

editor: Cees v.d.Laan, PA3CVI

 Eindhoven, March 15 2018

Arduino 2560MEGA K3NG CW-keyer pag.1

INHOUDSOPGAVE pag.

1. Introduction…………………2
1.1 Features of the keyer… ... 3

1.2 Arduino MEGA 2560 specifications… ... 5

1.3 Arduino…………….. .. 7

 1.4 The most fundamental parts… ... 7

2. Installing the Arduino IDE 1.8.59

3. Working with the Arduino IDE program …..…………………………….....10

 3.1 Arduino IDE configuration……………………………………………………10

4. Blink sketch………… .. …….....12

 4.1 Setup……………….………………………………………………………… 12

 4.2 Creating and starting the program ... 13

5. K3NG CW Keyer, UNO16

6. Organize the K3NG CW keyer files ………………. ….17
 6.1. Put the files in the right place… …………………………..…… 18

7. The K3NG Arduino MEGA 2560 build-up…………………………………….20
 7.1 Starting with the construction of the K3NG keyer...….……….……...........20

8. The roadmap……………….. .. …21
 8.1 Adding the buttons……………………………………. 21

 8.2 Adding the resistors.……………………………… 22

 8.3 Add an LED……………………………………… 23

 8.4 Loading data from the K3NG keyer in Arduino IDE..………….. ………24

 8.5 Adjust the K3NG basic program………………………………… 26

 8.6 Expand with potentiometer.………………………… 27

 8.7 Extending the keyer and loudspeaker extension…… …………………29

 8.8 Toetsenbord aansluiten…………...………………………………… ... …30

 8.9 Connecting the keyboard………………………………………….……. ..32

 8.10 Connecting the display……………………………… 34

 8.11 Geortz DSP CW Decoder…………...………………………………... … 36

9. How does the Decoder work……………….. ... 40

10. Keyboard key assignments.……………….. ... 41

11. List of components……………….. ... 42

12. Attachments, keyer_pin_settings en keyer_features_and_options.h……………...43

13. Attachments, pictures of the Arduino K3NG CW Keyer……..……………………..49

Arduino 2560MEGA K3NG CW-keyer pag.2

Arduino CW-Keyer

1. Introduction.
An Arduino is a small, relatively inexpensive programmable computer that is incredibly flexi-
ble.
An Arduino project is recommended for everyone who is interested in computer programming
or in tinkering with electronics. You can choose from a wide range of projects, and I being a
radio amateur, ended up choosing the K3NG Arduino CW-Keyer. I have finished this project
successfully with great pleasure.
My thanks to Ralph, PA1RB and Anthony Good, K3NG; without their help I would probably not
have made it. Finally, I would like to thank Rein, PA0R, for the translation of this manual
Possibly this manual can stimulate working with Arduino projects. it is meant for beginners
with some basic knowledge of electronics. You will gradually get acquainted with the handling
of microcontrollers and the associated programming. This is a very nice project for hams in-
terested in this type of devices.
K3NG is the designer of the Arduino CW-Keyer, based on the Arduino UNO microcontroller.
For the more advanced, a detailed description of its construction is available on his site.
His programming is of the "open source" type, which offers you the possibility to make your
own changes to the program.

 https://blog.radioartisan.com/arduino-cw-keyer/

Because I am in possession of the Arduino MEGA 2560, fig.1, I went searching for a proper
manual for it. After some effort I finally found a site by KF4BZT which offered me the possi-
bility to start this project.
The difference between the UNO and the MEGA is in a different pin assignment and KF4BZT
adapts this based on the basic description by K3NG.

Figure 1, the Arduino MEGA 2560

Arduino 2560MEGA K3NG CW-keyer pag.3

In the manual of KF4BZT, the CW-Keyer is built up in stages, making use of the Arduino
MEGA 2560, laced with many (un)clear pictures.

https://kf4bzt.wordpress.com/2015/08/06/arduino-cw-keyer-project/

Why then this manual you will ask . Well, I being a dummy, knew little about the Arduino
phenomenon and I soon got stuck in his description. On the one hand, the description has a
comprehensive explanation, on the other hand I miss the beginning of "how to start". More-
over, on his site he is rather sloppy with some circuit diagrams, which contain errors. First of
all what does this keyer have to offer:

1.1 Features of the K3NG CW-keyer.
CW speed adjustable from 1 to 999 WPM

Up to six selectable transmitter keying lines

USB or PS2 Keyboard Interface for CW keyboard operation without a computer

Logging and Contest Program Interfacing via K1EL Winkey 1.0 and 2.0 interface protocol emulation

Optional PTT outputs with configurable lead, tail, and hang times

Optional LCD Display – Classic 4 bit mode , Adafruit I2C RGB display or YourDuino I2C LCD Display

Up to 12 memories with macro

Serial numbers

CW keyboard (via a terminal server program like Putty or the Arduino Serial program)

Speed potentiometer (optional – speed also adjustable with commands)

QRSS and HSCW

Beacon / Fox mode

Iambic A and B

Straight key support

Single Paddle

Ultimatic mode

Bug mode

CMOS Super Keyer Iambic B Timing

Paddle reverse

Hellschreiber mode (keyboard sending, memory macro, beacon)

Farnsworth Timing

Adjustable frequency sidetone

Sidetone disable / sidetone high/low output for keying outboard audio oscillator

Command mode for using the paddle to change settings, program memories, etc.

Keying Compensation

Dah to Dit Ratio adjustment

Weighting

Callsign receive practice

Send practice

Memory stacking

“Dead Operator Watchdog”

Autospace

Wordspace Adjustment

Pre-configured and Custom Prosigns

Non-volatile storage of most settings

Modular code design allowing selection of features and easy code modification

Non-English Character Support

CW Receive Decoder

Rotary Encoder Speed Control

https://kf4bzt.wordpress.com/2015/08/06/arduino-cw-keyer-project/

Arduino 2560MEGA K3NG CW-keyer pag.4

Sleep Mode

USB Mouse Support

Alphabet Sending Practice

QLF / “Messy” Straight Key Emulation. (NEW)

USB Keyboard HID (Human Interface Device) Interface (Keyer = keyboard for your computer (NEW))

Web Interface

Training Module

Below are the Digital / PWM / Analog Pins that are available on three Arduino models which

are often used:

Arduino Nano Pins.

Digitale I / O Pins 14

PWM Pins 6

Analoge I / O-pins 8

Arduino Yun Pins.

Digitale I / O Pins 20

PWM Pins 7

Analoge I / O-pins 12

Arduino Mega 2560 Pins.

Digitale I / O-pinnen 54

PWM Pins 15

Analoge I / O-pins 16

Arduino UNO and Mega 2560.

The advantage of the Arduino Mega 2560 is that it has 256KB of flash memory (of which 8KB
is used by the boot loader). Here you get space for all the possibilities the firmware ofers.
Below you can see the Digital / PWM / Analog pins that are available on the Arduino MEGA
2560. With the Mega you can make many more connections, the more connections, the bet-
ter.
Not all pins will be used for this, since there are ways to link connections with each other via
a single line, such as ground and the 5 volt line. Below is a comparison with the Arduino UNO.

Arduino Nano Pins.

Digitale I / O Pins 14

PWM Pins 6

Analoge I / O-pins 8

Arduino Mega 2560 Pins.

Digitale I / O-pinnen 54

PWM Pins 15

Analoge I / O-pins 16

Arduino 2560MEGA K3NG CW-keyer pag.5

1.2 ARDUINO MEGA 2560 specifications.

Important are the digital and analog pins, and the clock speed (CW Decoding).
Technicalspecificaties:

Microcontroller ATmega2560
Operating voltage 5V
Input voltage (recommended) 7-12V
Input voltage (limit) 6-20V
Digital I/O pins 54 (of which 15 give PWM output)
Analog input pins 16
DC current per I/O pin 20 mA
DC current for 3.3 V pin 50 mA
Flash memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock speed 16 MHz
Length 101.52 mm
Width 53.3 mm
Weight 37 g

Arduino 2560MEGA K3NG CW-keyer pag.6

As you can see below in fig.2, there is a separate digital section starting with pin 22 until/incl.
pin 53.
The analog pin version, bottom left, is labeled with A0 to A15. The power supply is on pin 5Volt
with, a.o. two ground (GND) pins.

Figure 2, The Arduino MEGA 2560

Arduino 2560MEGA K3NG CW-keyer pag.7

1.3 Arduino

Based on an input, an Arduino circuit can perform independent actions by providing digital
and analogue output signals. From the many types of Arduino microcontrollers in this case
you use an Arduino MEGA 2560 microcontroller with a Morse key or a keyboard to control a
transceiver. You can also use this to make morse code text visible on a display.
The Arduino Mega 2560, with the Atmega 2560 chip, has a programmable memory of 256 KB
and 70 programmable connections.

1.4 The most fundamental parts.

What do you need for this in the first instance:

a. A so-called breadboard, fig.3a
Two breadboards are needed for this project. In Fig. 3b you can see how the connections un-
derneath the breadboard have been made.

Figure 3b, back of breadboard

Figure3a, front of breadboard

Arduino 2560MEGA K3NG CW-keyer pag.8

b. Jumpers, do not order too few, they are also relatively cheap, fig.4.

c. In addition, of course, all common components that are included in the circuits, see

chapter 11, components list.

Figure 4, connection wires

Arduino 2560MEGA K3NG CW-keyer pag.9

2 Installing the Arduino IDE 1.8.5

Arduino IDE is a program that allows you to communicate between your PC and the micro-
controller and upload the necessary software to the microprocessor. So you download this
program first .
Create a file somewhere on your Hard Drive, fig.5, with e.g. the name: 'Temporary download
folder K3NG and download the following zip file:

https://www.arduino.cc/en/Main/Software

Then create a new folder named: C:/Arduino and copy the contents of file: arduino-1.8.5 from
the temporary download folder to your Arduino folder, fig.6.

Now start the program with the Arduino.exe file. So far the installation of Arduino IDE.

Figure 6, The contents of arduino-1.8.5

Arduino 2560MEGA K3NG CW-keyer pag.10

3 Operating the Arduino IDE program.

It is now time to connect the USB port of your Arduino MEGA 2560 to the USB port of your
computer.

Start Arduino IDE and for example a similar Arduino window appears, fig.7.

3.1 Arduino IDE configuration

First choose the following options, figs. 8 and 9 from Tools. From Tools, select the Arduino

Mega, fig.8

Figure 7, Arduino, a possible main window.

Figure 8, ATmega2560

Arduino 2560MEGA K3NG CW-keyer pag.11

The port is usually determined by Windows 10, fig.9. If this is not the case, look under De-
vice Management, whether the Arduino is connected to the right USB port, fig.10. You do this
via: Control Panel ˃ Ports, and setting the correct port number. Of course, in your case, a dif-
ferent port can be assigned as in the example below.

Figure 10, device management

Figure 9, assigning a port number

Arduino 2560MEGA K3NG CW-keyer pag.12

4 Blink sketch.
Before you start with the K3NG sketch (program) it is advisable to start loading the sketch
Blink. Arduino has provided a number of useful programs for this purpose listed under: Ex-
amples. With Blink you can then check whether the Arduino MEGA functions properly, and it
may only take you 10 minutes.
Now disconnect from your PC.

NB. It is not directly required to use the external power supply (7-12 DC Volts), but it offers

an advantage with larger circuits and the use of a display, so that the work becomes more

stable. The power via your USB connection is then switched off automatically, but the internal

power supply of the Arduino remains at 5 Volts.

4.1 Setup.

The figure 11 below shows the simple setup of the Arduino Mega with your breadboard.
Take a good look at how you position the parts. With most LEDs the longer connection wire
is the .

Figure11, Blink setup

+

GND

+ R19

Work too hurriedly.
You can easily make mistakes when connecting to your breadboard, try concentrating and
not to make a mistake. If you do not proceed with caution then you may have to buy your
next Arduino MEGA 2560, as happened to me.

Arduino 2560MEGA K3NG CW-keyer pag.13

4.2 Creating and starting the program.

First of all, this manual is not meant to give you an explanation about the programming
language, but with a little bit of effort there is enough info available on the internet to globally
understand the programs. In addition, some commands are commented with an explanation.

Start Arduino IDE and load the sketch Blink, fig.12.

A clear explanation of this program can be found on:

https://www.arduino.cc/en/Tutorial-0007/BlinkingLED

Figure 12, select Blink: Examples ˃ 01.Basics ˃ Blink

Arduino 2560MEGA K3NG CW-keyer pag.14

The Blink program now appears in the Arduino IDE window. In the example below, fig. 13,

the pin variable is set at 10, according to the arrangement, fig.10.

Everything between: /* …….. */ is taken as text and not compiled. Lines prior to: // are
also not compiled.

Add the line: int LedPin = 10;

If everything is right on your breadboard, connect the USB port of your breadboard to the PC.

Figure 13, the Blink sketch

int led=10;

Arduino 2560MEGA K3NG CW-keyer pag.15

Click on the "V" icon, fig.14, to compile the program. If you have an error message you have
created some error in the sketch.

Then click on the "arrow" icon to upload the sketch to your Arduino, fig.15.

If you do not receive an error message when uploading, the LED will be switched on and off
with the time intervals programmed.
You have successfully completed your first experiment. !!

After this you start the "real" project. To reduce the chance of errors, we are using a step-by-
step procedure. To save your design programs: go to File > Preferences fig.16 and 16a and
save your sketches in a self-named folder.
Do not forget to click OK.

Figure 14, compile.

Figure15, upload.

Figure 16, sketch book location.
Figure 16a, preferences

Arduino 2560MEGA K3NG CW-keyer pag.16

5 K3NG CW Keyer, UNO

Below is the original diagram, fig.17, of the Arduino K3NG CW keyer based on
UNO which can be found under:

https://www.arduino.cc/nl/uploads/Main/arduino-mega2560_R3-sch.pdf

In general terms, this schedule is used in this manual, but with a modified port occupation for
the benefit of the MEGA 2560 and a supplement for a display and a PS2 keyboard connection.

UNO

Figure 17, K3NG basic circuit

All used C's, can be ceramic disk capacitors , so without polarity

https://www.arduino.cc/nl/uploads/Main/arduino-mega2560_R3-sch.pdf

Arduino 2560MEGA K3NG CW-keyer pag.17

6. Organize the K3NG CW keyer files.
The folder structure is very important for the proper functioning of the project and it is a pity
that we can find very little information on the internet.
That's why I use an organigram. Fig.18 shows how to set up the Arduino structure. The yellow
rectangles show the folders and the blue colored rectangles the corresponding files.
On the next page it describes how to do the folder organization.

Arduino K3NG Keyer organization chart

Figure18, Arduino K3NG organization chart

Arduino 2560MEGA K3NG CW-keyer pag.18

For the K3NG keyer you have to download the zip file below into your Temporary down-
load folder. The intermediate step to put it in a temporary folder looks a bit overdone at
first, but it offers the advantage of being able to quickly recover all the basic files if necessary

https://github.com/k3ng/k3ng_cw_keyer

6.1 Put the files in the right place.

Assuming the Arduino IDE from the Blink project is still in the same location,
you do the following, according to the organization chart:

Go to the libraries folder via:

temporary download folder ˃ k3ng_cw_keyer-master ˃ libraries

Copy the folder K3NG_PS2Keyboard and Goertzel from this library, fig.20 and paste it into
the folder of the Arduino library, fig.20a.

Figure 20a, the folders of K3NG_PS2Keyboard en Goertzel

Figure 20, libraries folder

Figure 19, temporary download folder

https://github.com/k3ng/k3ng_cw_keyer

Arduino 2560MEGA K3NG CW-keyer pag.19

To clarify, the PS2 keyboard folder is added to the library because you will at a later stage
connect your keyboard and Goertzel to decode Morse on the display. This way Arduino IDE
can find and process the necessary file. (Thanks for the help of Fred, VK2EFL).

Create a new folder with the name: k3ng_keyer under C: ˃ Arduino

If you start building the K3NG keyer program, in the next chapter, you will

need the file k3ng_keyer.
Go to: Tijdelijke K3NG map ˃ k3ng_cw_keyer-master ˃ libraries ˃ k3ng_keyer

Copy the contents from k3ng_keyer naar C: ˃ Arduino ˃ k3ng_keyer, fig.21.

The folder and file layout is now complete and you can now finally start
with the Arduino K3NG Keyer project itself.

Figure 21, k3ng_keyer

Arduino 2560MEGA K3NG CW-keyer pag.20

7. The K3NG Arduino MEGA 2560 hardware.

7.1 Start with the components of the Arduino K3NGkeyer

Always disconnect the USB connection from your PC before working on your breadboard.

You can finally start with the physical construction of the keyer. The breadboard I use corre-
sponds to the one shown on page 7, fig.3.

Figure 22, basic breadboard parts with power lines from the Arduino MEGA

+

+
-

-

Arduino 2560MEGA K3NG CW-keyer pag.21

Figure 24, the push buttons

8. The Roadmap.

Step 8.1: Adding the buttons.

As a first step in this project you place the push buttons as
much as possible on the left side of the board, fig. 24. There are
six of them, the most left is the Command button for program-
ming.
The other push buttons are Memory buttons. later on you can
attach multiple memory buttons if necessary.
The buttons are simple on-off switches, connected according to
the diagram, fig.23.
.

Figure 23, diagram with buttons.

Arduino 2560MEGA K3NG CW-keyer pag.22

Step 8.2: Adding the resistors.

Place the 6 resistors on the board, fig. 26 and pay attention to the position of the resistors,
it is easy to make a mistake. Fig. 25 shows the circuit again.

Figure 25, six resistors.

Figure 26, buttons with resistors.

R1

10k

R2

1k

R3

1k

R4

1k

R5

1k

R6

1k

Arduino 2560MEGA K3NG CW-keyer pag.23

Step 8.3: Adding a ledLED.

This step can also be found on the K3NG website, and provides an opportunity for checking if
the Command button has been pressed, taken into account in the following steps, figs. 27 and
28.
To check whether the Command button has been pressed, a LED is added. Briefly press the
Command button (digital port D28 becomes "high", approx. 5 Volts) the light comes on,
briefly pressing again the LED goes off. Pay attention to how the LED is connected, the longest
connection wire is the + and is connected to the 470 Ohm resistor.

Figure 27, diagram with LED

Figure 28, arrrangement

Arduino 2560MEGA K3NG CW-keyer pag.24

Figure 29a, basic k3ng_keyer.ino file

Stap 8.4: Load the data from the K3NG keyer into Arduino IDE

Open het Arduino IDE programma.

To open the basic K3NG program in Arduino IDE go to Open and click on the k3ng_keyer.ino

file in the folder: SSD (C:) ˃ Arduino ˃ k3ngkeyer, fig. 29 en 29a.

In there you will find all the necessary h. files needed to build the keyer.

Figuur 29, open k3ng_keyer.ino

Arduino 2560MEGA K3NG CW-keyer pag.25

The required horizontal green bar of the main window now shows all required .h positions,

which you can see more clearly when you open the hidden fold-out window, fig.30.

You now start from the basic K3NG configuration and then make the necessary modifications.
The function of the so-called .h files will be clearly explained in the remainder of the manual.

You are going to use the two .h files below to adjust things in the sketch.

a. keyer_pin_settings.h

To fix the pin occupation.

b. keyer_features_and_options.h

To switch certain options from the K3NG program on or off.

Figure 30, Arduino IDE main window

Click on this for a new fold-out window

Arduino 2560MEGA K3NG CW-keyer pag.26

Step 8.5: Adjust the basic K3NG sketch.

keyer_pin_settings.h, where you define the pin setting

The analogue pin has been set to: A0. (Currently Command_mode_active_led is set to an in-
active state). The digital pin is for port 28, fig.31, which switches the LED.

 At this stage you have to activate three commands, fig.32 and you do that by removing the
//.
Do not forget that, otherwise the program will not work.

keyer_features_and_options.h.

With “Edit ˃ Search…” you can quickly find a command in the program.

Once you have made the changes to the codes, you can compile the sketch and, after con-
necting your Arduino MEGA, upload to the Arduino Mega for testing. Here also applies: are
you sure that all components are correctly connected ?
Do not forget to compile and update the program. After pressing the Command button, the
LED should light up and pressing this button again will switch it off.

Figure 31, pin settings

Figure 32, activate functions.

Arduino 2560MEGA K3NG CW-keyer pag.27

Step 8.6: Expand with potentiometer.

Below is the diagram, fig.33 and breadboard setup, fig.34, with the added potentiometer,
which you can use later on to set the signal speed from 1 - 999 words per minute (WPM).

Figure33, diagram with potentiometer.

Figure 34, breadboard arrangement with potentiometer.

Arduino 2560MEGA K3NG CW-keyer pag.28

To make the potentiometer work, you have to do the following:

Select keyer_pin_settings.h, which determines the pin setting, because the analog port A0

is already occupied, choose port A1, fig.35.

keyer_pin_settings.h

In the keyer_features_and_options.h file, activate the following command (remove the //)
fig. 36/37:

keyer_features_and_options.h

To conclusion this step compile the sketch. Uploading makes no sense at this stage.

If you are compiling for the first time you will probably receive the following message, fig. 38.
The text in red does not mean alarm , the text below that indicates how many storage space
is used of the total available amount.

Figure 35, Analog port A1

Figure 36, Potentiometer option

Figure 37, Rotary Encoder option

Figure 38, used storage space.

Arduino 2560MEGA K3NG CW-keyer pag.29

Figure 39, keyer and loudspeaker

Step 8.7: Signal key and loudspeaker extension.

 Figure40, connection keyer, speaker

Arduino 2560MEGA K3NG CW-keyer pag.30

With this step, fig.39 and 40, you are able to convert the manual morse keying into sound
using a loudspeaker, perhaps only interesting for those who have already mastered the CW.
But beware: at step 8.7 you will add a keyboard with which audible CW characters can be
produced.

And it gets even better when you add a display in step 8.8 where you can see which CW
characters you produce.
For the loudspeaker and keyer paddles to work, there are no special commands necessary
in the keyer_features_and_options.h file.
However, you must define in the keyer_pin_settings.h file which pin setting you want for
the sidetone and paddles. The speaker has been chosen to be on pin 48,and pin 42 and 44
for the paddles, fig. 41 and 41a.

The 2N2222 transistor is a standard NPN switching transistor which must be connected ac-
cording to the diagrams.

The key and sidetone pin settings, according to the Arduino pins, are:

keyer_pin_settings.h

keyer_pin_settings.h

Step 8.8: Connecting your keyboard.

First you are going to add a keyboard (connection), which allows you to produce audible morse
signs without using the key. The keyboard I use is type PS/2, a whicht is easily available.
Fig. 42 shows the front view of the chassis part,and in fig. 43 you can see how the corre-
sponding pins are connected. After checking, test the operation after compilation and upload-
ing.

Figure 41, side tone pin setting

Figure 43, pin names.

Figure 41a, paddles

Figure42, front view chassis part

3

Arduino 2560MEGA K3NG CW-keyer pag.31

Figure 46a, the warning message

Connecting the keyboard is "a piece of cake". activate the following commands according
to the figures 44 and 45 below. Fig. 46 shows the added wiring.

keyer_pin_settings.h bestand:

keyer_features_and_options.h

During the compilation you get the following warning, fig. 46a, regarding your keyboard.
You may ignore this warning and proceed to upload.

Figure 44, define pin settings.

Figure 45, define feature_ps2_keyboard.

Figure 46, GND (black), A3 (bruin) en 3 (pink) and the 5V connection(red)

 GND A3 3 5V DC

GND

Arduino 2560MEGA K3NG CW-keyer pag.32

Figure 48, feature LCD

Step 8.9: Connecting your display

By applying a display, the project is getting really fun, because you can now see what morse
code text you produce with your keyboard, and possibly your key.
To make things easier to, I used a second breadboard which also has to be provided with 5V
and GND connections. The display is a 4-bit 2 row LCD.
Later on, the decoding setup can be added to the 2nd breadboard. Both breadboards are used
efficiently. Change in the keyer_pin_settings.h en keyer_features_and_options.h according
to figs. 47 and 48. Figs. 50 and 51 show the board setup.

keyer_pin_settings.h bestand: keyer_features_and_options.h bestand:

For a 4-bit LCD display with for example 20 rows and 4 columns you will have to change the

following items in keyer_settings.h, fig.48a. The LCD pinsettings can be left unchanged. If you

follow the diagram below, fig. 49, the display should work properly. Set the potentiometer

R10 so the characters become visible.

 Figure 49, LCD circuit

Figure 47, LCD setting

Figure 50, detail pin setting

Figure 48a

Arduino 2560MEGA K3NG CW-keyer pag.33

Figure 51, LCD mounting, 4-bits 2-line LCD

Arduino 2560MEGA K3NG CW-keyer pag.34

Step 8.10: Connection the Transceiver.

Now go on working on your 1st breadboard.
The K3NG design has 3 TX connections, which means that you can connect 3 transceivers,
for example a Kenwood, Icom and a Yaesu. I imagine that the three transceivers are set so
that, if one band is "closed", you can continue a contest on another bands. Maybe a bit far
ferched, but the possibility is available.
To activate this option, you must change the ports for the tx_key_line_1, tx_key_line_2 and
tx_key_line_3 that appear in the keyer_pin_settings.h file. I personally use digital pins 32, 34
and 36 for that, see fig.52.

The CW ops can now key the channel, and will be able to "hear" the opposite station.

With the keyboard you can also control the TX in CW mode, but returning Morse signals can
not be deciphered for the "non CW-ers", but the next chapter will tell you what to do about
that. Figures 53 and 54 and 55 show the schematic and additional wiring on the breadboard.

Figure 53, TX connection diagram.

Figure 52, the three drie TX three outputs activated.

Arduino 2560MEGA K3NG CW-keyer pag.35

Figuur 54, aansluitingen Arduino

Figure 55, TX outputs.

Arduino 2560MEGA K3NG CW-keyer pag.36

Stap 8.11: GEORTZ DSP CW DECODER.

The "keying" chapter is now complete and it is time for you to look at the decode section
which converts morse code to readable text on your display. This part is largely taken over
from the KF4BZT site, in which he also describes that a conversion must take place from the
UNO to the MEGA 2560 controller. He makes use of the basic code of OZ1JHM which is on
this website:

http://www.skovholm.com/cwdecoder

Decoding is based on the Goertzel algorithm and you can find the information at:

https://en.wikipedia.org/wiki/Goertzel_algorithm

The whole decoding issue is such a complex mathematical item that I have not tried to dig any
deeper into it. A file for the Arduino has been included in the library goertzel.h.
This provides all decoding algorithms that are necessary for this to work properly. To that end
a number of settings must be adjusted so that the Arduino Mega can handle this code. This
file can be found in the Goertzel folder, as shown in fig.56.

Open the goertzel.h file with e.g. WordPad where you can find some interesting infor-
mation about the sampling frequency and bandwidth.

Figure 56, folder Goertzel

Arduino 2560MEGA K3NG CW-keyer pag.37

In the first part of the file, printed in gray, you will find further explanation of OZ1JHM's set-
tings. There are settings that need attention in case the decoding does not work well. Ac-
cording to OZ1JHM, the Target Frequency should work with 558 Hz or maybe 744 Hz.

Change it in the red box, fig.57 to make the codes suitable for the Arduino Mega. But remem-
ber that a high GOERTZ_SAMPLES value takes a lot of CPU time, so you have to make a com-
promise.

Figure57, Goertz settings.

Arduino 2560MEGA K3NG CW-keyer pag.38

In the keyer_pin_settings.h file the pinsetting needs to be adjusted. You choose pin A11,
and for cw decoder indicato,r pin 24, fig.58, 59 en 60.

Finally in the keyer_features_and_options.h the option for audio detector and cw_decoder
must be activated, fig.61.

Choose the number “zero” for define cw_decoder_pin.

keyer_pin_settings.h

 keyer_features_and_options.h

Figure 60, Goertzel Audio detector

Figure 58, adjusting fort he MEGA

A11

D24

Figure 61, feature_cw_decoder

Figure 59, pinsetting for the decoder.

Arduino 2560MEGA K3NG CW-keyer pag.39

NB. You can position this circuit on your 2nd breadboard, next to the display circuit. The LED
serves to make the alignment to the Morse signal easier, and you connect it on A11, fig. 58
and 62.

NB:
In many of the figures you will come across the name Fritzing and you may wonder what
this means.
Fritzing is the name of a program with which you design circuits and breadboard setups.
If you want to know more about it, you can download the (freeware) program from the web-

site

http://fritzing.org/download/

Figure 62, decodeer mounting, second breadboard

A11

D24

http://fritzing.org/download/

Arduino 2560MEGA K3NG CW-keyer pag.40

9. How does the detector work?

Tune your receiver to the CW part of the HF band. Make sure you have the LED connected
between the mass and the pin you have chosen. Tune to a station until the LED starts to flash
when receiving CW. You should use fine-tuning to make it readable, so that the LED shows
that the right data is being sent.

Play around with the above settings in the goertzel.h file to see if you can get a better decod-
ing. With the bandwidth setting of the transceiver (CW mode) at 1000Hz, the decoding is op-
timal in my case.

NB.
To be honest, I must say that you should not expect too much from decoding. The decoding
method is still in an experimental phase. For the novice CW operator, the above mentioned
decoding on the display is still very nice to follow and then mainly as there is a "proper" regular
keying not disturbed by nearby CW signals.
You might also try to tune in beacon stations, which feature a nice keying characteristic

Further information about the operation and additional information from the CW-keyer can
be obtained from the following web site:

https://blog.radioartisan.com/arduino-cw-keyer/

The group below is very active and helpful, you can ask all your questions about the K3NG-
CW keyer and other K3NG projects.

https://groups.io/g/radioartisan (NEW)

Useful additional sites:

https://www.arduino.cc/en/Main/Software

https://github.com/k3ng/k3ng_cw_keyer

https://learn.sparkfun.com/tutorials/how-to-read-a-schematic

https://www.arduino.cc/en/Main/Software

http://fritzing.org/home/

https://makerzone.mathworks.com/resources/getting-started-with-arduino-mega-2560-

hardware/

http://www.skovholm.com/cwdecoder

http://www.justradios.com/uFnFpF.html

https://blog.radioartisan.com/arduino-cw-keyer/
https://groups.io/g/radioartisan
https://www.arduino.cc/en/Main/Software
https://github.com/k3ng/k3ng_cw_keyer
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic
https://www.arduino.cc/en/Main/Software
http://fritzing.org/home/
https://makerzone.mathworks.com/resources/getting-started-with-arduino-mega-2560-hardware/
https://makerzone.mathworks.com/resources/getting-started-with-arduino-mega-2560-hardware/
http://www.skovholm.com/cwdecoder
http://www.justradios.com/uFnFpF.html

Arduino 2560MEGA K3NG CW-keyer pag.41

10. Keyboard commands

Special PS2 Keybords commands

F1 through F12------ play memories 1 through 12
Up Arrow------------- Increase CW Speed 1 WPM
Down Arrow--------- Decrease CW Speed 1 WPM
Page Up--------------- Increase sidetone frequency
Page Down----------- Decrease sidetone frequency
Right Arrow---------- Dah to Dit Ratio increase
Left Arrow------------ Dah to Dit Ratio decrease
Home------------------ reset Dah to Dit Ratio to default
Tab--------------------- pause sending
Delete----------------- delete the last character in the buffer
Esc--------------------- stop sending and clear the buffer
Scroll Lock ---------- Merge the next two characters to form a prosign
Shift------------------- Scroll Lock – toggle PTT line
CTRL-A---------------- Iambic A Mode
CTRL-B---------------- Iambic B Mode
CTRL-C----------------- Single Paddle Mode
CTRL-D----------------- Ultimatic Mode
CTRL-E----------------- Set Serial Number
CTRL-G---------------- Bug Mode
CTRL-H---------------- Hellschreiber Mode (requires FEATURE_HELL)
CTRL-I----------------- TX Line Disable/Enable
CTRL-M--------------- Set Farnsworth Speed (requires FEATURE_FARNSWORTH)
CTRL-N---------------- Paddle Revers
CTRL-O---------------- Sidetone On/Off
CTRL-T ----------------- Tune
CTRL-U----------------- PTT Manual On/Off
CTRL-W--------------- Set WPM
CTRL-Z---------------- Autospace On/Off
SHIFT-F1, F2, F3… Program memory 1, 2, 3… (programmeren van de geheugen toetsen)
ALT-F1, F2, F3… Repeat memory 1, 2, 3…
CTRL-F1, F2, F3… Switch to transmitter 1, 2, 3…

Arduino 2560MEGA K3NG CW-keyer pag.42

11. List of components

Required components:

Part Name, values number

 Arduino MEGA, 2560 1x

 Breadboard 2 x

 Keyboard PS/2 1x

S 1,2,3,4,5,6 on / off push buttons, 6x6 mm. 6 x

 connecting wires a lot of

Led 1, 2 Red (633nm) 2x

R1,11,15,17 10 kΩ 4x

R2,3,4,5,6 1 kΩ 5x

R19, 20 470 Ω 2x

R7,10 10 kΩ, pot. meter 2x

R 8,9,11,12,13,16 100 Ω 6x

C1,2,4,5,6 0.01 µF (10nF) 5x

C3,C7 0.1 µF (100nF 2x

Q 1,2,3,4 2N2222A (NPN) 4x

Arduino 2560MEGA K3NG CW-keyer pag.43

12. Appendices

Keyer_pin_settings.h

/* Pins - you must review these and configure ! */

#ifndef keyer_pin_settings_h

#define keyer_pin_settings_h

#define paddle_left 42

#define paddle_right 44

#define tx_key_line_1 11 // (high = key down/tx on)

#define tx_key_line_2 12

#define tx_key_line_3 0

#define tx_key_line_4 0

#define tx_key_line_5 0

#define tx_key_line_6 0

#define sidetone_line 48 // connect a speaker for sidetone

#define potentiometer A1 // Speed potentiometer (0 to 5 V) Use pot from 1k to 10k

#define ptt_tx_1 0 // PTT ("push to talk") lines

#define ptt_tx_2 0 // Can be used for keying fox transmitter, T/R switch, or keying slow boatanchors

#define ptt_tx_3 0 // These are optional - set to 0 if unused

#define ptt_tx_4 0

#define ptt_tx_5 0

#define ptt_tx_6 0

#define tx_key_dit 0 // if defined, goes active for dit (any transmitter) - customized with tx_key_dit_and_dah_pins_ac-

tive_state and tx_key_dit_and_dah_pins_inactive_state

#define tx_key_dah 0 // if defined, goes active for dah (any transmitter) - customized with

tx_key_dit_and_dah_pins_active_state and tx_key_dit_and_dah_pins_inactive_state

#ifdef FEATURE_COMMAND_BUTTONS

 #define analog_buttons_pin A0

 #define command_mode_active_led 28

#endif //FEATURE_COMMAND_BUTTONS

/*

FEATURE_SIDETONE_SWITCH

 Enabling this feature and an external toggle switch adds switch control for playing cw sidetone.

 ST Switch status is displayed in the status command. This feature will override the software control of the sidetone (\o).

 Arduino pin is assigned by SIDETONE_SWITCH

*/

#ifdef FEATURE_SIDETONE_SWITCH

 #define SIDETONE_SWITCH 8

#endif //FEATURE_SIDETONE_SWITCH

//lcd pins

#ifdef FEATURE_LCD_4BIT

 #define lcd_rs 38

 #define lcd_enable 31

 #define lcd_d4 33

 #define lcd_d5 35

 #define lcd_d6 37

 #define lcd_d7 39

#endif //FEATURE_LCD_4BIT

Arduino 2560MEGA K3NG CW-keyer pag.44

#ifdef FEATURE_LCD1602_N07DH

 #define lcd_rs 8

 #define lcd_enable 9

 #define lcd_d4 4

 #define lcd_d5 5

 #define lcd_d6 6

 #define lcd_d7 7

#endif //FEATURE_LCD1602_N07DH

//ps2 keyboard pins

#ifdef FEATURE_PS2_KEYBOARD

 #define ps2_keyboard_data A3

 #define ps2_keyboard_clock 3 // this must be on an interrupt capable pin!

#endif //FEATURE_PS2_KEYBOARD

// rotary encoder pins and options - rotary encoder code from Jim Balls M0CKE

#ifdef FEATURE_ROTARY_ENCODER

 #define OPTION_ENCODER_HALF_STEP_MODE // Half-step mode?

 #define rotary_pin1 0 // CW Encoder Pin

 #define rotary_pin2 0 // CCW Encoder Pin

 #define OPTION_ENCODER_ENABLE_PULLUPS // define to enable weak pullups.

#endif //FEATURE_ROTARY_ENCODER

#ifdef FEATURE_LED_RING

 #define led_ring_sdi A10 //2 //Data

 #define led_ring_clk A9 //3 //Clock

 #define led_ring_le A8 //4 //Latch

#endif //FEATURE_LED_RING

#ifdef FEATURE_ALPHABET_SEND_PRACTICE

 #define correct_answer_led 0

 #define wrong_answer_led 0

#endif //FEATURE_ALPHABET_SEND_PRACTICE

#ifdef FEATURE_PTT_INTERLOCK

 #define ptt_interlock 0 // this pin disables PTT and TX KEY

#endif //FEATURE_PTT_INTERLOCK

#ifdef FEATURE_STRAIGHT_KEY

 #define pin_straight_key 52

#endif //FEATURE_STRAIGHT_KEY

#ifdef FEATURE_CW_DECODER

 #define cw_decoder_pin 0

 #ifdef OPTION_CW_DECODER_GOERTZEL_AUDIO_DETECTOR

 #define cw_decoder_audio_input_pin A11 // this must be an analog pin!

 #endif //OPTION_CW_DECODER_GOERTZEL_AUDIO_DETECTOR

 #define cw_decoder_indicator 24

#endif //FEATURE_CW_DECODER

#if defined(FEATURE_COMPETITION_COMPRESSION_DETECTION)

 #define compression_detection_pin 13

#endif //FEATURE_COMPETITION_COMPRESSION_DETECTION

#if defined(FEATURE_SLEEP)

Arduino 2560MEGA K3NG CW-keyer pag.45

 #define keyer_awake 0

#endif

#if defined(FEATURE_CAPACITIVE_PADDLE_PINS)

 #define capactive_paddle_pin_inhibit_pin 0 // if this pin is defined and is set high, the capacitive paddle pins will switch to

normal (non-capacitive) sensing mode

#endif

#ifdef FEATURE_4x4_KEYPAD

 #define Row3 33

 #define Row2 32

 #define Row1 31

 #define Row0 30

 #define Col3 37

 #define Col2 36

 #define Col1 35

 #define Col0 34

#endif

#ifdef FEATURE_3x4_KEYPAD

 #define Row3 33

 #define Row2 32

 #define Row1 31

 #define Row0 30

 #define Col2 36

 #define Col1 35

 #define Col0 34

#endif

#else

 #error "Multiple pin_settings.h files included somehow..."

#endif //keyer_pin_settings_h

Arduino 2560MEGA K3NG CW-keyer pag.46

keyer_features_and_options.h

// compile time features and options - comment or uncomment to add or delete features

// FEATURES add more bytes to the compiled binary, OPTIONS change code behavior

#define FEATURE_COMMAND_BUTTONS

// #define FEATURE_COMMAND_LINE_INTERFACE // Command Line Interface functionality

#define FEATURE_MEMORIES // on the Arduino Due, you must have FEATURE_EEPROM_E24C1024 and

E24C1024 EEPROM hardware in order to compile this

#define FEATURE_MEMORY_MACROS

// #define FEATURE_WINKEY_EMULATION // disabling Automatic Software Reset is highly recommended (see documen-

tation)

// #define FEATURE_BEACON

// #define FEATURE_TRAINING_COMMAND_LINE_INTERFACE

#define FEATURE_POTENTIOMETER // do not enable unless you have a potentiometer connected, otherwise noise

will falsely trigger wpm changes

// #define FEATURE_SIDETONE_SWITCH // adds switch control for the sidetone output. requires an external toggle switch

(assigned to an arduino pin - see keyer_pin_settings.h).

// #define FEATURE_SERIAL_HELP

// #define FEATURE_HELL

#define FEATURE_PS2_KEYBOARD // Use a PS2 keyboard to send code - Change keyboard layout (non-US) in

K3NG_PS2Keyboard.h. Additional options below.

// #define FEATURE_USB_KEYBOARD // Use a USB keyboard to send code - Uncomment three lines in

k3ng_keyer.ino (search for note_usb_uncomment_lines)

// #define FEATURE_CW_COMPUTER_KEYBOARD // Have an Arduino Due or Leonardo act as a USB HID (Human Inter-

face Device) keyboard and use the paddle to "type" characters on the computer -- uncomment this line in ino file: #include

<Keyboard.h>

// #define FEATURE_DEAD_OP_WATCHDOG

// #define FEATURE_AUTOSPACE

// #define FEATURE_FARNSWORTH

// #define FEATURE_DL2SBA_BANKSWITCH // Switch memory banks feature as described here: http://dl2sba.com/in-

dex.php?option=com_content&view=article&id=131:nanokeyer&catid=15:shack&Itemid=27#english

#define FEATURE_LCD_4BIT // classic LCD disidefplay using 4 I/O lines

// #define FEATURE_LCD_ADAFRUIT_I2C // Adafruit I2C LCD display using MCP23017 at addr 0x20

// #define FEATURE_LCD_ADAFRUIT_BACKPACK // Adafruit I2C LCD Backup using MCP23008 (courtesy Josiah

Ritchie, KE0BLL)

// #define FEATURE_LCD_YDv1 // YourDuino I2C LCD display with old LCM 1602 V1 ic

// #define FEATURE_LCD1602_N07DH // http://linksprite.com/wiki/index.php5?title=16_X_2_LCD_Key-

pad_Shield_for_Arduino

// #define FEATURE_LCD_SAINSMART_I2C

#define FEATURE_CW_DECODER

// #define FEATURE_SLEEP // go to sleep after x minutes to conserve battery power (not compatible with Ar-

duino DUE, may have mixed results with Mega and Mega ADK)

#define FEATURE_ROTARY_ENCODER // rotary encoder speed control

// #define FEATURE_CMOS_SUPER_KEYER_IAMBIC_B_TIMING

// #define FEATURE_HI_PRECISION_LOOP_TIMING

// #define FEATURE_USB_MOUSE // Uncomment three lines in k3ng_keyer.ino (search for note_usb_uncom-

ment_lines)

// #define FEATURE_CAPACITIVE_PADDLE_PINS // remove the bypass capacitors on the paddle_left and paddle_right

lines when using capactive paddles

// #define FEATURE_LED_RING // Mayhew Labs Led Ring support

// #define FEATURE_ALPHABET_SEND_PRACTICE // enables command mode S command - created by Ryan, KC2ZWM

// #define FEATURE_PTT_INTERLOCK

// #define FEATURE_QLF

// #define FEATURE_EEPROM_E24C1024

Arduino 2560MEGA K3NG CW-keyer pag.47

// #define FEATURE_STRAIGHT_KEY

// #define FEATURE_DYNAMIC_DAH_TO_DIT_RATIO

// #define FEATURE_PADDLE_ECHO

// #define FEATURE_STRAIGHT_KEY_ECHO

// #define FEATURE_AMERICAN_MORSE

// #define FEATURE_4x4_KEYPAD // code contributed by Jack, W0XR - documentation:

https://github.com/k3ng/k3ng_cw_keyer/wiki/380-Feature:-Keypad

// #define FEATURE_3x4_KEYPAD // code contributed by Jack, W0XR - documentation:

https://github.com/k3ng/k3ng_cw_keyer/wiki/380-Feature:-Keypad

// #define FEATURE_COMMAND_LINE_INTERFACE_ON_SECONDARY_PORT // Activate the Command Line interface

on the secondary serial port

#define OPTION_PRIMARY_SERIAL_PORT_DEFAULT_WINKEY_EMULATION // Use when activating both FEA-

TURE_WINKEY_EMULATION and FEATURE_COMMAND_LINE_INTERFACE

 // simultaneously. This will make Winkey emulation be the default at boot up;

 // hold command button down at boot up to activate CLI mode

// #define OPTION_SUPPRESS_SERIAL_BOOT_MSG

#define OPTION_INCLUDE_PTT_TAIL_FOR_MANUAL_SENDING

#define OPTION_EXCLUDE_PTT_HANG_TIME_FOR_MANUAL_SENDING

// #define OPTION_WINKEY_DISCARD_BYTES_AT_STARTUP // if ASR is not disabled, you may need this to discard

errant serial port bytes at startup

// #define OPTION_WINKEY_STRICT_EEPROM_WRITES_MAY_WEAR_OUT_EEPROM // with this activated the unit will

write non-volatile settings to EEPROM when set by Winkey commands

// #define OPTION_WINKEY_SEND_WORDSPACE_AT_END_OF_BUFFER

#define OPTION_WINKEY_STRICT_HOST_OPEN // require an admin host open Winkey command before doing

any other commands

#define OPTION_WINKEY_2_SUPPORT // comment out to revert to Winkey version 1 emulation

#define OPTION_WINKEY_INTERRUPTS_MEMORY_REPEAT

//#define OPTION_WINKEY_UCXLOG_9600_BAUD // use this only with UCXLog configured for Winkey 9600 baud

mode

// #define OPTION_WINKEY_2_HOST_CLOSE_NO_SERIAL_PORT_RESET // activate this when using Winkey 2 emula-

tion and Win-Test

// #define OPTION_WINKEY_FREQUENT_STATUS_REPORT // activate this to make Winkey emulation play better

with RUMlog and RUMped

#define OPTION_WINKEY_IGNORE_LOWERCASE // Enable for typical K1EL Winkeyer behavior (use for

SkookumLogger version 1.10.14 and prior to workaround "r" bug)

// #define OPTION_REVERSE_BUTTON_ORDER // This is mainly for the DJ0MY NanoKeyer

http://nanokeyer.wordpress.com/

#define OPTION_PROG_MEM_TRIM_TRAILING_SPACES // trim trailing spaces from memory when programming in

command mode

#define OPTION_DIT_PADDLE_NO_SEND_ON_MEM_RPT // this makes dit paddle memory interruption a little

smoother

// #define OPTION_MORE_DISPLAY_MSGS // additional optional display messages - comment out to save

memory

// #define OPTION_N1MM_WINKEY_TAB_BUG_WORKAROUND // enable this to ignore the TAB key in the Send CW

window (this breaks SO2R functionality in N1MM)

// #define OPTION_WATCHDOG_TIMER // this enables a four second ATmega48/88/168/328 watchdog

timer; use for unattended/remote operation only

// #define OPTION_MOUSE_MOVEMENT_PADDLE // experimental (just fooling around) - mouse movement will

act like a paddle

// #define OPTION_NON_ENGLISH_EXTENSIONS // add support for additional CW characters (i.e. À, Å, Þ, etc.)

// #define OPTION_KEEP_PTT_KEYED_WHEN_CHARS_BUFFERED // this option keeps PTT high if there are characters

buffered from the keyboard, the serial interface, or Winkey

Arduino 2560MEGA K3NG CW-keyer pag.48

// #define OPTION_DISPLAY_NON_ENGLISH_EXTENSIONS // LCD display suport for non-English (NO/DK/DE) characters

- Courtesy of OZ1JHM

// #define OPTION_UNKNOWN_CHARACTER_ERROR_TONE

// #define OPTION_DO_NOT_SAY_HI

// #define OPTION_PS2_NON_ENGLISH_CHAR_LCD_DISPLAY_SUPPORT // makes some non-English characters from

the PS2 keyboard display correctly in the LCD display (donated by Marcin sp5iou)

// #define OPTION_PS2_KEYBOARD_RESET // reset the PS2 keyboard upon startup with 0xFF (contributed by Bill,

W9BEL)

// #define OPTION_SAVE_MEMORY_NANOKEYER

#define OPTION_CW_KEYBOARD_CAPSLOCK_BEEP

// #define OPTION_CW_KEYBOARD_ITALIAN

// #define OPTION_CW_KEYBOARD_GERMAN

#define OPTION_CW_DECODER_GOERTZEL_AUDIO_DETECTOR

// #define OPTION_INVERT_PADDLE_PIN_LOGIC

// #define OPTION_ADVANCED_SPEED_DISPLAY //enables "nerd" speed visualization on display: wpm, cpm (char per

min), duration of dit and dah in milliseconds and ratio (contributed by Giorgio, IZ2XBZ)

// #define OPTION_PROSIGN_SUPPORT // additional prosign support for paddle and straight key echo on display, CLI,

and in memory storage

// #define OPTION_RUSSIAN_LANGUAGE_SEND_CLI // Russian language CLI sending support (contributed by Павел

Бирюков, UA1AQC)

#define OPTION_DO_NOT_SEND_UNKNOWN_CHAR_QUESTION

// #define OPTION_CMOS_SUPER_KEYER_IAMBIC_B_TIMING_ON_BY_DEFAULT

// #define OPTION_SIDETONE_DIGITAL_OUTPUT_NO_SQUARE_WAVE

// #define OPTION_WORDSWORTH_CZECH

// #define OPTION_WORDSWORTH_DEUTSCH

// #define OPTION_WORDSWORTH_NORSK

Arduino 2560MEGA K3NG CW-keyer pag.49

13. Attachments, pictures of the Arduino K3NG CW Keyer

