Skip to content
PropL repository
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
libs
.gitignore
README.md
compute_basename.py
give_me_some_infos_please.py
propl.py
run.sh
run_batchs.sh
transform_convergence_file_into_graph.py

README.md

#PropL project

PropL is a project of bugs prediction with machine learning, following works of Vincenzo Musco.
The PropL software is written with Python2.7 and Python3.4. The stochastic software is being developed.

###Results

Java Project Mutant operator F-score init. F-score learn.
Codec ABS 0.00 0.56
Codec AOR 0.19 0.75
Codec LCR 0.11 0.66
Codec ROR 0.19 0.74
Codec UOI 0.20 0.77
Collections ABS 0.26 0.20
Collections AOR 0.67 0.27
Collections LCR 0.25 0.29
Collections ROR 0.24 0.23
Collections UOI 0.63 0.36
Gson ABS 0.00 0.79
Gson AOR 0.03 0.73
Gson LCR 0.02 0.76
Gson ROR 0.05 0.82
Gson UOI 0.05 0.83
Io ABS 0.06 0.57
Io AOR 0.32 0.66
Io LCR 0.29 0.74
Io ROR 0.50 0.71
Io UOI 0.42 0.7
Lang ABS 0.00 0.39
Lang AOR 0.60 0.60
Lang LCR 0.40 0.53
Lang ROR 0.67 0.56
Lang UOI 0.67 0.79
Shindig ABS 0.00 0.55
Shindig AOR 0.50 0.62
Shindig LCR 0.33 0.57
Shindig ROR 0.40 0.66
Shindig UOI 0.50 0.65
Sonar ABS 0.40 0.00
Sonar AOR 0.17 0.60
Sonar LCR 0.67 0.54
Sonar ROR 0.67 0.00
Sonar UOI 0.17 0.67
Spojo ABS 0.00 0.00
Spojo AOR 0.00 0.00
Spojo LCR 0.32 0.64
Spojo ROR 0.29 0.80
Spojo UOI 0.00 0.65

###Scientific papers

###Files

  • compute-basename.py : Program to compute f-scores with the algorithm of Vincenzo Musco (F-score init.).
  • propl.py : Program to compute f-scores with the learning approach (F-score learn.).
  • libs/
    • basic_stat_lib.py : Some functions to make some stats (compute precision, recall, f-score, etc...)
    • graph_visualization.py : Program (Python2.7) to visualize impacted nodes in a .graphml file
    • learning_lib.py : Some learning algorithms
    • testing_lib.py : Some functions to test the learning algorithm choose on tests sample
    • tex_lib.py : Library to write results in a tex file
    • use_graph_lib.py : Object which represents a use graph (see the definition of a use graph in the recent paper of Vincenzo Musco)
    • utils_lib.py : Some functions to chunk a list, write into a CSV file, etc...
    • xml_lib.py : Personal XML library to load and give an appreciation on the XML document (valid or not)
    • xml_parsing_lib.py : Personal XML library to parse XML documents from Vincenzo Musco
    • exceptions/
      • FailToLoad.py
      • NoArgument.py
      • RunError.py

###Dependencies

  • networkx (Python2.7/Python3.4)
  • numpy (Python2.7/Python3.7)
  • matplotlib (Python2.7 only)

###How to use it?

You can use the script written in bash : chmod +x run.sh && ./run.sh directory_test usegraph_x.graphml directory_to_store_results, or...

  • In the root directory : python3.4 propl.py <your_test_directory> <number_of_tests> [--option]
  • For help : python3.4 prop.py --help

###Contacts

  • Developer : Antonin Carette (antonin[dot]carette[at]etudiant[dot]univ-lille1[dot]fr)
  • First supervisor : Philippe Preux (philippe[dot]preux[at]inria[dot]fr)
  • Second supervisor : Martin Monperrus (martin[dot]monperrus[at]univ-lille1[dot]fr)
  • Third supervisor : Vincenzo Musco (vincenzo[dot]musco[at]inria[dot]fr)
You can’t perform that action at this time.