Flight rules for git

What are "flight rules"?

A guide for astronauts (now, programmers using git) about what to do when things go wrong.

Flight Rules are the hard-earned body of knowledge recorded in manuals that list,
step-by-step, what to do if X occurs, and why. Essentially, they are extremely detailed,
scenario-specific standard operating procedures. [...]

NASA has been capturing our missteps, disasters and solutions since the early 1960s,
when Mercury-era ground teams first started gathering "lessons learned" into a
compendium that now lists thousands of problematic situations, from engine failure to
busted hatch handles to computer glitches, and their solutions.

— Chris Hadfield, An Astronaut's Guide to Life.
Conventions for this document

For clarity's sake all examples in this document use a customized bash prompt in order to indicate
the current branch and whether or not there are staged changes. The branch is enclosed in
parentheses, and a » next to the branch name indicates staged changes.

Table of Contents generated with DocToc

- Editing Commits
= What did | just commit?
- L wrote the wrong thing in a commit message

| committed with the wrong name and email configured
o | want to remove a file from a commit

o

> | want to delete or remove my last commit

 Delete/remove arbitrary commit

- L tried to push my amended commit to a remote, but | got an error message
- Laccidentally did a hard reset, and | want my changes back

. Staging
- | need to add staged changes to the previous commit

- | want to stage part of a new file, but not the whole file
- |l want to add changes in one file to two different commits

- L want to stage my unstaged edits, and unstage my staged edits
- Unstaged Edits

- L want to move my unstaged edits to a new branch

- L want to move my unstaged edits to a different, existing branch

- L want to discard my local, uncommitted changes

- L want to discard specific unstaged changes

http://www.jsc.nasa.gov/news/columbia/fr_generic.pdf
https://github.com/thlorenz/doctoc
https://gitter.im/k88hudson/git-flight-rules?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge

- | want to discard specific unstaged files

- L want to discard all of my local changes
- Branches

> Create a branch from a commit
- | pulled from/into the wrong branch

= L want to discard local commits so my branch is the same as one on the server
o | committed to master instead of a new branch

- L want to keep the whole file from another ref-ish
- L made several commits on a single branch that should be on different branches

- L want to delete local branches that were deleted upstream
» | accidentally deleted my branch

| want to delete a branch
| want to rename a branch

]

[m]

o

| want to checkout to a remote branch that someone else is working on
- L want to create a new remote branch from current local one
- Rebasing and Merging
- L want to undo rebase/merge
- L rebased, but | don't want to force push.
- |.need to combine commits
- Safe merging strategy
- | need to merge a branch into a single commit
- | want to combine only unpushed commits
- | need to abort the merge
= Check if all commits on a branch are merged
- Possible issues with interactive rebases

« The rebase editing screen says 'noop'
= There were conflicts

- Stashing

- Stash all edits

= Stash specific files

- Stash with message

= Apply a specific stash from list

- Miscellaneous Objects
> Clone all submodules

» Remove a submodule

- Delete tag

- Recover a deleted tag

- Deleted Patch

- Tracking Files

- L want to change a file name's capitalization, without changing the contents of the file.

- L want to overwrite local files when doing a git pull
» L want to remove a file from git but keep the file

- Lwant to revert a file to a specific revision

- Configuration

- L want to add aliases for some git commands
L want to add an empty directory to my repository

- L want to cache a username and password for a repository

- L want to make Git ignore permissions and filemode changes

- I've no idea what | did wrong
> Other Resources

- Books
. Tutorials

- Scripts and Tools
. GUI Clients

Editing Commits

What did | just commit?

Let's say that you just blindly committed changes with git commit -a and you're not sure what the
actual content of the commit you just made was. You can show the latest commit on your current
HEAD with:

(master)$ git show

$ git log -nl -p

| wrote the wrong thing in a commit message

If you wrote the wrong thing and the commit has not yet been pushed, you can do the following to
change the commit message:

$ git commit --amend

This will open your default text editor, where you can edit the message. On the other hand, you can
do this all in one command:

$ git commit --amend -m 'xXxxxxxx'

If you have already pushed the message, you can amend the commit and force push, but this is not
recommended.

| committed with the wrong name and email configured

If it's a single commit, amend it

$ git commit --amend --author "New Authorname <authoremail@mydomain.com>"

If you need to change all of history, see the man page for 'git filter-branch'.

| want to remove a file from a commit

In order to remove a file from a commit, do the following:

$ git checkout HEAD” myfile

$ git add myfile
$ git commit --amend --no-edit

This is particularly useful when you have an open patch and you have committed an unnecessary
file, and need to force push to update the patch on a remote. The --no-edit option is used to keep
the existing commit message.

| want to delete or remove my last commit

If you need to delete pushed commits, you can use the following. However, it will irreversibly
change your history, and mess up the history of anyone else who had already pulled from the
repository. In short, if you're not sure, you should never do this, ever.

$ git reset HEAD” --hard

$ git push --force-with-lease [remote] [branch]

If you haven't pushed, to reset Git to the state it was in before you made your last commit (while
keeping your staged changes):

(my-branch*)$ git reset --soft HEADQ@{1l}

This only works if you haven't pushed. If you have pushed, the only truly safe thing to dois git

revert SHAofBadCommit. That will create a new commit that undoes all the previous commit's
changes. Or, if the branch you pushed to is rebase-safe (ie. other devs aren't expected to pull from
it), you can just use git push --force-with-lease. FOr more, see the above section.

Delete/remove arbitrary commit

The same warning applies as above. Never do this if possible.

$ git rebase --onto SHAl OF BAD COMMIT” SHAl OF BAD COMMIT

$ git push --force-with-lease [remote] [branch]

Or do an interactive rebase and remove the line(s) corresponding to commit(s) you want to see
removed.

| tried to push my amended commit to a remote, but | got an error message

To https://github.com/yourusername/repo.git

! [rejected] mybranch -> mybranch (non-fast-forward)

error: failed to push some refs to 'https://github.com/tanayl337/webmaker.org.git'
hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Note that, as with rebasing (see below), amending replaces the old commit with a new one, so you
must force push (--force-with-lease) your changes if you have already pushed the pre-amended
commit to your remote. Be careful when you do this - a/ways make sure you specify a branch!

(my-branch)$ git push origin mybranch --force-with-lease

In general, avoid force pushing. It is best to create and push a new commit rather than
force-pushing the amended commit as it will cause conflicts in the source history for any other
developer who has interacted with the branch in question or any child branches.
--force-with-lease Will still fail, if someone else was also working on the same branch as you, and
your push would overwrite those changes.

If you are absolutely sure that nobody is working on the same branch or you want to update the tip
of the branch unconditionally, you can use --force (-£), but this should be avoided in general.
| accidentally did a hard reset, and | want my changes back

If you accidentally do git reset --hard, you can normally still get your commit back, as git keeps a
log of everything for a few days.

Note: This is only valid if your work is backed up, i.e., either committed or stashed. git reset
--hard will remove uncommitted modifications, so use it with caution. (A safer option is git reset

--keep.)

(master)$ git reflog

You'll see a list of your past commits, and a commit for the reset. Choose the SHA of the commit
you want to return to, and reset again:

(master)$ git reset --hard SHA1234

And you should be good to go.

Staging

| need to add staged changes to the previous commit

(my-branch*)$ git commit --amend

| want to stage part of a new file, but not the whole file

Normally, if you want to stage part of a file, you run this:

$ git add --patch filename.x

-p will work for short. This will open interactive mode. You would be able to use the s option to split
the commit - however, if the file is new, you will not have this option. To add a new file, do this:

$ git add -N filename.x

Then, you will need to use the e option to manually choose which lines to add. Running git diff
--cached OF git diff --staged Will show you which lines you have staged compared to which are
still saved locally.

| want to add changes in one file to two different commits

git add will add the entire file to a commit. git add -p will allow to interactively select which
changes you want to add.

| want to stage my unstaged edits, and unstage my staged edits

This is tricky. The best | figure is that you should stash your unstaged edits. Then, reset. After that,
pop your stashed edits back, and add them.

stash -k
reset --hard

stash pop
add -A

Unstaged Edits

| want to move my unstaged edits to a new branch

$ git checkout -b my-branch

| want to move my unstaged edits to a different, existing branch

$ git stash

$ git checkout my-branch
$ git stash pop

| want to discard my local, uncommitted changes

This will unstage all files you might have staged with git add:

$ git reset

This will revert all local uncommitted changes (should be executed in repo root):

$ git checkout .

You can also revert uncommitted changes to a particular file or directory:

$ git checkout [some dir|file.txt]

Yet another way to revert all uncommitted changes (longer to type, but works from any
subdirectory):

$ git reset --hard HEAD

This will remove all local untracked files, so only git tracked files remain:

$ git clean -fdx

WARNING: -x will also remove all ignored files!

| want to discard specific unstaged changes
When you want to get rid of some, but not all changes in your working copy.

Checkout undesired changes, keep good changes.

$ git checkout -p

Answer y to all of the snippets you want to drop

Another strategy involves using stash. Stash all the good changes, reset working copy, and reapply
good changes.

$ git stash -p

Select all of the snippets you want to save
$ git reset --hard

$ git stash pop

Alternatively, stash your undesired changes, and then drop stash.

$ git stash -p
Select all of the snippets you don't want to save
$ git stash drop

| want to discard specific unstaged files

When you want to get rid of one specific file in your working copy.

$ git checkout myFile

Alternatively, to discard multiple files in your working copy, list them all.

$ git checkout myFirstFile mySecondFile

| want to discard all of my local changes

When you want to get rid of all of your local uncommitted changes

$ git checkout .

Branches

Create a branch from a commit

$ git checkout -b <branch> <SHA1 OF COMMIT>

| pulled from/into the wrong branch

This is another chance to use git reflog to see where your HEAD pointed before the bad pull.

(master)$ git reflog
ab7555f HEAD@{O}: pull origin wrong-branch: Fast-forward

cSbc55a HEAD@{1l}: checkout: checkout message goes here

Simply reset your branch back to the desired commit:

$ git reset --hard c5bc55a

Done.

| want to discard local commits so my branch is the same as one on the server
Confirm that you haven't pushed your changes to the server.

git status should show how many commits you are ahead of origin:

(my-branch)$ git status

On branch my-branch

Your branch is ahead of 'origin/my-branch' by 2 commits.
(use "git push" to publish your local commits)

#

One way of resetting to match origin (to have the same as what is on the remote) is to do this:

(master)$ git reset --hard origin/my-branch

| committed to master instead of a new branch

Create the new branch while remaining on master:

(master)$ git branch my-branch

Reset the branch master to the previous commit:

(master)$ git reset --hard HEAD"

HEAD” is short for HEAD~1. This stands for the first parent of ueaD, similarly sEap~2 stands for the
second parent of the commit (merges can have 2 parents).

Note that #EaD~2 is not the same as HEaD~2 (see this link for more information).

Alternatively, if you don't want to use sEaD*, find out what the commit hash you want to set your
master branch to (git log should do the trick). Then reset to that hash. git push will make sure
that this change is reflected on your remote.

For example, if the hash of the commit that your master branch is supposed to be at is a13pb85e:

(master)$ git reset --hard al3b85e

HEAD is now at al3b85e

Checkout the new branch to continue working:

(master)$ git checkout my-branch

| want to keep the whole file from another ref-ish

Say you have a working spike (see note), with hundreds of changes. Everything is working. Now, you
commit into another branch to save that work:

(solution)$ git add -A && git commit -m "Adding all changes from this spike into

one big commit."

When you want to put it into a branch (maybe feature, maybe develop), you're interested in
keeping whole files. You want to split your big commit into smaller ones.

Say you have:

- branch solution, with the solution to your spike. One ahead of develop.
- branch develop, where you want to add your changes.

You can solve it bringing the contents to your branch:

(develop)$ git checkout solution -- filel.txt

http://www.paulboxley.com/blog/2011/06/git-caret-and-tilde

This will get the contents of that file in branch solution to your branch develop:

On branch develop

Your branch is up-to-date with 'origin/develop'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: filel.txt

Then, commit as usual.

Note: Spike solutions are made to analyze or solve the problem. These solutions are used for
estimation and discarded once everyone gets clear visualization of the problem. ~ Wikipedia.

| made several commits on a single branch that should be on different branches

Say you are on your master branch. Running git 1log, you see you have made two commits:

(master)$ git log

commit e€3851e817c451cc36£2e6£3049db528415e3cll4
Author: Alex Lee <alexleelexample.com>
IDERWCE Tue Jul 22 15:39:27 2014 -0400

Bug #21 - Added CSRF protection
commit 5ea51731d150f7ddc4a365437931cd8be3bf3131
Author: Alex Lee <alexlee(@example.com>
IDERC Tue Jul 22 15:39:12 2014 -0400

Bug #14 - Fixed spacing on title
commit al3b85e984171c6e2al729bb061994525f626d14
Author: Aki Rose <akiroselexample.com>

Date: Tue Jul 21 01:12:48 2014 -0400

First commit

Let's take note of our commit hashes for each bug (e3851e8 for #21, 5ea5173 for #14).

First, let's reset our master branch to the correct commit (a13b85e):

(master)$ git reset --hard al3b85e

HEAD is now at al3b85e

Now, we can create a fresh branch for our bug #21 branch:

https://en.wikipedia.org/wiki/Extreme_programming_practices

(master)$ git checkout -b 21

(21)$

Now, let's cherry-pick the commit for bug #21 on top of our branch. That means we will be applying
that commit, and only that commit, directly on top of whatever our head is at.

(21)$ git cherry-pick e3851e38

At this point, there is a possibility there might be conflicts. See the There were conflicts section in
the interactive rebasing section above for how to resolve conflicts.

Now let's create a new branch for bug #14, also based on master

(21)$ git checkout master
(master)$ git checkout -b 14
(14) 8

And finally, let's cherry-pick the commit for bug #14:

(14)$ git cherry-pick 5ea5173

| want to delete local branches that were deleted upstream

Once you merge a pull request on github, it gives you the option to delete the merged branch in
your fork. If you aren't planning to keep working on the branch, it's cleaner to delete the local
copies of the branch so you don't end up cluttering up your working checkout with a lot of stale

branches.

$ git fetch -p

| accidentally deleted my branch

If you're regularly pushing to remote, you should be safe most of the time. But still sometimes you
may end up deleting your branches. Let's say we create a branch and create a new file:

master)$ git checkout -b my-branch
my-branch)$ git branch

(
(
(my-branch) $ touch foo.txt
(

my-branch)$ 1s
README .md foo.txt

Let's add it and commit.

(my-branch)$ git add

(my-branch)$ git commit -m 'foo.txt added'’
(my-branch) $ foo.txt added

1 files changed, 1 insertions (+)

create mode 100644 foo.txt

(my-branch)$ git log

commit 4e3cd85a670ced’7ccl7a2b5d8d3d809ac88d5012
Author: siemiat] <siemiatjW@example.com>
Date: Wed Jul 30 00:34:10 2014 +0200

foo.txt added

commit 69204cdf0acbab201619d95ad8295928e7£411d5
Author: Kate Hudson <katehudson@example.com>
Date: Tue Jul 29 13:14:46 2014 -0400

Fixes #6: Force pushing after amending commits
Now we're switching back to master and 'accidentally’ removing our branch.

(my-branch)$ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.
(master)$ git branch -D my-branch

Deleted branch my-branch (was 4e3cd85).
(master)$ echo oh noes, deleted my branch!

oh noes, deleted my branch!

At this point you should get familiar with 'reflog’, an upgraded logger. It stores the history of all the
action in the repo.

(master)$ git reflog

69204cd HEAD@{O}: checkout: moving from my-branch to master
4e3cd85 HEADQ{1l}: commit: foo.txt added

69204cd HEAD@{2}: checkout: moving from master to my-branch

As you can see we have commit hash from our deleted branch. Let's see if we can restore our

deleted branch.

(master)$ git checkout -b my-branch-help
Switched to a new branch 'my-branch-help'
(my-branch-help)$ git reset --hard 4e3cd85
HEAD is now at 4e3cd85 foo.txt added
(my-branch-help)$ 1s

README.md foo.txt

Voila! We got our removed file back. Git reflog is also useful when rebasing goes terribly wrong.

| want to delete a branch

To delete a remote branch:

(master)$ git push origin --delete my-branch

You can also do:

(master)$ git push origin :my-branch

To delete a local branch:

(master)$ git branch -D my-branch

| want to rename a branch

To rename a local current branch:

(master)$ git branch -m new-name

To rename a local different branch:

(master)$ git branch -m old-name new-name

| want to checkout to a remote branch that someone else is working on

First, fetch all branches from remote:

(master)$ git fetch --all

Say you want to checkout to daves from the remote.

(master)$ git checkout --track origin/daves
Branch daves set up to track remote branch daves from origin.

Switched to a new branch 'daves'

(--track is shorthand for git checkout -b [branch] [remotename]/[branch])

This will give you a local copy of the branch daves, and any update that has been pushed will also
show up remotely.

| want to create a new remote branch from current local one

$ git config push.default upstream

$ git push -u origin HEAD

If you want to check out the other default configs which git push can take, visit the documentation
for Git at https://git-scm.com/docs/git-config#git-config-pushdefault

If you do not want to change the git configuration, you can also use:

$ git push -u <remote> HEAD

With the upstream mode and the simple mode (default in Git 2.0), the following command will push
the current branch w.r.t. the remote branch that has been registered previously with -u :

$ git push

The behavior of the other modes of git push is described in the doc of push.default.

Rebasing and Merging

| want to undo rebase/merge

You may have merged or rebased your current branch with a wrong branch, or you can't figure it
out or finish the rebase/merge process. Git saves the original HEAD pointer in a variable called
ORIG_HEAD before doing dangerous operations, so it is simple to recover your branch at the state
before the rebase/merge.

(my-branch) $ git reset --hard ORIG_ HEAD

| rebased, but | don't want to force push.

Unfortunately, you have to force push, if you want those changes to be reflected on the remote
branch. This is because you have fast forwarded your commit, and changed git history. The remote
branch won't accept changes unless you force push. This is one of the main reasons many people

use a merge workflow, instead of a rebasing workflow - large teams can get into trouble with
developers force pushing. Use this with caution. A safer way to use rebase is not to reflect your
changes on the remote branch at all, and instead to do the following:

master)$ git checkout my-branch
my-branch)$ git rebase -1 master

my-branch)$ git checkout master
master)$ git merge --ff-only my-branch

For more, see this SO thread.

| need to combine commits

Let's suppose you are working in a branch that is/will become a pull-request against master. In the
simplest case when all you want to do is to combine a// commits into a single one and you don't
care about commit timestamps, you can reset and recommit. Make sure the master branch is up to
date and all your changes committed, then:

(my-branch)$ git reset --soft master

(my-branch)$ git commit -am "New awesome feature"

If you want more control, and also to preserve timestamps, you need to do something called an
interactive rebase:

(my-branch)$ git rebase -i master

If you aren't working against another branch you'll have to rebase relative to your seAD. If you want
to squash the last 2 commits, for example, you'll have to rebase against #Eap-~2. For the last 3,

HEAD~3, etc.

(master)$ git rebase -i HEAD~2

After you run the interactive rebase command, you will see something like this in your text editor:

pick a9%c8ald Some refactoring
pick 01b2fd8 New awesome feature
pick b729%9ad5 fixup

pick e3851e8 another fix

Rebase 8074dl2..b729ad5 onto 8074d1l2
#

Commands:

p, pick = use commit
1r, reword = use commit, but edit the commit message

http://stackoverflow.com/questions/11058312/how-can-i-use-git-rebase-without-requiring-a-forced-push

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell
These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

He S S S S S HE S S S HE

Note that empty commits are commented out

All the lines beginning with a # are comments, they won't affect your rebase.

Then you replace pick commands with any in the list above, and you can also remove commits by
removing corresponding lines.

For example, if you want to leave the oldest (first) commit alone and combine all the following
commits with the second oldest, you should edit the letter next to each commit except the first
and the second to say £:

pick a9c8ald Some refactoring
pick 01b2fd8 New awesome feature
f b729%ad5 fixup

f e3851e8 another fix

If you want to combine these commits and rename the commit, you should additionally add an r
next to the second commit or simply use s instead of £:

pick a9c8ald Some refactoring
pick 01b2fd8 New awesome feature
s b72%ad5 fixup

s e3851e8 another fix

You can then rename the commit in the next text prompt that pops up.

Newer, awesomer features

Please enter the commit message for your changes. Lines starting

with '"#' will be ignored, and an empty message aborts the commit.

rebase in progress; onto 8074dl12

You are currently editing a commit while rebasing branch 'master' on '8074d12'.

Changes to be committed:
modified: README . md

HE S H S S HE HE 3

If everything is successful, you should see something like this:

(master)$ Successfully rebased and updated refs/heads/master.

Safe merging strategy

--no-commit performs the merge but pretends the merge failed and does not autocommit, giving
the user a chance to inspect and further tweak the merge result before committing. no-£f
maintains evidence that a feature branch once existed, keeping project history consistent.

(master)$ git merge --no-ff —--no-commit my-branch

I need to merge a branch into a single commit

(master)$ git merge --squash my-branch

I want to combine only unpushed commits

Sometimes you have several work in progress commits that you want to combine before you push
them upstream. You don't want to accidentally combine any commits that have already been
pushed upstream because someone else may have already made commits that reference them.

(master)$ git rebase -i @{u}

This will do an interactive rebase that lists only the commits that you haven't already pushed, so it
will be safe to reorder/fix/squash anything in the list.

I need to abort the merge

Sometimes the merge can produce problems in certain files, in those cases we can use the option
abort to abort the current conflict resolution process, and try to reconstruct the pre-merge state.

(my-branch)$ git merge --abort

This command is available since git version >=1.7.4

Check if all commits on a branch are merged

To check if all commits on a branch are merged into another branch, you should diff between the

heads (or any commits) of those branches:

(master)$ git log --graph --left-right --cherry-pick --oneline

HEAD...feature/120-on-scroll

This will tell you if any commits are in one but not the other, and will give you a list of any
nonshared between the branches. Another option is to do this:

(master)$ git log master “feature/120-on-scroll --no-merges

Possible issues with interactive rebases

The rebase editing screen says 'noop'

If you're seeing this:

noop

That means you are trying to rebase against a branch that is at an identical commit, or is ahead of
your current branch. You can try:

- making sure your master branch is where it should be

- rebase against sHEAD~2 or earlier instead

There were conflicts

If you are unable to successfully complete the rebase, you may have to resolve conflicts.

First run git status to see which files have conflicts in them:

(my-branch)$ git status
On branch my-branch

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

both modified: README . md

In this example, rReapME . md has conflicts. Open that file and look for the following:

<<<L<L<L<L< HEAD
some code

some code

>>>>>>> new-commit

You will need to resolve the differences between the code that was added in your new commit (in
the example, everything from the middle line to new-commit) and your HEAD.

If you want to keep one branch's version of the code, you can use --ours Or --theirs:

(master*)$ git checkout --ours README.md

- When merging, use --ours to keep changes from the local branch, or --theirs to keep changes
from the other branch.

- When rebasing, use —--theirs to keep changes from the local branch, or --ours to keep changes
from the other branch. For an explanation of this swap, see this note in the git documentation.

If the merges are more complicated, you can use a visual diff editor:

(master*)$ git mergetool -t opendiff

After you have resolved all conflicts and tested your code, git add the files you have changed, and
then continue the rebase with git rebase --continue

(my-branch)$ git add README.md

(my-branch) $ git rebase --continue

If after resolving all the conflicts you end up with an identical tree to what it was before the commit,
you need to git rebase --skip instead.

If at any time you want to stop the entire rebase and go back to the original state of your branch,
you can do so:

(my-branch)$ git rebase --abort

Stash

Stash all edits

To stash all the edits in your working directory

$ git stash

If you also want to stash untracked files, use -u option.

https://git-scm.com/docs/git-rebase#git-rebase---merge

$ git stash -u

Stash specific files

To stash only one file from your working directory

$ git stash push working-directory-path/filename.ext

To stash multiple files from your working directory

$ git stash push working-directory-path/filenamel.ext

working-directory-path/filename?2.ext

Stash with message

$ git stash save <message>

Apply a specific stash from list

First check your list of stashes with message using

$ git stash list

Then apply a specific stash from the list using

$ git stash apply "stash@{n}"

Here, 'n' indicates the position of the stash in the stack. The topmost stash will be position 0.

Miscellaneous Objects

Clone all submodules

$ git clone --recursive git://github.com/foo/bar.git

If already cloned:

$ git submodule update --init --recursive

Remove a submodule

Creating a submodule is pretty straight-forward, but deleting them less so. The commands you
need are:

git submodule deinit submodulename
git rm submodulename

git rm --cached submodulename

rm -rf .git/modules/submodulename

Delete tag

$ git tag -d <tag_name>

$ git push <remote> :refs/tags/<tag name>

Recover a deleted tag

If you want to recover a tag that was already deleted, you can do so by following these steps: First,

you need to find the unreachable tag:

$ git fsck --unreachable | grep tag

Make a note of the tag's hash. Then, restore the deleted tag with following, making use of git's
update-ref:

$ git update-ref refs/tags/<tag name> <hash>

Your tag should now have been restored.

Deleted Patch

If someone has sent you a pull request on GitHub, but then deleted their original fork, you will be
unable to clone their repository or to use git am as the .diff, .patch urls become unavailable. But

you can checkout the PR itself using GitHub's special refs. To fetch the content of PR#1 into a new
branch called pr_1:

$ git fetch origin refs/pull/l/head:pr 1

From github.com:foo/bar

http://git-scm.com/docs/git-update-ref
https://github.com/blog/967-github-secrets
https://gist.github.com/piscisaureus/3342247

* [new ref] refs/pull/l/head -> pr 1

Tracking Files

| want to change a file name's capitalization, without changing the contents of the
file.

(master)$ git mv --force myfile MyFile

| want to overwrite local files when doing a git pull.

(master)$ git fetch --all
(master)$ git reset --hard origin/master

| want to remove a file from git but keep the file

(master)$ git rm --cached log.txt

| want to revert a file to a specific revision

Assuming the hash of the commit you want is c5f567:

(master)$ git checkout c5£567 -- filel/to/restore file2/to/restore

If you want to revert to changes made just 1 commit before c5f567, pass the commit hash as
c5f567~1:

(master)$ git checkout c5f567~1 —-- filel/to/restore file2/to/restore

Configuration

| want to add aliases for some git commands

On OS X and Linux, your git configuration file is stored in ~/.gitconfig. I've added some example

aliases | use as shortcuts (and some of my common typos) in the [alias] section as shown below:

amend = commit --amend

c = commit
ca commit —--amend
ci commit -a
co checkout
d diff
dc diff --changed
ds diff --staged
f = fetch
loll = log --graph --decorate --pretty=oneline --abbrev-commit
m = merge
one = log --pretty=oneline
outstanding = rebase -i @{u}
s = status
unpushed = log @{u}
= whatchanged
wip = rebase -i @{u}
zap = fetch -p

| want to add an empty directory to my repository

You can't! Git doesn’t support this, but there’s a hack. You can create a .gitignore file in the directory
with the following contents:

Ignore everything in this directory
*

Except this file
! .gitignore

Another common convention is to make an empty file in the folder, titled .gitkeep.

$ mkdir mydir

$ touch mydir/.gitkeep

You can also name the file as just .keep, in which case the second line above would be touch
mydir/.keep
| want to cache a username and password for a repository

You might have a repository that requires authentication. In which case you can cache a username
and password so you don't have to enter it on every push / pull. Credential helper can do this for
you.

$ git config --global credential.helper cache

Set git to use the credential memory cache

$ git config --global credential.helper 'cache --timeout=3600"

Set the cache to timeout after 1 hour (setting is in seconds)

| want to make Git ignore permissions and filemode changes

S git config core.fileMode false

If you want to make this the default behaviour for logged-in users, then use:

$ git config --global core.fileMode false

I've no idea what | did wrong

So, you're screwed - you reset something, or you merged the wrong branch, or you force pushed
and now you can't find your commits. You know, at some point, you were doing alright, and you
want to go back to some state you were at.

Thisiswhat git reflogis for. reflog keeps track of any changes to the tip of a branch, even if that
tip isn't referenced by a branch or a tag. Basically, every time HEAD changes, a new entry is added
to the reflog. This only works for local repositories, sadly, and it only tracks movements (not
changes to a file that weren't recorded anywhere, for instance).

(master)$ git reflog
0a2e358 HEADQ{O}: reset: moving to HEAD~2

0254ea’7 HEAD@{1l}: checkout: moving from 2.2 to master
cl0f740 HEAD@{2}: checkout: moving from master to 2.2

The reflog above shows a checkout from master to the 2.2 branch and back. From there, there's a
hard reset to an older commit. The latest activity is represented at the top labeled HEAD@ {0}.

If it turns out that you accidentally moved back, the reflog will contain the commit master pointed
to (0254ea7) before you accidentally dropped 2 commits.

$ git reset —--hard 0254ea7

Using git reset it is then possible to change master back to the commit it was before. This provides
a safety net in case history was accidentally changed.

(copied and edited from Source).

https://www.atlassian.com/git/tutorials/rewriting-history/git-reflog

Other Resources

Books

- Pro Git - Scott Chacon's excellent git book
- Git Internals - Scott Chacon's other excellent git book

Tutorials

- Learn Git branching An interactive web based branching/merging/rebasing tutorial

- Getting solid at Git rebase vs. merge

- git-workflow - Aaron Meurer's howto on using git to contribute to open source repositories

- GitHub as a workflow - An interesting take on using GitHub as a workflow, particularly with empty
PRs

- Githug - A game to learn more common git workflows

Scripts and Tools

- firstaidgit.io A searchable selection of the most frequently asked Git questions

- git-extra-commands - a collection of useful extra git scripts

- git-extras - GIT utilities -- repo summary, repl, changelog population, author commit percentages
and more

- git-fire - git-fire is a Git plugin that helps in the event of an emergency by adding all current files,
committing, and pushing to a new branch (to prevent merge conflicts).

- git-tips - Small git tips

- git-town - Generic, high-level Git workflow support! http://www.git-town.com

GUI Clients

- GitKraken - The downright luxurious Git client,for Windows, Mac & Linux

- git-cola - another git client for Windows and OS X

- GitUp - A newish GUI that has some very opinionated ways of dealing with git's complications

- gitx-dev - another graphical git client for OS X

- Source Tree - a free graphical git client for Windows and OS X

- Tower - graphical git client for OS X (paid)

- tig - terminal text-mode interface for Git

- Magit - Interface to git implemented as an Emacs package.

- GitExtensions - a shell extension, a Visual Studio 2010-2015 plugin and a standalone Git repository
tool.

- Fork - a fast and friendly git client for Mac (beta)

- gmaster - a git client for Windows that has 3-way merge, analyze refactors, semantic diff and
merge (beta)

- gitk - a git client for linux to allow simple view of repo state.

https://git-scm.com/book/en/v2
https://github.com/pluralsight/git-internals-pdf
https://learngitbranching.js.org/
https://medium.com/@porteneuve/getting-solid-at-git-rebase-vs-merge-4fa1a48c53aa
https://github.com/asmeurer/git-workflow
https://github.com/asmeurer
http://hugogiraudel.com/2015/08/13/github-as-a-workflow/
https://github.com/Gazler/githug
http://firstaidgit.io/
https://github.com/unixorn/git-extra-commands
https://github.com/tj/git-extras
https://github.com/qw3rtman/git-fire
https://github.com/git-tips/tips
https://github.com/Originate/git-town
https://www.gitkraken.com/
https://git-cola.github.io/
https://github.com/git-up/GitUp
https://rowanj.github.io/gitx/
https://www.sourcetreeapp.com/
http://www.git-tower.com/
https://jonas.github.io/tig/
https://magit.vc/
https://github.com/gitextensions/gitextensions
https://git-fork.com/
https://gmaster.io/
https://git-scm.com/docs/gitk

