Skip to content
Language model Prompt And Query Archive
Shell
Branch: master
Clone or download
Latest commit b84da31 Dec 11, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
demo update prompts with weights Nov 28, 2019
prompt update prompts with weights Nov 28, 2019
README.md Update README.md Dec 11, 2019
setup.sh add permission Dec 11, 2019

README.md

LPAQA: Language model Prompt And Query Archive

This repository contains data and code for the paper How Can We Know What Language Models Know?

Install

Our repository is based on LAMA. Please download our fork from here and follow the instructions to set up the environment and download pre-trained language models.

# clone LPAQA
git clone https://github.com/jzbjyb/LPAQA.git LPAQA
# clone LAMA
git clone https://github.com/jzbjyb/LAMA.git LAMA
pushd LAMA && git reset --hard b6b1885c64de5981f249a8b65de25cb0802b4bd5 && rm -rf .git && popd
mv LAMA/* LPAQA/ && rm -rf LAMA
# follow the instructions to install
cd LPAQA
./setup.sh

Retrieve factual knowledge from LMs

For example, to query the owner of MSN (Microsoft is the answer), you can either use manually created prompts (x is owned by y):

python lama/eval_generation.py --lm bert --t "MSN is owned by [MASK]."

manual

or use LPAQA that ensembles a diversity of prompts:

# mined prompts
python lama/eval_ensemble.py --lm bert --subject MSN --relation P127 --prompts prompt/mine
# paraphrased prompts
python lama/eval_ensemble.py --lm bert --subject MSN --relation P127 --prompts prompt/paraphrase

mine

You can’t perform that action at this time.