From 58daca633307347ea6149a6cdfbc5b58fdb98b05 Mon Sep 17 00:00:00 2001 From: Utkarsh Priyadarshi <78032401+priyadarshiutkarsh@users.noreply.github.com> Date: Sun, 15 Oct 2023 04:58:09 -0500 Subject: [PATCH] ImageDataGenerator Image Data Generator Made Using Kera's --- ML Project/ImageDataGenerator | 39 +++++++++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 ML Project/ImageDataGenerator diff --git a/ML Project/ImageDataGenerator b/ML Project/ImageDataGenerator new file mode 100644 index 00000000..edcb50ba --- /dev/null +++ b/ML Project/ImageDataGenerator @@ -0,0 +1,39 @@ +# Import necessary libraries +import tensorflow as tf +from tensorflow.keras.preprocessing.image import ImageDataGenerator +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense + +# Set up data directories +train_dir = 'train' +test_dir = 'test' + +# Data Preprocessing +train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) +test_datagen = ImageDataGenerator(rescale=1./255) + +train_generator = train_datagen.flow_from_directory(train_dir, target_size=(64, 64), batch_size=32, class_mode='binary') +test_generator = test_datagen.flow_from_directory(test_dir, target_size=(64, 64), batch_size=32, class_mode='binary') + +# Build a Convolutional Neural Network (CNN) model +model = Sequential() +model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Conv2D(64, (3, 3), activation='relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Flatten()) +model.add(Dense(units=128, activation='relu')) +model.add(Dense(units=1, activation='sigmoid') + +# Compile the model +model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) + +# Train the model +model.fit(train_generator, steps_per_epoch=len(train_generator), epochs=10, validation_data=test_generator, validation_steps=len(test_generator)) + +# Evaluate the model +test_loss, test_accuracy = model.evaluate(test_generator, steps=len(test_generator)) +print("Test accuracy: {:.2f}%".format(test_accuracy * 100)) + +# Save the model +model.save('cat_dog_classifier.h5')