• Linux distributions covered in this Installation Guide

The Simulation IDE is supported on the following platforms:

• Linux x86; 64-bit

• Windows 7, 10; 64-bit

• MacOS 10.12

Simulations can be run practically on any unix-like environment with a decent and fair-
ly up-to-date C++ compiler, for example gcc 5.x. Certain OMNeT++ features (Qtenv,
parallel simulation, XML support, etc.) depend on the availability of external libraries
(Tcl/Tk, MPI, LibXML or Expat, etc.)

IDE platforms are restricted because the IDE relies on a native shared library, which
we compile for the above platforms and distribute in binary form for convenience.

1

Chapter 2. Windows

2.1. Supported Windows Versions

OMNeT++ supports 64-bit versions of Windows 7 and 10.

32-bit Windows versions are no longer supported. If you need 32-bit builds on Win-
dows, we recommend using OMNeT++ 5.0

2.2. Installing OMNeT++

Download the OMNeT++ source code from http://omnetpp.org. Make sure you select
the Windows-specific archive, named omnetpp-5.6.2-src-windows.zip.

The package is self-contained: in addition to OMNeT++ files it includes a C++ com-
piler, a command-line build environment, and all libraries and programs required by
OMNeT++.

Copy the OMNeT++ archive to the directory where you want to install it. Choose a
directory whose full path does not contain any space; for example, do not put OM-
NeT++ under Program Files.

Extract the zip file. To do so, right-click the zip file in Windows Explorer, and select
Extract All from the menu. You can also use external programs like Winzip or 7zip.

When you look into the new omnetpp-5.6.2 directory, should see directories named
doc, images, include, tools, etc., and files named mingwenv.cmd, configure,
Makefile, and others.

2.3. Configuring and Building OMNeT++

Start mingwenv.cmd in the omnetpp-5.6.2 directory by double-clicking it in Windows
Explorer. It will bring up a console with the MSYS bash shell, where the path is already
set to include the omnetpp-5.6.2/bin directory. On the first start of the shell, you
may need to wait for the extraction of the tools directory.

If you want to start simulations from outside the shell as well (for example from Ex-
plorer), you need to add OMNeT++'s bin directory and also the bin directories in the
tools folder to the path; instructions are provided later.

First, check the contents of the configure.user file to make sure it contains the
settings you need. In most cases you don’t need to change anything.

notepad configure.user

Then enter the following commands:

$./configure
$ make

The build process will create both debug and release binaries.

2

http://omnetpp.org

Windows

2.4. Verifying the Installation

You should now test all samples and check they run correctly. As an example, the aloha
example is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the graphical Qtenv environment. You should
see GUI windows and dialogs.

2.5. Starting the IDE

OMNeT++ comes with an Eclipse-based Simulation IDE. You should be able to start
the IDE by typing:

$ omnetpp

We recommend that you start the IDE from the command-line. Yo can also create a
shortcut for starting the IDE. To do so, locate the omnetpp.exe program in the om-
netpp-5.6.2/ide directory in Windows Explorer, right-click it, and choose Send To
> Desktop (create shortcut) from the menu. On Windows 7, you can right-click the
taskbar icon while the IDE is running, and select Pin this program to taskbar from
the context menu.

2.6. Environment Variables

If you want to start OMNeT++ simulations outside the shell as well (for example
from Exlorer), you need to add OMNeT++'s bin, tools/win64/usr/bin and tools/
win64/mingw64/bin directories to the path.

First, open the Environment Variables dialog.

Click the Start button, then start typing environment variables into the search box.
Choose Edit environment variables for your account when it appears in the list. The
dialog comes up.

In the dialog, select path or PATH in the list, click Edit. Append ";<omnetpp-dir>
\bin" and the other needed directories to the value (without quotes), where <om-
netpp-dir> is the name of the OMNeT++ root directory (for example C:\om-
netpp-5.6.2). Hit Enter to accept.

You need to log-out and then log-in for the changes to take effect.

2.7. Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different
optimization), then change the top-level OMNeT++ directory, edit configure.user
accordingly, then type:

$./configure
$ make clean
$ make

If you want to recompile just a single library, then change to the directory of the library
(e.g. cd src/sim) and type:

$ make clean
$ make

3

Windows

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

The built libraries and programs are immediately copied to the lib/ and bin/ sub-
dirs.

2.8. Portability Issues

OMNeT++ has been tested with both the gcc and the clang compiler from the MinGW-
w64 package.

MinGW/Clang 3.8 generates incorrect code when you use multiple inheritance in your
code. Because of this, we do not recommend using MinGW/clang at the moment. Later
versions of clang my fix this issue.

Microsoft Visual C++/ClangC2 is not supported in the Academic Edition.

2.9. Additional Packages

Note that Doxygen and GraphViz are already included in the OMNeT++ package, and
do not need to be downloaded.

2.9.1. MPI

MPI is only needed if you would like to run parallel simulations.

There are several MPI implementations for Windows, and OMNeT++ does not man-
date any specific one. We recommend DeinoMPI, which can be downloaded from http://
mpi.deino.net.

After installing DeinoMPI, adjust the MPI_DIR setting in OMNeT++'s config-
ure.user, and reconfigure and recompile OMNeT++:

$./configure
$ make cleanall
$ make

In general, if you would like to run parallel simulations, we recommend that you use
Linux, macOS, or another unix-like platform.

2.9.2. Akaroa

Akaroa 2.7.9, which is the latest version at the time of writing, does not support Win-
dows. You may try to port it using the porting guide from the Akaroa distribution.

4

http://mpi.deino.net
http://mpi.deino.net

Chapter 3. macOS

3.1. Supported Releases

This chapter provides additional information for installing OMNeT++ on macOS.

The following releases are covered:

• macOS 10.12

3.2. Installing the Prerequisite Packages

• Install the Java Runtime from http://support.apple.com/kb/DL1572 , because ma-
sOS does not provide it by default. Additionally you must install the latest version
of Java Runtime Environment from http://java.com (version 8 or later.)

• Install the command line developer tools for masOS from http://developer.ap-
ple.com/downloads/index.action?=Command%20Line%20Tools (you will need a
free Apple Developer Account for the download.)

Installing additional packages will enable more functionality in OMNeT++; see the
Additional packages section at the end of this chapter.

3.3. Additional Steps Required on macOS to Use GDB as
the Debugger.

The Command Line Tools package on macOS no longer contains gcc and gdb; instead
it contains the Clang compiler and lldb. (The gcc and g++ commands actually run
clang.) OMNeT++ will use Clang automatically. However, the OMNeT++ IDE can only
use gdb as the underlying debugger, but not lldb.

To be able to debug from the IDE, you have to install gdb from Homebrew. Alternatively,
you can use XCode for debugging.

To do the former, first install the Homebrew package manager at http://brew.sh. Follow
the instrunctions on the website.

Then you can install gdb:

$ brew install gdb

macOS 10.10 and later requires that you sign the gdb executable with a self-signed
certificate (or with your own certificate, if you have one.)

Start the Keychain Access application. Choose Keychain Access > Certificate Assis-
tant > Create a Certificate… from the menu.

Choose a name (e.g. gdb-cert), set Identity Type to Self Signed Root, set Certificate
Type to Code Signing and select the Let me override defaults. Click several times on
Continue until you get to the Specify a Location For The Certificate screen, then set
Keychain to System.

If you can’t store the certificate in the System keychain, create it in the Login keychain,
then export it. You can then import it into the System keychain.

5

http://support.apple.com/kb/DL1572
http://java.com
http://developer.apple.com/downloads/index.action?=Command%20Line%20Tools
http://developer.apple.com/downloads/index.action?=Command%20Line%20Tools
http://brew.sh

macOS

Finally, using the context menu for the certificate, select Get Info, open the Trust item,
and set Code Signing to Always Trust.

You must quit the Keychain Access application in order to use the certificate and restart
the system.

Now sign the executable:

$ sudo codesign -s gdb-cert /usr/local/bin/gdb

3.4. Downloading and Unpacking OMNeT++
Download OMNeT++ from http://omnetpp.org. Make sure you select to download the
generic archive, omnetpp-5.6.2-src-macosx.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /Users/<you>. Open a terminal, and extract the archive using the following
command:

$ tar zxvf omnetpp-5.6.2-src-macosx.tgz

A subdirectory called omnetpp-5.6.2 will be created, containing the simulator files.

Alternatively, you can also unpack the archive using Finder.

The Terminal can be found in the Applications / Utilities folder.

3.5. Environment Variables
OMNeT++ needs its bin/ and tools/macosx/bin directories to be in the path. To
add them to PATH temporarily (in the current shell only), change into the OMNeT++
directory and source the setenv script:

$ cd omnetpp-5.6.2
$. setenv

To set the environment variables permanently, edit .bashrc in your home directory.
Use your favourite text editor to edit .bashrc, for example TextEdit:

$ touch ~/.bashrc
$ open -e ~/.bashrc

touch is needed because open -e only opens existing files. Alternatively, you can use
the terminal-based pico editor (pico ~/.bashrc)

Add the following line at the end of the file, then save it:

export PATH=$HOME/omnetpp-5.6.2/bin:$HOME/omnetpp-5.6.2/tools/macosx/bin:$PATH
export QT_PLUGIN_PATH=$HOME/omnetpp-5.6.2/tools/macosx/plugins

You need to close and re-open the terminal for the changes to take effect.

Alternatively, you can put the above line into ~/.bash_profile, but then you need to
log out and log in again for the changes to take effect.

If you use a shell other than the default one, bash, consult the man page of that shell
to find out which startup file to edit, and how to set and export variables.

6

http://omnetpp.org

macOS

3.6. Configuring and Building OMNeT++

Check configure.user to make sure it contains the settings you need. In most cases
you don’t need to change anything in it.

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system.
It writes the results into the Makefile.inc file, which will be read by the makefiles
during the build process.

Normally, the configure script needs to be running under the graphical environment
in order to test for wish, the Tcl/Tk shell. If you are logged in via an ssh session or you
want to compile OMNeT++ without Tcl/Tk and/or Qtenv, use the command

$./configure WITH_TKENV=no WITH_QTENV=no

instead of plain ./configure.

If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (You may need to increase the scrollback buffer
size of the terminal and re-run ./configure.) The script also writes a very detailed
log of its operation into config.log to help track down errors. Since config.log is
very long, it is recommended that you open it in an editor and search for phrases like
error or the name of the package associated with the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

To take advantage of multiple processor cores, add the -j4 option to the make com-
mand line.

The build process will not write anything outside its directory, so no special privileges
are needed.

The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one
set of the libraries, specify MODE=debug or MODE=release:

$ make MODE=release

3.7. Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the dyna
simulation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

7

macOS

3.8. Starting the IDE

OMNeT++ comes with an Eclipse-based Simulation IDE. On macOS 10.10 (Lion) or
later, the Java Runtime must be installed (see prerequisites) before you can use the
IDE. Start the IDE by typing:

$ omnetpp

If you would like to be able to launch the IDE via Applications, the Dock or a desktop
shortcut, do the following: open the omnetpp-5.6.2 folder in Finder, go into the ide
subfolder, create an alias for the omnetpp program there (right-click, Make Alias), and
drag the new alias into the Applications folder, onto the Dock, or onto the desktop.

Alternatively, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

which will do roughly the same.

3.9. Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain "…" is not supported on this platform or installation. Please
go to the Project menu, and activate a different build configuration. (You
may need to switch to the C/C++ perspective first, so that the required
menu items appear in the Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool
Chain Editor > Current toolchain > GCC for OMNeT++.

The IDE is documented in detail in the User Guide.

3.10. Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different
optimization), then change the top-level OMNeT++ directory, edit configure.user
accordingly, then type:

$./configure
$ make clean
$ make

To take advantage of multiple processor cores, add the -j4 option to the make com-
mand line.

If you want to recompile just a single library, then change to the directory of the library
(e.g. cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

8

macOS

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

The built libraries and programs are immediately copied to the lib/ and bin/ sub-
directories.

The Tcl/Tk environment uses the native Aqua version of Tcl/Tk, so you will see native
widgets. However, due to problems in the Tk/Aqua port, you may experience minor UI
quirks. We recommend using Qtenv whenever it is possible.

3.11. Additional Packages

3.11.1. OpenMPI

MacOS does not come with OpenMPI, so you must install it manually. You can install
it from the Homebrew repo (http://brew.sh) by typing brew install open-mpi. In
this case, you have to manually set the MPI_CFLAGS and MPI_LIBS variables in con-
figure.user and re-run ./configure.

3.11.2. GraphViz

GraphViz is needed if you want to have diagrams in HTML documentation that you gen-
erate from NED files in the IDE (Generate NED Documentation… item in the project
context menu).

You can install it from the Homebrew project (http://brew.sh) by typing brew install
graphviz.

After installation, make sure that the dot program is available from the command line.
Open a terminal, and type

$ dot -V

Note the capital V. The command should normally work out of the box. If you get the
"command not found" error, you need to put dot into the path. Find the dot program
in the GraphViz installation directory, and soft link it into /usr/local/bin (sudo ln
-s <path>/dot /usr/local/bin).

3.11.3. Doxygen

Doxygen is needed if you want to generate documentation for C++ code, as part of
the HTML documentation that you generate from NED files in the IDE (Generate NED
Documentation… item in the project context menu).

You can install it from the Homebrew project (http://brew.sh) by typing homebrew in-
stall doxygen.

After installation, ensure that the doxygen program is available from the command
line. Open a terminal, and type

$ doxygen

3.11.4. Akaroa

Akaroa 2.7.9, which is the latest version at the time of writing, does not support macOS.
You may try to port it using the porting guide from the Akaroa distribution.

9

http://brew.sh
http://brew.sh
http://brew.sh

Chapter 4. Linux

4.1. Supported Linux Distributions

This chapter provides instructions for installing OMNeT++ on selected Linux distri-
butions:

• Ubuntu 16.04 LTS

• Fedora Core 25

• Red Hat Enterprise Linux Desktop Workstation 7.x

• OpenSUSE 42

This chapter describes the overall process. Distro-specific information, such as how
to install the prerequisite packages, are covered by distro-specific chapters.

If your Linux distribution is not listed above, you still may be able to use some dis-
tro-specific instructions in this Guide.

Ubuntu derivatives (Ubuntu instructions may apply):

• Kubuntu, Xubuntu, Edubuntu, …

• Linux Mint

Some Debian-based distros (Ubuntu instructions may apply, as Ubuntu itself is based
on Debian):

• Knoppix and derivatives

• Mepis

Some Fedora-based distros (Fedora instructions may apply):

• Simplis

• Eeedora

4.2. Installing the Prerequisite Packages

OMNeT++ requires several packages to be installed on the computer. These packages
include the C++ compiler (gcc or clang), the Java runtime, and several other libraries
and programs. These packages can be installed from the software repositories of your
Linux distribution.

See the chapter specific to your Linux distribution for instructions on installing
the packages needed by OMNeT++.

Generally, you will need superuser permissions to install packages.

Not all packages are available from software repositories; some (optional) ones need to
be downloaded separately from their web sites, and installed manually. See the section
Additional Packages later in this chapter.

10

Linux

4.3. Downloading and Unpacking

Download OMNeT++ from http://omnetpp.org. Make sure you select to download the
generic archive, omnetpp-5.6.2-src.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following
command:

$ tar xvfz omnetpp-5.6.2-src.tgz

This will create an omnetpp-5.6.2 subdirectory with the OMNeT++ files in it.

On how to open a terminal on your Linux installation, see the chapter specific to your
Linux distribution.

4.4. Environment Variables

OMNeT++ needs its bin/ directory to be in the path. To add bin/ to PATH temporarily
(in the current shell only), change into the OMNeT++ directory and source the setenv
script:

$ cd omnetpp-5.6.2
$. setenv

The script also adds the lib/ subdirectory to LD_LIBRARY_PATH, which may be nec-
essary on systems that don’t support the rpath mechanism.

To set the environment variables permanently, edit .bashrc in your home directory.
Use your favourite text editor to edit .bashrc, for example gedit:

$ gedit ~/.bashrc

Add the following line at the end of the file, then save it:

export PATH=$HOME/omnetpp-5.6.2/bin:$PATH

You need to close and re-open the terminal for the changes to take effect.

Alternatively, you can put the above line into ~/.bash_profile, but then you need to
log out and log in again for the changes to take effect.

If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

Note that all Linux distributions covered in this Installation Guide use bash unless
the user has explicitly selected another shell.

4.5. Configuring and Building OMNeT++

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system.
It writes the results into the Makefile.inc file, which will be read by the makefiles
during the build process.

11

http://omnetpp.org

Linux

Figure 4.1. Configuring OMNeT++

Normally, the configure script needs to be running under the graphical environment
(X11) in order to test for wish, the Tcl/Tk shell. If you are logged in via an ssh session,
or there is some other reason why X is not running, the easiest way to work around
the problem is to tell OMNeT++ to build without Tcl/Tk and Qtenv. To do that, use
the command

$./configure WITH_TKENV=no WITH_QTENV=no

instead of plain ./configure.

If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the
scrollback buffer size of the terminal and re-run ./configure.) The script also writes
a very detailed log of its operation into config.log to help track down errors. Since
config.log is very long, it is recommended that you open it in an editor and search
for phrases like error or the name of the package associated with the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

12

Linux

Figure 4.2. Building OMNeT++

To take advantage of multiple processor cores, add the -j8 option to the make com-
mand line.

The build process will not write anything outside its directory, so no special privileges
are needed.

The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one
set of the libraries, specify MODE=debug or MODE=release:

$ make MODE=release

4.6. Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the dyna
simulation is started by entering the following commands:

$ cd samples/dyna
$./dyna

By default, the samples will run using the Tcl/Tk environment. You should see nice gui
windows and dialogs.

4.7. Starting the IDE

You can launch the OMNeT++ Simulation IDE by typing the following command in
the terminal:

$ omnetpp

13

Linux

Figure 4.3. The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a
desktop shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

Or add a shortcut that points to the omnetpp program in the ide subdirectory by other
means, for example using the Linux desktop’s context menu.

4.8. Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain "…" is not supported on this platform or installation. Please
go to the Project menu, and activate a different build configuration. (You
may need to switch to the C/C++ perspective first, so that the required
menu items appear in the Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool
Chain Editor > Current toolchain > GCC for OMNeT++.

The IDE is documented in detail in the User Guide.

4.9. Reconfiguring the Libraries

If you need to recompile the OMNeT++ components with different flags (e.g. different
optimization), then change the top-level OMNeT++ directory, edit configure.user
accordingly, then type:

$./configure
$ make cleanall
$ make

If you want to recompile just a single library, then change to the directory of the library
(e.g. cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

14

Linux

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

For detailed description of all options please read the Build Options chapter.

4.10. Additional Packages

Note that at this point, MPI, Doxygen and GraphViz have been installed as part of the
prerequisites.

4.10.1. Qtenv

OMNeT++ 5 comes with a new Qt based runtime environment that supports also 3D
visualization. The new environment can be disabled by the WITH_QTENV=no variable
in the configure.user file and then running ./configure.

4.10.2. Akaroa

Linux distributions do not contain the Akaroa package. It must be downloaded, com-
piled and installed manually before installing OMNeT++.

As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the
/usr/local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNeT++ directory, and (re-)run the configure script. Akaroa will be
automatically detected if you installed it to the default location.

4.10.3. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emulation.

4.10.4. Nemiver

Nemiver is the default debugger for the OMNeT++ just-in-time debugging facility (see
the debugger-attach-on-startup and debugger-attach-on-error configuration

15

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

Linux

options). Nemiver can be installed via the package manager in most Linux distros. For
example, on Ubuntu and other Debian-based distros you can install it by the following
command:

$ sudo apt-get install nemiver

16

Chapter 5. Ubuntu

5.1. Supported Releases

This chapter provides additional information for installing OMNeT++ on Ubuntu Lin-
ux installations. The overall installation procedure is described in the Linux chapter.

The following Ubuntu releases are covered:

• Ubuntu 16.04 LTS or 18.04 LTS

They were tested on the following architectures:

• Intel 64-bit

The instructions below assume that you use the default desktop and the bash shell. If
you use another desktop environment or shell, you may need to adjust the instructions
accordingly.

5.2. Opening a Terminal

Type terminal in Dash and click on the Terminal icon.

5.3. Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

5.3.1. Command-Line Installation

Before starting the installation, refresh the database of available packages. Type in the
terminal:

$ sudo apt-get update

To install the required packages, type in the terminal:

$ sudo apt-get install build-essential gcc g++ bison flex perl \
 python python3 qt5-default libqt5opengl5-dev tcl-dev tk-dev \
 libxml2-dev zlib1g-dev default-jre doxygen graphviz libwebkitgtk-3.0-0

To use Qtenv with 3D visualization support, install the development packages for
OpenSceneGraph (3.2 or later) and the osgEarth (2.7 or later) packages. (You may
need to enable the Universe software repository in Software Sources. In case of Ubun-
tu 16.04 (Xenial), you have to add the ubuntugis/ppa repository manually to your
software sources, because Xenial contains only osgEarth 2.5 which is too old.):

for Ubuntu 16.04 add extra GIS repo
$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
install osgearth development package (and OpenSceneGraph, too)
$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

17

Ubuntu

You may opt to use clang and clang++ instead of the gcc and g++ compilers. If you do
not need the 3D visualization capabilities, you can disable them in the configure.user
file.

To enable the optional parallel simulation support you will need to install the MPI
packages:

$ sudo apt-get install openmpi-bin libopenmpi-dev

At the confirmation questions (Do you want to continue? [Y/N]), answer Y.

Figure 5.1. Command-Line Package Installation

5.3.2. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emulation.

$ sudo apt-get install libpcap-dev

5.3.3. Graphical Installation

Open the dash and type Synaptic.

Since software installation requires root permissions, Synaptic will ask you to type
your password.

Search for the following packages in the list, click the squares before the names, then
choose Mark for installation or Mark for upgrade.

If the Mark additional required changes? dialog comes up, choose the Mark button.

The packages:

• required: build-essential, gcc, g++, bison, flex, perl, qt5-default, tcl-dev, tk-dev,
libxml2-dev, zlib1g-dev, default-jre, doxygen, graphviz, libwebkitgtk-3.0-0

• recommended: libopenscenegraph-dev, openscenegraph-plugin-osgearth, li-
bosgearth-dev, openmpi-bin, libopenmpi-dev

18

Ubuntu

Figure 5.2. Synaptic Package Manager

Click Apply, then in the Apply the following changes? window, click Apply again. In
the Changes applied window, click Close.

5.3.4. Post-Installation Steps

Fixing Tooltip Colors

The default tooltip background color in Ubuntu is black, which causes certain tooltips
in the OMNeT++ IDE to become unreadable (black-on-black). This annoyance can be
resolved by changing the tooltip colors in Ubuntu.

Figure 5.3. Black-on-black text in tooltips

Install gnome-color-chooser:

$ sudo apt-get install gnome-color-chooser

Run it:

$ gnome-color-chooser

19

Ubuntu

Find the Tooltips group on the Specific tab, and change the settings to black foreground
over pale yellow background. Click Apply.

Figure 5.4. Fixing the tooltip color issue

Setting Up Debugging

By default, Ubuntu does not allow ptracing of non-child processes by non-root users.
That is, if you want to be able to debug simulation processes by attaching to them
with a debugger, or similar, you want to be able to use OMNeT++ just-in-time debug-
ging (debugger-attach-on-startup and debugger-attach-on-error configura-
tion options), you need to explicitly enable them.

To temporarily allow ptracing non-child processes, enter the following command:

$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

To permanently allow it, edit /etc/sysctl.d/10-ptrace.conf and change the line:

kernel.yama.ptrace_scope = 1

to read

kernel.yama.ptrace_scope = 0

Note that the default debugger for OMNeT++ just-in-time debugging is Nemiver, so it
also needs to be installed:

$ sudo apt-get install nemiver

20

Chapter 6. Fedora 25

6.1. Supported Releases

This chapter provides additional information for installing OMNeT++ on Fedora in-
stallations. The overall installation procedure is described in the Linux chapter.

The following Fedora release is covered:

• Fedora 25

It was tested on the following architectures:

• Intel 64-bit

6.2. Opening a Terminal

Open the Search bar, and type Terminal.

6.3. Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

6.3.1. Command-Line Installation

To install the required packages, type in the terminal:

$ sudo dnf install make gcc gcc-c++ bison flex perl \
 python2 tcl-devel tk-devel qt5-devel libxml2-devel \
 zlib-devel java doxygen graphviz webkitgtk

To use 3D visualization support in Qtenv, you should install OpenSceneGraph 3.2 or
later and osgEarth 2.7 or later (recommended):

$ sudo dnf install OpenSceneGraph-devel osgearth-devel

You may opt to use clang and clang++ instead of the gcc and g++ compilers.

To enable the optional parallel simulation support you will need to install the MPI
package:

$ sudo dnf install openmpi-devel

Note that openmpi will not be available by default, it needs to be activated in every
session with the

$ module load mpi/openmpi-x86_64

command. When in doubt, use module avail to display the list of available modules.
If you need MPI in every session, you may add the module load command to your
startup script (.bashrc).

21

Fedora 25

6.3.2. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emulation.

6.3.3. Graphical Installation

The graphical package manager can be launched by opening the Search bar and typing
dnf.

Search for the following packages in the list. Select the checkboxes in front of the
names, and pick the latest version of each package.

The packages:

• make, bison, gcc, gcc-c++, flex, perl, tcl-devel, tk-devel, qt5-devel, libxml2-de-
vel, zlib-devel, webkitgtk, java, doxygen, graphviz, openmpi-devel, libpcap-devel,
OpenSceneGraph-devel, osgearth-devel

Click Apply, then follow the instructions.

22

Chapter 7. Red Hat

7.1. Supported Releases

This chapter provides additional information for installing OMNeT++ on Red Hat En-
terprise Linux installations. The overall installation procedure is described in the Lin-
ux chapter.

The following Red Hat release is covered:

• Red Hat Enterprise Linux Desktop Workstation 7.x

It was tested on the following architectures:

• Intel 64-bit

7.2. Opening a Terminal

Choose Applications > Accessories > Terminal from the menu.

7.3. Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

You will need Red Hat Enterprise Linux Desktop Workstation for OMNeT++. The
Desktop Client version does not contain development tools.

7.3.1. Command-Line Installation

To install the required packages, type in the terminal:

$ su -c 'yum install make gcc gcc-c++ bison flex perl \
 tcl-devel tk-devel qt-devel libxml2-devel zlib-devel \
 java doxygen graphviz openmpi-devel libpcap-devel'

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These
packages are not available from the official RedHat repository so you may need to get
them from different sources (e.g. rpmfind.net).

You may opt to use clang and clang++ instead of the gcc and g++ compilers.

To install additional (optional) packages for parallel simulation and packet capture
support, type:

$ su -c 'yum install openmpi-devel libpcap'

Note that openmpi will not be available by default, it needs to be activated in every
session with the

23

Red Hat

$ module load openmpi_<arch>

command, where <arch> is your architecture (usually i386 or x86_64). When in
doubt, use module avail to display the list of available modules. If you need MPI
in every session, you may add the module load command to your startup script
(.bashrc).`

7.3.2. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emulation.

7.3.3. Graphical Installation

The graphical installer can be launched by choosing Applications > Add/Remove Soft-
ware from the menu.

Search for the following packages in the list. Select the checkboxes in front of the
names, and pick the latest version of each package.

The packages:

• make gcc, gcc-c++, bison, flex, perl, tcl-devel, tk-devel, qt-devel, libxml2-devel, zlib-
devel, make, java, doxygen, graphviz, openmpi-devel, libpcap-devel

Click Apply, then follow the instructions.

7.4. SELinux

You may need to turn off SELinux when running certain simulations. To do so, click
on System > Administration > Security Level > Firewall, go to the SELinux tab, and
choose Disabled.

You can verify the SELinux status by typing the sestatus command in a terminal.

From OMNeT++ 4.1 on, makefiles that build shared libraries include the chcon -t
textrel_shlib_t lib<name>.so command that properly sets the security context
for the library. This should prevent the SELinux-related "cannot restore segment prot
after reloc: Permission denied" error from occurring, unless you have a shared library
which was built using an obsolete or hand-crafted makefile that does not contain the
chcon command.

24

Chapter 8. OpenSUSE

8.1. Supported Releases
This chapter provides additional information for installing OMNeT++ on openSUSE
installations. The overall installation procedure is described in the Linux chapter.

The following openSUSE release is covered:

• openSUSE 42.2

It was tested on the following architectures:

• Intel 64-bit

8.2. Opening a Terminal
Open the Search bar, and type Terminal.

8.3. Installing the Prerequisite Packages
You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

8.3.1. Command-Line Installation

To install the required packages, type in the terminal:

$ sudo zypper install make gcc gcc-c++ bison flex perl \
 tcl-devel tk-devel libqt5-qtbase-devel libxml2-devel zlib-devel \
 java-1_8_0-openjdk doxygen graphviz libwebkitgtk-3_0-0

You may opt to use clang and clang++ instead of the gcc and g++ compilers.

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These
packages are not available from the official RedHat repository so you may need to get
them from different sources (e.g. rpmfind.net).

To enable the optional parallel simulation support you will need to install the MPI
package:

$ sudo zypper install openmpi-devel

Note that openmpi will not be available by default, first you need to log out and log in
again, or source your .profile script:

$. ~/.profile

8.3.2. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emulation.

25

OpenSUSE

8.3.3. Graphical Installation

The graphical installer can be launched by opening the Search bar and typing Software
Management.

Figure 8.1. Yast Software Management

Search for the following packages in the list. Select the checkboxes in front of the
names, and pick the latest version of each package.

The packages:

• make, gcc, gcc-c++, bison, flex, perl, tcl-devel, tk-devel, libqt5-qtbase-devel, libxml2-
devel, zlib-devel, java-1_8_0-openjdk, doxygen, graphviz, libwebkitgtk-3_0-0, open-
mpi-devel, libpcap-devel

Click Accept, then follow the instructions.

26

Chapter 9. Generic Unix

9.1. Introduction

This chapter provides additional information for installing OMNeT++ on Unix-like
operating systems not specifically covered by this Installation Guide. The list includes
FreeBSD, Solaris, and Linux distributions not covered in other chapters.

In addition to Windows and macOS, the Simulation IDE will only work on Linux x86
64-bit platforms. Other operating systems (FreeBSD, Solaris, etc.) and architectures
may still be used as simulation platforms, without the IDE.

9.2. Dependencies

The following packages are required for OMNeT++ to work:

build-essential, GNU make,
gcc, g++, bison (2.4+), flex,
perl

These packages are needed for compiling OMNeT++
and simulation models, and also for certain OM-
NeT++ tools to work. C++ compilers other than g+
+, will also be accepted.

You may opt to use clang and clang++ instead of the gcc and g++ compilers.

The following packages are strongly recommended, because their absence results in
severe feature loss:

Tcl/Tk 8.5 or later Required by the Tkenv simulation runtime environ-
ment. You need the devel packages that include the C
header files as well. It is also possible to compile OM-
NeT++ without Tcl/Tk (and Tkenv), by setting then
WITH_TKENV=no variable in configure.user.

LibXML2 or Expat Either one of these XML parsers are needed for OM-
NeT++ to be able to read XML files. The devel
packages (that include the header files) are needed.
LibXML2 is the preferred one.

OpenJDK, version 8.0 or later The Java runtime is required to run the Eclipse-
based Simulation IDE. Other implementations, for
example Kaffe, have been found to have problems
running the IDE. You do not need this package if you
do not plan to use the Simulation IDE.

Qt 5.4 or later Required by the Qtenv simulation runtime environ-
ment. You need the devel packages that include head-
er files as well.

OpenSceneGraph (3.2+) and
osgEarth (2.7+)

These packages will enable 3D visualization in Qtenv.
You need the devel packages that include header files
as well.

27

Generic Unix

The following packages are required if you want to take advantage of some advanced
OMNeT++ features:

GraphViz, Doxygen These packages are used by the NED documentation gener-
ation feature of the IDE. When they are missing, documen-
tation will have less content.

MPI openmpi or some other MPI implementation is required to
support parallel simulation execution.

Akaroa Implements Multiple Replications In Parallel (MRIP).
Akaroa can be downloaded from the project’s website.

Pcap The optional Pcap library allows simulation models to cap-
ture and transmit network packets bypassing the operat-
ing system’s protocol stack. It is not used directly by OM-
NeT++, but models may need it to support network emu-
lation.

The exact names of these packages may differ across distributions.

9.3. Determining Package Names

If you have a distro unrelated to the ones covered in this Installation Guide, you need
to figure out what is the established way of installing packages on your system, and
what are the names of the packages you need.

9.3.1. Tcl/Tk

Tcl/Tk may be present as separate packages (tcl and tk), or in one package (tcltk).
The version number (e.g. 8.5) is usually part of the name in some form (85, 8.5, etc).
You will need the development packages, which are usually denoted with the -dev or
-devel name suffix.

Troubleshooting:

If your platform does not have suitable Tcl/Tk and/or QT packages, you may still use
OMNeT++ to run simulations from the command line. To disable the graphical run-
time environment use:

$./configure WITH_TKENV=no WITH_QTENV=no

This will prevent the build system to link with Tcl/Tk or QT libraries. This is required
also if you are installing OMNeT++ from a remote terminal session.

By default, the configure script expects to find the Tcl/Tk libraries in the standard
linker path (without any -Ldirectory linker option) and under the standard names
(i.e. with the -ltcl8.5 or -ltcl85 linker option). If you have them in different places
or under different names, you have to edit configure.user and explicitly set TK_LIBS
there (see the Build Options chapter for further details).

If you get the error no display and DISPLAY environment variable not set, then you’re
either not running X (the wish command, and thus ./configure won’t work just in
the console) or you really need to set the DISPLAY variable (export DISPLAY=:0.0
usually does it).

If you get the error: Tcl_Init failed: Can’t find a usable init.tcl…

The TCL_LIBRARY environment variable should point to the directory which contains
init.tcl. That is, you probably want to put a line like

28

Generic Unix

export TCL_LIBRARY=/usr/lib/tcl8.5

into your ~/.bashrc.

9.3.2. The Java Runtime

You need to install the Oracle JRE or OpenJDK. The IDE is not supported on Unix
platforms other than Linux, so JRE is not required either. We have tested various other
Java runtimes (gcj, kaffe, etc.), and the IDE does not work well with them.

Java version 1.8 (i.e. JRE 1.8) or later is required.

9.3.3. MPI

OMNeT++ is not sensitive to the particular MPI implementation. You may use Open-
MPI, or any other standards-compliant MPI package.

9.4. Downloading and Unpacking

Download OMNeT++ from http://omnetpp.org. Make sure you select to download the
generic archive, omnetpp-5.6.2-src.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following
command:

$ tar xvfz omnetpp-5.6.2-src.tgz

This will create an omnetpp-5.6.2 subdirectory with the OMNeT++ files in it.

9.5. Environment Variables

In general OMNeT++ requires that its bin directory should be in the PATH. You should
add a line something like this to your .bashrc:

$ export PATH=$HOME/omnetpp-5.6.2/bin:$PATH

You may also have to specify the path where shared libraries are loaded from. Use:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/omnetpp-5.6.2/lib

If configure complains about not finding the Tcl library directory, you may specify it
by setting the TCL_LIBRARY environment variable.

If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

9.6. Configuring and Building OMNeT++

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system.
It writes the results into the Makefile.inc file, which will be read by the makefiles
during the build process.

29

http://omnetpp.org

Generic Unix

Figure 9.1. Configuring OMNeT++

Normally, the configure script needs to be running under the graphical environment
(X11) in order to test for wish, the Tcl/Tk shell. If you are logged in via an ssh session,
or there is some other reason why X is not running, the easiest way to work around
the problem is to tell OMNeT++ to build without Tcl/Tk. To do that, use the command

$./configure WITH_TKENV=no WITH_QTENV=no

instead of plain ./configure.

If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the
scrollback buffer size of the terminal and re-run ./configure.) The script also writes
a very detailed log of its operation into config.log to help track down errors. Since
config.log is very long, it is recommended that you open it in an editor and search
for phrases like error or the name of the package associated with the problem.

The configure script tries to build and run small test programs that are using specific
libraries or features of the system. You can check the config.log file to see which
test program has failed and why. In most cases the problem is that the script cannot
figure out the location of a specific library. Specifying the include file or library location
in the configure.user file and then re-running the configure script usually solves
the problem.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

$ make

30

Generic Unix

Figure 9.2. Building OMNeT++

To take advantage of multiple processor cores, add the -j8 option (for 8 cores) to the
make command line.

The build process will not write anything outside its directory, so no special privileges
are needed.

The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one
set of the libraries, specify MODE=debug or MODE=release:

$ make MODE=release

9.7. Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the dyna
simulation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

9.8. Starting the IDE

The IDE is supported only on 64-bit versions of Windows, macOS X and Linux.

You can run the IDE by typing the following command in the terminal:

$ omnetpp

31

Generic Unix

Figure 9.3. The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a
desktop shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

The above commands assume that your system has the xdg commands, which most
modern distributions do.

9.9. Optional Packages

9.9.1. Akaroa

If you wish to use Akaroa, it must be downloaded, compiled, and installed manually
before installing OMNeT++.

As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the
/usr/local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNeT++ directory, and (re-)run the configure script. Akaroa will be
automatically detected if you installed it to the default location.

9.9.2. PCAP

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by OM-

32

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

Generic Unix

NeT++, but OMNeT++ detects the necessary compiler and linker options for models
in case they need it.

33

Chapter 10. Build Options

10.1. Configure.user Options

The configure.user file contains several options that can be used to fine-tune the
simulation libraries.

You always need to re-run the configure script in the installation root after changing
the configure.user file.

$./configure

After this step, you have to remove all previous libraries and recompile OMNeT++:

$ make cleanall
$ make

Options:

PREFER_CLANG=no If both gcc and clang are installed on your system,
setting this variable to no will force the configure
script to use gcc as C++ compiler.

<COMPONENTNAME>_CFLAGS,
<COMPONENTNAME>_LIBS

The configure.user file contains variables for
defining the compile and link options needed by var-
ious external libraries. By default, the configure
command detects these automatically, but you may
override the auto detection by specifying the values by
hand. (e.g. <COMP>_CFLAGS=-I/path/to/comp/in-
cludedir and <COMP>_LIBS=-L/path/to/comp/
libdir -lnameoflib.)

WITH_PARSIM=no Use this variable to explicitly disable parallel simula-
tion support in OMNeT++.

WITH_NETBUILDER=no This option allows you to leave out the NED language
parser and the network builder. (This is needed only
if you are building your network with C++ API calls
and you do not use the built-in NED language parser
at all.)

WITH_TKENV=no This will prevent the build system to link with Tcl/
Tk libraries. Use this option if your platform does not
have a suitable Tcl/Tk package or you will run the sim-
ulation only in command line mode. (i.e. You want to
run OMNeT++ in a remote terminal session.)

WITH_QTENV=no This will prevent the build system to link with the Qt
libraries. Use this option if your platform does not
have a suitable Qt package or you will run the simu-
lation only in command line mode. (i.e. You want to
run OMNeT++ in a remote terminal session.)

WITH_OSG=no This will prevent the build system to use OpenScreen-
Graph which is used for 3D visualization in Qtenv.

34

Build Options

WITH_OSGEARTH=no This will prevent the build system to use osgEarth
which is used for 2D/3D mapping and visualization
in Qtenv.

PREFER_QTENV=no Use Tkenv as the default graphical runtime instead
of Qtenv.

EMBED_TCL_CODE=no Tcl/Tk is a script language and the source of the
graphical runtime environment is stored as .tcl files
in the src/tkenv directory. By default, these files are
not used directly, but are embedded as string literals
in the executable file. Setting EMBED_TCL_CODE=yes
allows you to move the OMNeT++ installation with-
out caring about the location of the .tcl files. If
you want to make changes to the Tcl code, you bet-
ter switch off the embedding with the EMBED_T-
CL_CODE=no option. This way you can make changes
to the .tcl files and see the changes immediately
without recompiling the OMNeT++ libraries.

CFLAGS_[RELEASE/DEBUG] To change the compiler command line options the
build process is using, you should specify them in
the CFLAGS_RELEASE and CFLAGS_DEBUG variables.
By default, the flags required for debugging or opti-
mization are detected automatically by the config-
ure script. If you set them manually, you should spec-
ify all options you need. It is recommended to check
what options are detected automatically (check the
Makefile.inc after running configure and look
for the CFLAGS_[RELEASE/DEBUG] variables.) and
add/modify those options manually in the config-
ure.user file.

LDFLAGS Linker command line options can be explicitly set us-
ing this variable. It is recommended to check what
options are detected automatically (check the Make-
file.inc after running configure and look for
the LDFLAGS variable.) and add/modify those options
manually in the configure.user file.

SHARED_LIBS This variable controls whether the OMNeT++ build
process will create static or dynamic libraries.
By default, the OMNeT++ runtime is built as
a set of shared libraries. If you want to build
a single executable from your simulation, speci-
fy SHARED_LIBS=no in configure.user to cre-
ate static OMNeT++ libraries and then reconfig-
ure (./configure) and recompile OMNeT++ (make
cleanall; make). Once the OMNeT++ static li-
braries are correctly built, your own project have to
be rebuilt, too. You will get a single, statically linked
executable, which requires only the NED and INI files
to run.

It is important to completely delete the OMNeT++ libraries (make cleanall) and
then rebuild them, otherwise it cannot be guaranteed that the created simulations are
linked against the correct libraries.

35

Build Options

The USE_DOUBLE_SIMTIME and WITHOUT_CPACKET options are no longer supported.
They were introduced in OMNeT++ 4.0 to help porting model code from OMNeT++
3.x, and having fulfilled their role, they were removed in OMNeT++ 5.0. If you still
have old model code to port, use OMNeT++ 4.x.

10.2. Moving the Installation

When you build OMNeT++ on your machine, several directory names are compiled
into the binaries. This makes it easier to set up OMNeT++ in the first place, but if you
rename the installation directory or move it to another location in the file system, the
built-in paths become invalid and the correct paths have to be supplied via environment
variables.

The following environment variables are affected (in addition to PATH, which also needs
to be adjusted):

OMNETPP_IMAGE_PATH This variable contains the list of directories where Tkenv
looks for icons. Set it to point to the images/ subdirectory
of your OMNeT++ installation.

OMNETPP_TKENV_DIR This variable points to the directory that contains the
Tcl script parts of Tkenv, which is by default the src/
tkenv/ subdirectory of your OMNeT++ installation. Nor-
mally you don’t need to set this variable, because the Tkenv
shared library contains all Tcl code compiled in as string
literals. However, if you compile OMNeT++ with the EM-
BED_TCL_CODE=no setting and then you move the installa-
tion, then you need to set OMNETPP_TKENV_DIR, otherwise
Tkenv won’t start.

LD_LIBRARY_PATH This variable contains the list of additional directo-
ries where shared libraries are looked for. Initially,
LD_LIBRARY_PATH is not needed because shared libraries
are located via the rpath mechanism. When you move the
installation, you need to add the lib/ subdirectory of your
OMNeT++ installation to LD_LIBRARY_PATH.

On macOS, DYLD_LIBRARY_PATH is used instead of LD_LIBRARY_PATH. On Win-
dows, the PATH variable must contain the directory where shared libraries (DLLs) are
present.

10.3. Using Different Compilers

By default, the configure script detects the following compilers automatically in the
path:

• Intel compiler (icc, icpc)

• GNU C/C++ (gcc, g++)

• Clang (clang, clang++)

• Clang/C2 (from Microsoft Visual Studio)

• Sun Studio (cc, cxx)

• IBM compiler (xlc, xlC)

36

Build Options

If you want to use compilers other than the above ones, you should specify the compiler
name in the CC and CXX variables, and re-run the configuration script.

Different compilers may have different command line options. If you use a compiler
other than the default gcc, you may have to revise the CFLAGS_[RELEASE/DEBUG]
and LDFLAGS variables.

37

	OMNeT++ Installation Guide
	Table of Contents
	Chapter 1. General Information
	1.1. Introduction
	1.2. Supported Platforms

	Chapter 2. Windows
	2.1. Supported Windows Versions
	2.2. Installing OMNeT++
	2.3. Configuring and Building OMNeT++
	2.4. Verifying the Installation
	2.5. Starting the IDE
	2.6. Environment Variables
	2.7. Reconfiguring the Libraries
	2.8. Portability Issues
	2.9. Additional Packages
	2.9.1. MPI
	2.9.2. Akaroa

	Chapter 3. macOS
	3.1. Supported Releases
	3.2. Installing the Prerequisite Packages
	3.3. Additional Steps Required on macOS to Use GDB as the Debugger.
	3.4. Downloading and Unpacking OMNeT++
	3.5. Environment Variables
	3.6. Configuring and Building OMNeT++
	3.7. Verifying the Installation
	3.8. Starting the IDE
	3.9. Using the IDE
	3.10. Reconfiguring the Libraries
	3.11. Additional Packages
	3.11.1. OpenMPI
	3.11.2. GraphViz
	3.11.3. Doxygen
	3.11.4. Akaroa

	Chapter 4. Linux
	4.1. Supported Linux Distributions
	4.2. Installing the Prerequisite Packages
	4.3. Downloading and Unpacking
	4.4. Environment Variables
	4.5. Configuring and Building OMNeT++
	4.6. Verifying the Installation
	4.7. Starting the IDE
	4.8. Using the IDE
	4.9. Reconfiguring the Libraries
	4.10. Additional Packages
	4.10.1. Qtenv
	4.10.2. Akaroa
	4.10.3. PCAP
	4.10.4. Nemiver

	Chapter 5. Ubuntu
	5.1. Supported Releases
	5.2. Opening a Terminal
	5.3. Installing the Prerequisite Packages
	5.3.1. Command-Line Installation
	5.3.2. PCAP
	5.3.3. Graphical Installation
	5.3.4. Post-Installation Steps
	Fixing Tooltip Colors
	Setting Up Debugging

	Chapter 6. Fedora 25
	6.1. Supported Releases
	6.2. Opening a Terminal
	6.3. Installing the Prerequisite Packages
	6.3.1. Command-Line Installation
	6.3.2. PCAP
	6.3.3. Graphical Installation

	Chapter 7. Red Hat
	7.1. Supported Releases
	7.2. Opening a Terminal
	7.3. Installing the Prerequisite Packages
	7.3.1. Command-Line Installation
	7.3.2. PCAP
	7.3.3. Graphical Installation

	7.4. SELinux

	Chapter 8. OpenSUSE
	8.1. Supported Releases
	8.2. Opening a Terminal
	8.3. Installing the Prerequisite Packages
	8.3.1. Command-Line Installation
	8.3.2. PCAP
	8.3.3. Graphical Installation

	Chapter 9. Generic Unix
	9.1. Introduction
	9.2. Dependencies
	9.3. Determining Package Names
	9.3.1. Tcl/Tk
	9.3.2. The Java Runtime
	9.3.3. MPI

	9.4. Downloading and Unpacking
	9.5. Environment Variables
	9.6. Configuring and Building OMNeT++
	9.7. Verifying the Installation
	9.8. Starting the IDE
	9.9. Optional Packages
	9.9.1. Akaroa
	9.9.2. PCAP

	Chapter 10. Build Options
	10.1. Configure.user Options
	10.2. Moving the Installation
	10.3. Using Different Compilers

