Cb: A New Modular Approach to Implementing
Efficient and Tunable Collections”

Stephan Brandauer Elias Castegren Tobias Wrigstad
Uppsala University Uppsala University Uppsala University
Sweden Sweden Sweden

stephan.brandauer@it.uu.se

Abstract

Collections are commonly implemented as libraries by data
structure experts, and are relied on heavily by application de-
velopers. The expert’s task is to implement a wide range of col-
lections, and the application developer’s task is to pick an ap-
propriate collection for each usage scenario. The design space
for collections is huge, as data structures in practice imple-
ment not only their semantics, but also several performance-
related concerns like memory layout and (im)mutability.

This paper presents Cb, pronounced “C-flat”, a novel way
to implement collections that lets experts implement the se-
mantics of a collection data structure, in a way that is de-
coupled from its data representation. This simplifies collec-
tion implementation, and allows a collection’s performance
to be tuned, for example, moving from a dense to a sparse
representation, without changing its abstract specification.

We describe Cb, both abstractly and in terms of a specific
prototype implementation in Java. We use our prototype
implementation to show that Cb is expressive enough to im-
plement common collections, that the code is straightforward,
and that the performance of Cb collections is close to Java’s
standard collections for most operations, and much higher
for some.

CCS Concepts « Software and its engineering — Do-
main specific languages; Software performance;

Keywords data structure design, domain specific language,

performance tuning

“This work was partially funded by the Swedish Research Council project
Structured Aliasing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6031-9/18/11...$15.00
https://doi.org/10.1145/3276954.3276956

elias.castegren@it.uu.se

57

tobias.wrigstad@it.uu.se

ACM Reference Format:

Stephan Brandauer, Elias Castegren, and Tobias Wrigstad. 2018. Cb:
A New Modular Approach to Implementing Efficient and Tunable
Collections. In Proceedings of the 2018 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’18), November 7-8, 2018, Boston,
MA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3276954.3276956

1 Introduction

This paper presents a novel approach to implementing col-
lection data structures. Different collections have different
strengths and weaknesses with respect to performance un-
der different usage scenarios. For example, although equi-
valent from the abstract data-type point of view (because
they support the same operations), array lists offer constant-
time lookup, but suffer from linear complexity for insertion
and removal at the front or in the middle of a list, whereas
linked lists offer constant-time prepend and append, but linear
time lookup. Optimising a collection to improve performance
therefore commonly amounts to replacing one concrete im-
plementation of an abstract data type with another, e.g., using
an Arraylist instead of a LinkedList in Java.

The novel approach taken in this paper is driven by a desire
to separate functional and non-functional concerns (we focus
on run time and memory required) for collections. This sim-
plifies their respective implementation, and allows collections
to be optimised without touching the “business logic” satisfy-
ing the functional requirements. We propose an approach for
constructing collection data structures where each collection
(a front-end) is implemented against an abstract representa-
tion of memory (a cursor) that can be freely combined with
different back-ends, which implement the actual physical stor-
age of data. When front-ends and back-ends are combined
freely, non-functional properties (performance and memory
required) can be picked according to application needs, while
functional properties remain invariant. As a consequence
of this modular design, development of a new back-end al-
lows the creation of as many new collections as there are
front-ends, and bug fixes or performance improvements in
one back-end or front-end is enjoyed by all combinations that
rely on it.

This paper makes the following contributions.

1. We propose a novel approach to implementing collec-
tion data structures, which separates the functional

https://doi.org/10.1145/3276954.3276956
https://doi.org/10.1145/3276954.3276956
https://doi.org/10.1145/3276954.3276956

Onward! ’18, November 7-8, 2018, Boston, MA, USA

requirements from the non-functional requirements,
and allows these to vary independent of each other.
The same back-end can serve different front-ends, e.g.,
lists, trees, matrices, etc. The same front-end can use
different back-ends, e.g., array-based, dense, sparse, etc.
We describe this approach in Sec. 2.

2. We define a simple language for expressing a collec-
tion’s logical representation, from which a compiler can
generate a cursor (Sec. 2.3) that translates operations on
the logical representation (in the front-end, Sec. 2.2) to
the physical representation (on the back-end, Sec. 2.4).

3. We present a prototype implementation of our ideas
in Java, including several front-ends and back-ends,
without needing to extend the Java language, or requir-
ing extra compilation steps other than using Java’s an-
notation processing. This implementation is described
in Sec. 3.

4. We evaluate our ideas qualitatively in Sec. 4.1 through
the implementation of several front-ends (that imple-
ment existing Java abstract collection interfaces like
List and HashMap) and several back-ends. In particular,
we show the low complexity of code in Cb front-ends.

5. We evaluate our ideas quantitatively in Sec. 4.2 and
Sec. 4.3 through a performance comparison between
combination of front-ends and back-ends with concrete
counterparts in JDK 1.8. In particular, we demonstrate
that the performance of Cb collections can be close to
the Java collections, which have been developed over
many years. We also show that in the performance can
be tuned to greatly improve performance of specific
use cases, like sparse matrix multiplication.

2 Cb in a Nutshell

In traditional data structure implementation, a collection’s
operations and physical representation — and hence perform-
ance considerations — are conflated. Cb untangles these as-
pects by letting the programmer express the behaviour in
terms of operations on a logical representation of memory,
using a cursor, which are translated into operations on the
physical representation.

For a library implementer, Cb shifts the problem of provid-
ing a versatile set of collections to providing a versatile set
of front-ends that target specific functional requirements
and a set of back-ends that target specific non-functional
requirements, which can then be combined for a multitude
of different scenarios. Thus, a library implementer might
provide back-ends that trade memory for performance, or
the other way around. The library implementer could rely
on traditional collections to implement back-ends, but since
back-ends have a very limited interface, implementing back-
ends from scratch is significantly simpler than implementing
collections with rich interfaces.

58

S. Brandauer, E. Castegren, and T. Wrigstad

For an application programmer, using Cb libraries is in-
distinguishable from traditional libraries, except when the
existing set of libraries is not enough. If additional function-
ality is sought, she can develop new front-ends that provide
additional user-facing operations while relying on the exist-
ing back-ends for efficient storage. If existing back-ends do
not meet performance requirements, she can implement a
new specialised back-end and use it with the existing front-
ends, knowing that the latter are operationally unaffected
(but hopefully perform better).

Additionally, the clear separation between front-end and
back-end lowers the barrier for performance optimisations
such as changing the back-end of a collection at run-time
based on profiling data. A modern language built with Cb
might easily support this as part of a JIT ing infrastructure.

2.1 Design Overview

This section describes the design of Cb. A Cb collection con-
sists of three components:

1. a front-end that implements some abstract interface,
such as a list, tree or matrix;

2. a back-end that implements how the memory that front-
ends require will be physically stored in memory—for
instance, as an array, a tree, or a sparse matrix; and

3. a cursor that connects the front-end with the back-end
without tying the implementation of either to the other.
This is key to freely combining any front-end with any
back-end.

Cb collections are restricted to collections whose spines
can be described as trees. This guarantees the existance of a
unique path to every element in the collection. The interface
between the front-end and back-end is expressed in terms
of such paths. Back-ends present data as trees to the front-
end, but may store the data in a different form. Changing
how elements are stored in a collection without touching its
front-end is a core contribution of this work.

For concreteness, consider the two collections in Fig. 1. To
the left is a list represented as a 1-ary tree where each node
holds an element. To the right, a matrix is represented as a
2-ary tree whose right branch holds a row and whose left
branch holds the remaining columns of the matrix.

Because of the imposed tree shape constraint, the path from
the root of the outermost tree to any element in a collection
is unique. If, in the list, we name each recursive edge in the
tree next and the edge leading to the payload elem, then, to
get to the value 3, the path is next.elem. In the matrix, if we
call each recursive edge leading to a new row row, each edge
traversing further into a row col, and each edge leading to a
number elem, the path row.col.col.elem takes us to the value 5.

Logically, a Cb back-end is a map from paths to storage
locations which may or may not hold a value. To access the

Cb: A New Modular Approach to Implementing ...

T %
%[”J% S T—: elem
v vy

Figure 1. A list and a matrix represented as trees. The rep-
resentation of these is an implementation detail with a wide
range of choices. Cb front-ends are implemented in terms of
a logical representation which may be mapped to different
physical representations, c.f., Fig. 4.

element at row 1, column 2 in the matrix in Fig. 1, the front-
end would ask for the datum at row.col.col.elem, which ab-
stractly describes how to move through the matrix to obtain
the requested element.

Because each path is unique and enumerable, an imple-
mentation can represent each path by an integer’. The proto-
type implementation in this paper takes this approach. This
compact representation allows efficient implementation of
the back-ends, and maps directly to indices of certain back-
ends. For example, the path row.col.col.elem is (regardless of
the back-end’s implementation) mapped to 5, which would
be the expected index if the back-end was implemented as
one big array. How a path maps to an index in the general
case is specified in Sec. 2.3.

Having given a high-level idea of what Cb is about, we
are now ready to go into details on the three ingredients —
front-ends, cursors, and back-ends.

2.2 Front-Ends: A Collection’s Operations

Front-ends express their operations in terms of the abstract
paths introduced in the previous section. Importantly, by
using abstract paths, front-ends do not specify how the internal
representation will be actually layed out in memory; layout
is the job of the back-end. What abstract paths are legal for
a front-end is controlled by a Cb expression, which can be
thought of as a small grammar for generating valid paths,
abstract locations where data may be stored.

Tab. 1 shows the syntax of Cb expressions, along with a
few examples and their interpretations. Cb expressions come

10ther options for expressing the interface between front-ends and back-
ends exist. Sec. 6 describes cases where using integers has disadvantages,
and how to make back-ends that overcome these disadvantages.

59

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Table 1. (Left) Cb syntax. S, $1, S, . . . denote step names, e.g.,
next, left. (Right) Examples.

Cu= (Cb expression.)
| x(S)—> 8 Repeat S unboundedly, then S’.
| *N(S) — S’ Repeat S upto N times, then S’.
| I|(A1, ..., Apn) Pick one alternative in {Aq, ..., Ap}.

Cb Expression

*(next) — elem

*7(next) — elem

* (|| (left, right)) — elem
*(*x7(child) — pick) — elem
*3(row) —*3(col) — elem

Meaning

List

List, length < 7.
Binary tree.
7-ary tree.

3x3 matrix.

in three forms: unbounded repetitionsx(...) — ..., bounded
repetitions * N(...) — ..., and disjunctions || (...,...).
Cb expressions serve two important purposes. First, they let
a programmer define and capture the abstract representation
of the collection that she will rely on to implement the col-
lection’s behaviour. Second, they allow straightforward code
generation of cursors, i.e., the glue code that lets front-ends
and back-ends communicate.

A partial implementation of a list collection, Sequence, is
found in Fig. 2. As it relies heavily on cursors, it makes sense
to first look at it briefly and then return to it after Sec. 2.3.

2.3 Cursors: The Interface between Front-Ends and
Back-Ends

Consider a binary tree data structure, described by the expres-
sion x(|| (left, right)) — elem. A back-end must implement
how to map all paths (e.g. left.left.elem, or right.elem)
matching the expression to data, by providing a way to store
and retrieve data at a path. As a back-end can provide stor-
age for any front-end, it cannot assume knowledge of the
front-end’s Cb expression. To break the seeming dependency
that back-ends have on the Cb expression they are hosting
data for, we use a concept that we call cursors. A cursor can
be thought of as a feature-rich iterator object synthesised to
work with a particular abstract representation.

A front-end developer manipulates a cursor to construct
paths: she instantiates a cursor object, which is initialised to
refer to the root of the data structure, and then calls “step
methods” on the cursor instance to iterate through the data
structure. Step methods advance a cursor according to the
Cb expression by following a “field” (one can think of calling
a step method as appending to a path). For example, a cursor
for the expression *(next) — elem has a step method next()
that advances the cursor by one step each time it is called.
When the cursor reaches a position of interest, the program-
mer can ask the back-end to store or to retrieve data stored
at that location. Fig. 2 shows examples of this in the add()
method, where the set() operation is used directly on the
back-end, without committing to a particular representation

Onward! ’18, November 7-8, 2018, Boston, MA, USA

@Cflat("x(next)->elem") // Generates the SequenceCursor
class Sequence<T> implements java.util.List {
private Backend<T> data; // The back—end (F)
// The cursor abstracting the back—end:
SequenceCursor tail = new SequenceCursor();
boolean add(T obj) {
// Store elem at the current cursor location:
data.set(this.tail.elem(), obj);
// Position cursor after new element:
tail.next();
return true; //partofjava.util.List interface
}
boolean contains(Object obj) {
// return whether any element equals obj
return data.nonNullIndices().findAny((T)obj) != -1;
}
3

Figure 2. Programming against a logical representation: Se-
quence (important methods).

(c.f, Sec. 2.4). Sometimes, multiple or temporary cursors are
useful, e.g., when copying elements between data structures.

An implementation of Cb is free to choose how to map
paths to back-end locations—our implementation follows the
convention that disjunctions map each of their inner subex-
pressions to consecutive integer ranges: || (FALSE,TRUE) would
map FALSE to 0, TRUE to 1; || (x7(NEXT) — GET,NONE) would
map the 7 choices in the left subexpression to the range [0, 6],
and NONE to 7. Repetitions (using the *» operator) use an en-
coding similar to an array-based implementation of a binary
heap: no traversals of the repeating subexpression map to 0,
one traversal maps to the next N locations, two traversals to
the next N2 locations, etc. Using integers to represent paths
is useful because it makes back-ends have an interface that
is easily implemented and optimised.

The cursor class also has convenience methods that move
the cursor back one step. For instance, if next() advances
the cursor by one step, next_back() will move it one step
back. For trees, left_back() will move the cursor back to the
parent node.

Even though a collection is abstractly described as a tree,
movement or iteration over its elements is not constrained by
the tree-shape. For example, column-wise iteration is possible
in a matrix, just as one would expect. The performance of such
operations depends on the choice of back-end. As an example
of a step method, consider the left() method of a binary
tree cursor (from the expression x(|| (Left, right)) — elem).
Fig. 3 shows part of the code generated automatically in our
Cb prototype. (Returning this permits call chaining.)

For cases where a Cb expression contains unbounded subex-
pressions, integer indexing is no longer sufficient. Consider
the expression *(row) — *(col) — elem. As each row has

60

S. Brandauer, E. Castegren, and T. Wrigstad

public BinTreeCursor left() {
this.pos = this.pos * 2 + 1;
return this;

3

Figure 3. A step method that advances a binary tree cursor
to its left child.

a potentially infinite number of values, there is no specific
integer that would denote a node in any row except the first.
That is to say, that the paths col... col all would have a
defined index; row.col ... col however would not. An imple-
mentation of Cb has several options to handle expressions
with unbounded subexpressions?. Our implementation cur-
rently picks the simplest one and refuses to accept expressions
with unbounded subexpressions. Instead, the front-end de-
veloper can use two simpler cursors (equal in shape to the
sequence’s cursor) together with a back-end that contains
back-ends, where each inner back-end represents a row. This
corresponds to the view of the matrix as an array containing
arrays (the type in Java would be T[1[] for some element type
T). While this might seem overly limiting, and while investig-
ating other options has merit, nested back-ends (c.f,, Sec. 2.4.2)
unlock useful possibilities for back-end implementers.

2.4 Back-Ends: Controlling the Storage of Elements

Back-ends are data structures that map paths to locations
storing values. Depending on how the data field is instan-
tiated on Line § in Fig. 2, the sequence will perform storage
differently, but its behaviour is invariant. Looking at Fig. 1,
one might think that a linked data structure is not a good
representation for a matrix, as accessing a value in the matrix
would have the complexity O(rows + columns). Luckily, back-
ends are at liberty to implement the physical storage of data
in any way they want, regardless of the front-end’s logical
representation (the dashed-boxes in Fig. 1). For instance, the
matrix could be stored as a single array, or an array of ar-
rays. It could also be represented as a sparse matrix that only

2Option 1: Projecting the expression at runtime. An implementation can
require a maximum value for the number of columns at runtime. This means
that the implementation views the expression as really defining a family
of Cb expressions, with a limited number of columns: VC € N, *(row) —
*C(col) — elem, where C is picked appropriately by the data structure’s
front end at runtime. The integer that the path row. col.col.elem would
map to with C columns picked at runtime would be 1 * C + 2 - skipping
all the C indices reserved for the first row and picking the col.col child
of the second row. Option 2: Using multi-dimensional coordinates. An imple-
mentation can also represent a cursor in such a data structure as a tuple
of integers that denote the consecutive children that were picked at each
node; the expression row.col.col.elem would be represented as the
multi-dimensional index [1, 2] (meaning 1 X row, 2 X col). Back-ends could
use integer arrays as position arguments, or the tuple could be converted
to a single integer using a reversible N? <> N mapping. Arrays would have
extra allocation costs and mappings would not work equally well for all data
structures, which is why we do not explore this option here.

Cb: A New Modular Approach to Implementing ...

PAS,
r Oo
<>K3 \@4
27

(a) An example binary tree.
Data are annotated with
their index.

o 1 2 3 4 5 6 7 8

(null)

ﬁ@:ﬁ@éi& i 7%?

(null) (null)

(b) The tree in (a) using an array back-end. Dashed lines depict the
logical connections in the original example.

nullnull

N
1759

I \

oA 1L.OHTO

(c) The tree in (a) using a hash map back-end. This is more space-
efficient for sparse data sets than the array back-end.

— 0 1 2 3 4 7

N

(d) The tree in (a) using a sorted-array back-end. This is even more
space efficient than a map, has excellent iteration performance, but
costly inserts.

Figure 4. A collection’s front-end can be connected to differ-
ent representations, for performance.

stores the non-empty cells. If none of the existing back-ends
work well for an algorithm, a user can implement her own
back-end - and reuse it with any front-end.

Back-ends must map locations to values in a consistent
fashion: storing a value at the location corresponding to a
path and subsequently accessing the same location should
always give the same result. Below, we discuss different ways
in which one might consider implementing back-ends.

61

Onward! ’18, November 7-8, 2018, Boston, MA, USA

2.4.1 Flat Back-Ends

Flat back-ends are back-ends that store application data, as
opposed to nested back-ends that store back-ends (Sec. 2.4.2).
This section gives a brief overview of important back-ends,
but we introduce more in the evaluation.

Dense/Sparse Back-Ends The memory requirement of a
dense back-end grows with the range of the input. For ex-
ample, an array-based back-end (see Fig. 4b) maps paths to
consecutive storage locations, allowing paths to be used dir-
ectly as array indices. This gives fast random access, fast
iteration over values in a back-end, and effective utilisation
of cache-locality and hardware prefetching.

A downside of dense back-ends generally, and array-based
back-ends specifically, is that even unused array cells use
memory. Consider the binary tree in Fig. 4b: the tree is mapped
onto the array, but values that are not present in the tree still
require memory to store null references. This characteristic
can make an array-based back-end a bad fit for sparse collec-
tions where only few values are defined with large gaps in
between. An example of such a sparse data structure is the
hash-map implementation in Sec. 4.1.2.

In contrast, the memory requirement of a sparse back-end
depends on the number of non-null values stored in it, not
their location. For example, a hash map-based back-end (that
stores the values as values of a hash map that uses the loca-
tions as keys®, see Fig. 4c), sorted array backend (that stores
the values in an array in index order and the values’ locations
in a parallel integer array, see Fig. 4d), or trie-based backend
(not drawn, but it divides the key into 4 consecutive bytes and
uses those bytes as indices into a lazily initialised 256-ary tree
for fast random access, but relatively high upfront memory
requirements) keep track of storage locations in use, making
them consume memory proportional only to the number of
values stored.

Mutable/Immutable Back-Ends Immutable back-ends
never change their data; instead, modifying operations return
updated versions of the back-end. Immutable back-ends sup-
port efficient implementation of copying the entire back-end:
the identity function. For example, if data is frequently copied
across threads to avoid data races, using an immutable back-
end may be advantageous. In Cb, a data structure developer
can easily implement collections that can be switched from
mutable to immutable by their user by simply employing an
immutable back-end. There are several different strategies for
implementing immutable versions of data structures [Okasaki
1996]. The immutable data structure that we use to imple-
ment an immutable back-end in our prototype is a Compressed
Hash-Array Mapped Prefix Tree (CHAMP), [Steindorfer and

3In Java such a hash map with integer keys can be faster than a hash map
with a generic key. If a hash map in Java has a generic type parameter for the
key type, this implies that the keys are represented as references to objects of
the Integer class, rather than compact primitive int values.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Vinju 2015]. This data structure is a map, and is therefore
well-suited for sparse data.

2.4.2 Nested Back-Ends

A nested back-end has elements which are also back-ends.
They may give more freedom to implement useful data lay-
outs than using the back-ends outlined above.

To illustrate, consider a R X C matrix: it could be imple-
mented by using a flat back-end as storage, and — assuming
row major order (WLOG) - the front-end would map the
first row’s data to the indices [0..R), the second row’s data
to the indices [R..2 - R), etc. But at this point, the front-end
would, once again, hard-code the data layout and the front-
end would now forever be forced to represent its data in
row-major order. This problem can be avoided by nesting
back-ends. Using nested back-ends, a user can implement a
matrix front-end that looks as if it was a row-major matrix,
yet still supply it with a back-end that will in fact implement a
physical column-major layout (or more complicated layouts,
like sparse matrices).

All the flat back-ends (like the ones presented up to this
point) can be used as nested back-ends, where there is one
outer back-end containing back-ends representing rows of
data. Examples would be an array-back-end containing array-
back-ends for dense data (Fig. 5a), or a map-based back-end
containing array-back-ends as an optimisation for use cases
where most rows are empty. Even though flat back-ends can
be combined to form nested back-ends, there can be nested
back-ends that do not represent their internal rows as separate,
disjoint, back-ends.

As a trivial example, consider a n X m matrix that is mapped
onto a single large array of size n X m (Fig. 5b). This layout
could not be produced by using a flat back-end that con-
tains other flat back-ends, as this would lead to an array that
contains references to disjoint arrays. Such a back-end could,
however, be still implemented by implementing a nested back-
end directly, that for each row access returns a view of the
inner large array that implements all operations of a back-
end. Each view would store the row index r it represents, and
accessing a location ¢ of a row would then access the location
r - m+ c in the large array.

One non-trivial example are certain sparse matrix data
structures (we implement the so-called compressed sparse row
format of a sparse matrix [Bulug et al. 2009]) that can serve
as a nested back-end using views. Accessing any value in this
row view will, in fact, access the sparse matrix representa-
tion. Fig. 5¢ depicts this idea: the nested back-end contains a
reference to a sparse matrix. Rows are, again, just views onto
parts of the data structure.

Nested back-ends have the advantage that layout optimisations

can be “global”: empty columns in our sparse matrix based
nested storage consume no memory at all, and empty rows
consume very little. They can also be helpful to avoid pointer
indirections, as Fig. 5 shows. Yet, they still are compatible with

62

S. Brandauer, E. Castegren, and T. Wrigstad

code that uses flat storages. This is important: the sequence
data structure we implement in Sec. 4.1.1 can, for instance,
be used to turn a row view of a matrix into a list, permitting
a front-end developer to operate on a nested back-end’s rows
using algorithms like java.util.Collections.sort, that are
defined with the list interface. For example, this lets a front-
end developer sort rows of any data structure by composing
code, rather than writing her own sort implementation.

This concludes our high-level introduction to Cb: a separa-
tion of collection data structures into two components glued
together by a third. Programmers use Cb expressions to cap-
ture the logical representation of data in a collection, and
program against this logical structure in the front-end. The
same expressions are used to generate glue code to connect
the front-end to a back-end. Back-ends can be implemen-
ted freely, as long as they support consistent mapping from
paths to values. For many logical strucutures, it is possible to
represent paths as integers, which facilitates efficient imple-
mentation. Next, we describe our prototype implementation
that we use to evaluate our ideas in practice.

3 Prototype Implementation

We implement Cb on top of Java, together with a selection of
back-ends. Our implementation of Cb is using Java’s annota-
tion framework. Specifically, we do not rely on a modified Java
compiler, rather just use tools that are available in a standard
Java environment. We embed Cb expressions in Java code
through Java annotations. Our Cb prototype consists of two
major parts:

1. An annotation processor that processes Cb expressions
at compile time and turns them into “Cursor classes”,
Java classes that let a user express paths in the Cb lan-
guage, see Sec. 3.1.

2. A library of back-end implementations. These imple-
mentations implement a common interface that provides
ways to set and access data at a cursor-defined location,
as well as iterate over data, see Sec. 3.3.

3.1 Cb Expressions and The Java Annotation
Processor

A Java annotation processor is a user-defined class that picks
up annotations as code is being compiled. The annotation
processor can then generate code that will be available dur-
ing the compilation phase of a Java project. For Cb, a user
can annotate a Java class with an annotation to describe the
class’ logical shape, it’s cursor logic. For example, a front-
end for a hash map contains consecutive key/value tuples.
Its shape is described as @Cflat("x(tuple)->| (key,value)")
class MapFlat { ... }.

Cursor Classes and Iteration Upon compiling this pro-
gram, the Java compiler will hand the Cb expression to our
annotation processor, which in turn generates a cursor class.

Cb: A New Modular Approach to Implementing ...

nested back-end

Onward! ’18, November 7-8, 2018, Boston, MA, USA

J

row views

O—

I;I nested back-end (6x6) D&tc@ back-end

D\ .
D"/?

row views

(a) A nested back-end, constructed from (b) A hypothetical back-end that organises (c) A nested back-end that uses a sparse
flat back-ends (array back-ends, in this its rows in consecutive ranges of an array. matrix representation.

case).

Figure 5. A nested back-end may return row-views that can, in concert, operate on a large, shared data structure.

Table 2.) Memory-inefficient. 2 Explained in Sec. 2.4.2. %)
Cannot use nested back-end here.

Front-End Compatibility
Back-End Seq. | Map Matrix?)
HashMap
Immutable
Indexed
SortedArray
Trie

Array
Reverse
CSR?) (nested)

SENENENEN

NN NENENENEN

SN N NN

The cursor class can then be used to navigate through the
logical view of the front-end:

assert new MapFlatCursor().key() == 0;
int val3 = new MapFlatCursor()
.tuple()
.tuple()
.tuple().value();
assert val3 == 3%x2 + 1;

Additionally, the cursor supports random access with con-
stant time complexity. The following code has the same effect
as calling tuple N times, but runs in constant time:

assert new MapFlatCursor().tuple(3).value() == val3;

3.2 Collection of Front-Ends

We provide three basic front-ends: a sequence, a hash map,
and a matrix. All of these use back-ends to store their data.

The Sequence is the simplest collection in our case study,
implementing an ordered collection of elements. The se-
quence implements Java’s java.util.List interface, meaning
that it can be used as a drop-in replacement for Java’s lists.

We implement the java.util.Map interface in a class called
MapFlat that uses a back-end to store its data. The logical
representation of the map is a sequence of key/value pairs,
expressed by the Cb expression x(hash) —|| (key, value).Ifa
key/value pair k/v where k.hashCode() = h is to be inserted,
the map will attempt to store k at the location hashxh.key

Table 3. Performance Characteristics of the used back-ends.

Back-End Performance Characteristics

HashMap Sparse, small even for few data

Immutable Cheap copies, sparse

Indexed Fast way to find position by hash code
SortedArray | Sparse array with efficient in-order iteration
Trie Fast access and insert, sparse

Array Fast access and insert, dense

Reverse Like ArrayBackend, but reverse the data order
CSR?) (nested) | Uses little memory, fast row-major iteration

and v at the location hashxh.value (the shorthand hashxh
denotes h repetitions of hash). If this location is not empty,
but the key that is already inserted does not equal k, there is a
hash collision. The map resolves collisions by linear probing:
the pair k/v will be inserted at the next location that does not
yet contain a key/value pair. When accessing a value by key,
the algorithm has to be aware of this particular strategy and
potentially iterate in a similar fashion to reach the value.

The Matrix class uses a nested back-end to store its two-
dimensional data.

3.3 Collection of Back-Ends

We provide a number of back-ends, overviewed in Tab. 2 and
Tab. 3. As expected, all possible combinations of back-ends
and front-ends are legal, but not all are memory-efficent.

There are only five operations that every back-end needs
to implement. They are:

1. T get(final int i): access a value at location i.

2. Backend<T> set(final int i, final T x): seta value
at location i.

3. Backend<T> clearAll(): delete all values.

4. int maxIdxOverapproximation(): return an over-
approximation for the latest position that does con-
tain a non-null value.

5. Backend<T> emptyCopy(): return a similar back-end
with no values contained (but apply internal size hints,
etc, where applicable).

Because many algorithms can be expressed by only relying
on these five operations, back-ends come with a number of
extra methods (like range-updates, and -queries, iterators,

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Table 4. Data structures used in the evaluation. The matrix
does not demonstrate C3 as a full-featured matrix library
would be out of scope for the evaluation.

Name Cb Expression Claims Sec.

Sequence *(next) — elem 1-4 | Sec. 4.1.1
Hash Map | *(hash) —|| (key, value) | 1-4 | Sec.4.1.2
2D Matrix Nested Sequences 1,2,4 | Sec.4.1.3

etc.) that have a default implementation. That means that
an implementer of a new back-end does not need to imple-
ment these herself. However, it often makes sense to provide
custom implementations, where these can outperform the
defaults. Other methods provided by back-ends and used in
e.g., the implementation of the Matrix class are explained in
Sec. 4.1.1.

Switching Representations All methods that modify a
back-end have return type Back-end<T>. This makes it easy
for a back-end to return a different back-end object on modi-
fications. This may be a back-end of a different kind (e.g.,
moving from sparse to dense at a certain threshold) but not
necessarily, e.g., an immutable back-end will return a copy of
itself with the requested change.

4 FEvaluation

We evaluate Cb through a prototype implementation in Java.
We use it to build a number of data structures. Using these,
we demonstrate the following claims:

C1. Cb data structures can have low overhead compared
to Java implementations.

C2. Cb collection implementations are straightforward due
to abstracting away layout concerns.

C3. Cb cursors are expressive enough to implement full-
featured collections.

C4. Cb data structures can be tuned to specific use cases
by using different storage implementations, offering both
size-over-performance and performance-over-size
tradeoffs.

We demonstrate C1 by comparing the algorithms imple-
mented in the Cb versions with the ones in Java’s standard
library. Although subjective, we demonstrate C2 by listing
core methods of our implementation and comparing to Java
implementations. We demonstrate C3 by implementing two
data structures, lists and hash maps, with the same (large)
interface as their corresponding JDK implementation. We
demonstrate C4 by showing how different benchmarks be-
nefit from picking the right back-end implementation — and
how our data structures can, in these cases, outperform the
Java collections. The data structures that we implement are
listed in Tab. 4.

64

S. Brandauer, E. Castegren, and T. Wrigstad

4.1 Expressiveness and Ease of Use/Complexity

To our knowledge, Cb is sufficiently expressive to implement
tree shaped data structures. Using Cb front-ends, more com-
plicated data structures like graphs can be implemented for
instance by using the standard adjacency list or adjacency
matrix representations.

In this section, we provide qualitative evidence for C2, that
using our Cb implementation can make implementation of
data structures easier. This claim’s correctness is hard to
prove, generally, so we show how the implementations we
implement differ in crucial parts from the implementations in
Java’s standard library. Java’s standard library is highly optim-
ised, often ignoring standard software engineering practise
by trading code readability for performance—a reader should
keep this in mind when comparing Cb implementations with
Java implementations.

In this section, we also provide evidence for C3, that using
Cb permits implementation of full-featured collections, mean-
ing in our Java-context: collections that implement complete
interfaces from Java’s standard library.

Cb front-ends in our implementation rely on back-ends
that resemble arrays that grow dynamically with the data
stored into them (additional non-array-like back-ends would
make sense for some use cases, see Sec. 6).

4.1.1 Case Study: Sequence

An excerpt of the class Sequence, our list implementation,
was shown in Fig. 2. Java lists present their contents with a
sequential interface with both the ability to access data by
index, as well as via iterators, etc. Using the Cb expression
*(next) — elem, the sequence is just a thin wrapper on top
of a back-end.

The sequence starts by declaring its simple cursor logic and
internal data that it contains.* To append a value at the back
of the sequence (an operation we benchmark in Sec. 4.2.1),
the data is inserted into the backend using the tail cursor,
and the cursor is advanced one step. For comparison, consider
the ArrayList.add method from Java 8 (included in Fig. 6 for
convenience), where add looks very similar, but also needs to
call code to re-grow the internal data in case that’s needed to
host the new datum. This turns out to be much more complex
than the primary task of the method, i.e.,, adding an element.
In the Cb implementation, this is handled automatically by
the back-end, making the implementation of add simpler.

Therefore, even a very simple data structure like a sequence
can be simplified, by relying on our implementation of Cb.
The full class is 136 SLOC and extends the abstract class List
(28 methods).

4We make slight changes to all code presented in the paper to fit the page
layout, like removing public/private access modifiers, shortening method
names, etc.

Cb: A New Modular Approach to Implementing ...

public boolean add(T e) {
ensureCapInternal(size + 1);
data[size++] = e;
return true;

3

void ensureCapInternal(int minCap) {
if (data == EMPTY_DATA) {
minCap =
Math.max (DEFAULT_CAPACITY,
minCap);
}
ensureExplicitCap(minCap);

}

void ensureExplicitCap(int minCap) {
// overflow—conscious code
if (minCap - data.length > @) {
grow(minCap);
}
3

void grow(int minCap) {
// overflow—conscious code
int oldCap = data.length;
int newCap = oldCap
+ (oldCap >> 1);
if (newCap - minCap < @) {
newCap = minCap;
}
if (newCap - MAX_ARRAY_SIZE > 0) {
newCap = hugeCap(minCap);
3
// minCap is usually close to
// size, so this is a win:
data = Arrays.copyOf(data, newCap);
3

Figure 6. The add implementation of java.util.List needs
to grow the internal data array. The Cb implementation in
Fig. 2 does not need to concern itself with that complexity.

4.1.2 Case Study: Hash Map

Our implementation is very concise: MapFlat: :put, perhaps
the most complex method, is 19 lines of code long, and calls
a single helper method that is one line long. For reference,
HashMap.put is 169 SLOC (39 SLOC for its implementation
and a further 130 SLOC for the used helper methods®). Note
that there are at least two underlying reasons for this differ-
ence: first, java.util.Hash-Map manages its layout internally
and needs extra code to do that (it uses an array of bins to
store its data) while this complexity is abstracted away when

’HashMap.resize: 71 SLOC, HashMap.treeifyBin:
HashMap.putTreeVal: 41 SLOC.

18 SLOC,

65

Onward! ’18, November 7-8, 2018, Boston, MA, USA

private static double dot(
final Backend<Double> a,
final Backend<Double> b) {
final MutableDouble ret = new MutableDouble(0.0);
b.joinInner(a, (y, x) —> ret.x += x*y);
return ret.x;

public Matrix multiply(Matrix b) {
if (this.cols != b.rows) {
throw new ...;
3
Matrix res =
this.rows,
b.cols,
(NestedBackend<Double>)backend.emptyCopy());
this.backend.foreachNonNull (i —>
b.backend. foreachColNonNull(j -> {

new Matrix(

res.put(i,
J.'
dot(getRow(i), b.getCol(j)));
)
return res;

Figure 7. A Matrix implementation in Cb that uses itera-
tion methods on back-ends. Back-ends can specialise these
methods for better performance.

using Cb back-ends. Second, java.util.HashMap is highly op-
timised, it would likely require fewer lines of code if it was
less optimised®. Consequently, we do not claim that this dif-
ference in length is purely due to using Cb, just that the Cb
implementation is concise. The full class is 87 SLOC and ex-
tends AbstractMap (25 methods). Note that both the map and
the sequence are able to make use of inheritance.

4.1.3 Case Study: Matrix

The implementations in Java’s standard library are not ne-
cessarily representative of the code most programmers write.
As these classes are relied on by many users, they are heavily
optimised and do not necessarily follow established coding
practice. To compare Cb to less optimised Java code, we im-
plement two simple matrix classes which support matrix
multiplication: one using Cb and one written in pure Java.
We compare these two implementations here, and evaluate
their multiplication performance in Sec. 4.3.

The Cb Matrix represents a matrix of double values using a
nested back-end, which contains rows of matrix data, making
the front-end view the data in a row-major fashion (this does
not imply that data must have this layout, as explained later

®For instance, java.util.HashMap will turn bins that contain many val-
ues into trees after a certain size, to mitigate performance problems from
bad hash code implementations.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

in the performance evaluation). We implement the standard
matrix multiplication algorithm that traditionally has the
asymptotic complexity O(N?) for Nx N matrix multiplication.
In Cb, however, the complexity of that algorithm depends on
the implementation of the back-end used to store the matrix’
data.

The algorithm for multiplication, see Fig. 7, is structur-
ally similar to what a programmer in traditional Java would
write, but essentially replaces for loops with iteration meth-
ods on back-ends. The key feature here is that operations like
joinInner, foreachNonNull, and foreachColNonNull can be
overridden by the back-end implementations. The joinInner
operation takes two back-ends, and executes an inner join (like
in a relational data base) by calling the passed anonymous
function for each pair of non-null values x, y that are stored at
the same location in the two back-ends. The foreachNonNull
and foreachColNonNull operations call the passed anonym-
ous function with each row- or column-index of rows or
columns that store non-null data.

The dot() operation relies on joinInner(). If this method
is implemented by a back-end to have a complexity in the or-
der of the number non-null values, rather than the number of
rows/columns of the matrix, multiplication can be much faster.
Consider calling joinInner() to join two ArrayBackends,
each containing V values distributed over N slots, where
V < N: the algorithm has to go through both back-ends
to check whether they contain a non-null value at a given
index and, if so, call the passed anonymous function, using an
O(N) algorithm. In comparison, two SortedArrayBackends
(see Fig. 4d) can be joined much more efficiently, as the join
algorithm just has to compare the already ordered position
arrays of both back-ends (see Sec. 2.4.1 and Fig. 4d). A pro-
grammer of a matrix needs no knowledge of any of this, as
a user of the matrix can try which representation performs
best for her specific use case.

4.2 Performance Comparison with java.util
Collections

We show that Cb data structures can get near Java’s stand-
ard library (but are slower in most cases) for common op-
erations, when provided the right back-end. We compare
the classes java.util.ArraylList, java.util.LinkedList and
java.util.HashMap to the combinations in Tab. 2). These are
not strawman collections: Java’s Map interface, and the HashMap
were added to Java 1.2, in 1998 and have been updated, tuned
and optimised for ~20 years, while our backends have not
been optimised as much.

We use micro benchmarks running the most important
methods. The back-end that works well for the list in most
cases is the ArrayBackend, which gives the our implement-
ation performance characteristics very close to java.util.
ArraylList. For the hash map, the back-end called TrieBackend
works best in most cases. This back-end splits the integer
position into its four consecutive bytes and uses those as

66

S. Brandauer, E. Castegren, and T. Wrigstad

/i
|
|
|
|
|
/
|
I
i
]

Array
- —%— Inmutable
Indexed
Reverse
—¥— SortedArray
2, —¥— Trie
—4— HashMap
10' = —%- j.u.ArrayList
—¥- j.u.LinkedList

10*

Throughput [ops/sec]

100-. . -) .
10' 10? 10° 10* 10°
N

(a) Inserting at the front of a list, see Sec. 4.2.1.

Array
- —$— Immutable
Indexed
Reverse
—¥— SortedArray
2. —¥— Trie
—4— HashMap
10' = —%- j.u.ArrayList
—¥- j.u.LinkedList

10*

Throughput [ops/sec]

109-0 . N . "
10! 10? 10° 10* 10°
N

(b) Appending at the end of a list, see Sec. 4.2.1.

Figure 8. Inserting data at the front or back of a list. At the
back, our implementation is comparable to java’s collections,
while at the front, none of our back-ends can reach the linked
list (a back-end encapsulating a linked list would likely work
well here).

indices into a 256-ary tree. The back-end is relatively space-
inefficient when it contains only few elements but works
better the more data is stored.

4.2.1 List Performance

We compare the performance of our Sequence and Java’s
linked- and array-list implementations by benchmarking the
time it takes to add a value to the list (at the front and at the
back). We also measure the time it takes to access a list at a
random location.

Add at the front of a list. This benchmark, whose results
are shown in Fig. 8a, inserts a single value at the beginning of
a list of length N, increasing its length by one. This use case
is a pathological use of java.util.ArrayList, and most of our
back-ends, as all the data in the list has to be moved to the
right by one. Java’s linked list (java.util.LinkedList) stands
out: inserting at the beginning of the linked list has constant
time complexity, as the list only needs to allocate a new node
and link it into the list. ReverseBackend is a back-end that
contains another back-end (an ArrayBackend in this case)
with reversed order. This means that inserting at the beginning
of a Sequence backed by a ReverseBackend is a constant time

Cb: A New Modular Approach to Implementing ...

R Array
—¢— Immutable
Indexed
—¥— SortedArray
102. —¥— Trie
—&— HashMap
10' = —%- j.u.ArrayList
—¥- j.u.LinkedList

Throughput [ops/sec]

10" 10 10° 10* 10°
N

(a) Checking whether a non-existing value is in a list, see Sec. 4.3.1.

103 < —$— Immutable
—¥— SortedArray

102 - —¥— Trie
—&— HashMap

10 < Indexed
~- j.u.HashMap

Throughput [ops/sec]

109-00 I N . "
10! 102 10° 10* 10°
N

(b) Checking whether a non-existing value is in a map, see Sec. 4.3.1.

Figure 9. A single back-end, IndexedBackend, can be used
to speed up operations on both the list and the map. This
back-end maintains an index of the values it stores, making
it cheap to find their location.

operation — but appending to the list would instead be expens-
ive (c.f. Fig. 8b). We think that a backend based on a linked
list would perform comparable (but with some overhead) to
java.util.LinkedList but currently don’t have such an im-
plementation. Compared to the java.util.ArrayList, and to
the backend implementations we have, the ReverseBackend
is better or comparable for all tested lengths.

107 -

10 5

o

9 :

I

% 1071

g - .

=10t e Sso

2 : —$— Immutable S~o
: ~

5o 10 + Indexed i

8 B SortedArray

=1 :

—IE 102 = —¥— Trie
: + HashMap

10! = =#%= j.u.ArrayList
: %= j.u.LinkedList
100 -

10! 102 10° 10* 10°

N

Figure 10. Accessing arandom location in a list, see Sec. 4.2.1.

67

Onward! ’18, November 7-8, 2018, Boston, MA, USA

The benchmark in Fig. 8b appends a single value at the end
of a list. Most lists deal well with this use case, as the append
operation has constant time complexity in these cases. The
back-end that stands out negatively is the ReverseBackend,
which needs to shift all the elements back by one to fit the
new element.

Access random location in a list. The benchmark in Fig. 10
measures the the time it takes to access a random value in
a list of length N using the same sequence of locations for
each data structure. Java’s array list wins, with performance
slightly better than our sequence with the ArrayBackend.

4.2.2 Hash Map Performance

We compare the performance of our map to Java’s HashMap
by looking at inserting and accessing data.

Access random existing string key The benchmark in
Fig. 11a accesses a random key in a map containing N key/-
value pairs where the keys are strings. Using our map, to-
gether with the TrieBackend, we are able to reach perform-
ance close to Java’s hash map.

o
2
2
2 10
o

3. —$— Immutable
—¥— SortedArray
102« —¥— Trie
—&— HashMap
10! = Indexed
~@- j.u.HashMap
100-..

10! 10% 10* 10°

N

(a) Accessing a string key in a map data structure, see
Sec. 4.2.2.

—$— Immutable

—¥— SortedArray

—¥— Trie

—4— HashMap
Indexed

~#- j.u.HashMap

Throughput [ops/sec]

102 =

10! =

100 - CoxX
10* 10°

N

10! 10%

(b) Inserting string keys into a map data structure.

Figure 11. Map access and insertion.

Insert non-existing string key The benchmark in Fig. 11b
inserts N key/value pairs into an initially empty map data
structure. The TrieBackend back-end starts out slower than
Java’s hash map, but its performance gradually climbs to
match it for larger values of N. We believe the slow perform-
ance for lower values of N to be due to the TrieBackend
requiring large amounts of memory (it is a 256-ary tree). A

Onward! ’18, November 7-8, 2018, Boston, MA, USA

data structure that might work better would be a mutable
hash-array mapped trie [Bagwell 2001].

4.2.3 Matrix Performance

For the matrix, we use a nested back-end (Sec. 2.4.2). As a
simple experiment, we benchmark the multiplication of dense
(100% of values are defined) matrices, with sizes varying from
10 X 10 to 1000 X 1000 and compare it to a Java-only baseline.
The baseline is simply a matrix that arranges all of its data
in a double[] array in row-major or column-major order (it
uses a boolean field to track whether it is in row- or column
major representation). The multiplication algorithm is the
same, but uses for-loops in an idiomatic way where the Cb
implementation uses iteration methods. When multiplying
dense N X N matrices, the results in Fig. 14a shows that, for
N ranging from 10 to 1000, the Java baseline implementation
performs significantly better than our Cb implementation for
small matrices; for large matrices, the CSR back-end and the
array back-end both catch up, not quite reaching the baseline’s
performance. We believe the difference for small matrices to
be due to pointer-chasing effects (our matrix contains a back-
end which contains more data structures before the actual
data is being reached, while the Java-only matrix contains
only a double[] array). The overhead of these effects, relative
to the amount of work, gets smaller with increasing work.

4.3 Tuning Performance by Changing Physical
Representation

We now show how using different back-ends can yield data
structures that either perform better for a specific operation,
or that require less memory.

4.3.1 Reducing Computation Time

For the sequence and the hash map, we show how using one
single specialised back-end class can speed up operations on
two different data structures. For the matrix, we show how a
specialised back-end speeds up sparse matrix multiplication.

First, we look at the performance of the list’s index0f(. .)
and the map’s containsValue(..) operations, which both
check whether a given value is contained in the collection.
Both of these data structures traditionally implement these
operations with linear complexity — they have to iterate over
all contained data to check for value membership.

With Cb, we can improve these operations using a single
backend class: the IndexedBackend stores its data in a hash
map, but it also maintains a second hash map that maps the
hashes of its values to the value’s locations. This means that
this back-end supports searching the location of a value effi-
ciently.

We initialise a collection with N values and search the in-
dex of a non-existing value using the index0f or containsValue
methods. The Cb collections using the IndexedBackend out-
perform the corresponding Java collections by (roughly) an

68

S. Brandauer, E. Castegren, and T. Wrigstad

order of magnitude for large values of N, as Figs. 9a and 9b
show.

For the matrix, the back-ends we use are the CSRBackend,
as a representative of a nested back-end that does not rep-
resent its internal rows as separate back-ends (sparse, see
Sec. 2.4.2), a nested back-end like in Fig. 5a (constructed from
an ArrayBackend containing ArrayBackend rows), and a
nested back-end constructed from a SortedArrayBackend
containing SortedArrayBackend rows (sparse, a non-nested
sorted array is depicted in Fig. 4d). All the back-ends used
have been specialised manually to store primitive double
values internally, rather than java.lang.Double objects, to
make the comparison to the baseline implementation fair.
Additionally, as all our nested back-ends are row-major by
design, but matrix multiplication works better with a column-
major storage on the right hand side, we added a back-end
TransposedBackend to our framework that wraps a back-
end and translates all accesses to coordinates (i, j) to accesses
on the inner back-end at locations (j, i) and use that wrap-
per in the experiment. This means that we can implement
column-major storage of a matrix wholly at the back-end
level, without the matrix having to implement this feature—
making the Cb matrix somewhat simpler than the baseline
implementation.

For sparse data, our results in Fig. 14b consistently show
our CSR back-end outperforming the Java baseline as well
as the sorted array back-end. This is not surprising—using
the CSR back-end, the algorithm simply has less work to do.
The key takeaway is that a user does neither need to fully
understand the algorithm, nor the back-ends involved, she
merely needs to find a back-end that happens to work well
in practice.

4.3.2 Reducing Memory Usage

Just like we can use the choice of back-end to save compu-
tation time, we can choose a back-end to cut down on the
memory required to store data. This can make Cb front-ends
an acceptable choice where their Java-equivalent wouldn’t
be. For example, Java’s lists are rarely used for sparse data
- Fig. 12 offers explanation why: the memory required per
non-null element is too high.

Fig. 12 shows the memory required to store a list of length
N with various back-ends. Using a back-end that does not
require space for null elements like SortedArrayBackend,
we can reduce the memory cost without modifying the list.
Such lists can be useful to, e.g., store rows in a sparse row-
major matrix.

Sparse lists are relatively simple, hash maps are more com-
plex. Using a sorted array back-end, we can nearly half the
memory compared to Java’s HashMap (c.f. Fig. 13).

4.4 Conclusion of Evaluation

We have provided evidence for the claims presented at the
beginning of this section:

Cb: A New Modular Approach to Implementing ...

Sparse (1%)

Memory usage

60 -

)
80
=
>
9
=
=)
5}

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Sparse (10%)

Array
Indexed
—*— SortedArray
—¥— Trie
—&— HashMap

102 103 10* 10° 100

-<- j.u.ArrayList
== j.u.LinkedList

Figure 12. Sequence sparseness vs. length vs. memory usage. Memory savings increase with amount of null values. The y-axis
shows the amount of memory used per non-null value.

Indexed
—%— SortedArray
—¥— Trie
—&— HashMap
-4~ j.u.HashMap

o
o0
<
g
3
>
2
S 100
g
&
=

Figure 13. The memory a map with N key/value pairs
requires per inserted key/value pair. Omitting data for
ImmutableBackend, as the used data structure [Steindorfer
and Vinju 2015] does not report its size in bytes.

C1

C2

C3

C4

Cb data structures can have low overhead compared to
Java implementations. We have shown, in Sec. 4.2, that
execution time for important methods of the Sequence
and MapFlat implementations are comparable (yet often
not quite as good; the lager the collections are, the better
our implementations tend to perform) to Java’s ArrayList
and HashMap, respectively.

While a departure from the traditional way of implementing
collections, Cb code is straightforward. We have shown, in
Sec. 4.1, that our sequence, map, and matrix are concise
and high-level.

Cb implementations can be as full-featured as implement-
ations that access the physical representation directly. We
have two data structures (Sequence and MapFlat) imple-
menting Java’s List and Map interface, respectively. Both
of these interfaces have significant size (the list interface
has 28 methods, the map interface has 25).

Cb collections are tunable. We have shown, in Sec. 4.3,
that we can use specialised back-ends to improve the
performance of operations that Java’s Lists, and HashMap

69

, N x N Matrix Multipl. Performance (100% density)

107
CSR (double)
106 = 4— Array (double)
S #— SortedArrayDouble

105 = \\‘ --®- Baseline

10% =

10% -

Multiplications per second.

10" =

100- . [A . [
10! 10 10°

(a) The baseline implementation is significantly faster for small mat-
rix sizes, Cb implementations improve with larger matrices, almost
catching up at N = 1000.

N x N Matrix Multipl. Performance (1% density)

CSR (double)
106 = ~—4— Array (double)
NS —&— Sorted ArrayDouble
) -~ Baseline

10% -

Multiplications per second.

10" -

100-
10!

(b) Using a CSRBackend, we can tune multiplication performance
for sparse matrices (for N = 1000, the speedup over the baseline is
5.7X).

Figure 14. Performance of matrix multiplication for selected
back-ends, and comparing sparse vs. dense matrices.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

do not excel at using the example of testing whether they
contained a value. We also showed how a specialised
back-end speeds up multiplication of sparse matrices (see
Fig. 14a).

5 Related Work

Synthesis of Data Structures. Work on data representation
synthesis [Hawkins et al. 2011] produces specialisable data
structure implementations from high-level descriptions. The
work can synthesise containers that can hold components
that are indexed with a number of index keys. Each unique
combination of index keys stores an associated value record.
In comparison, while representation synthesis produces full-
blown data structures, Cb abstracts away the spine of data
structures but lets a programmer implement the logic. Cb is,in
our view, more expressive, but also demands more code from
programmers. In a similar vein, the Koloboke-compile project
produces Java-hash map implementations and can produce
sophisticated algorithmic optimisations. For example, a map
that does not support removing keys can use a more efficient
algorithm than one that does. Cb is more general — users can
implement new front-ends without modifying the compiler.
Generating (parts of) data structures is established practice
in today’s software engineering. For example in Java there
are libraries that provide data structures that are specialised
to all combinations of primitive values for their type para-
meter. This can lead to reduced memory requirements and
increased cache performance. One such example is Trove
[2018], that provides lists, maps, etc. that specialise their key/-
value parameters. Trove uses code generation to produce the
repetitive code for these specialisations. Trove implements
the layout of a data structure manually and specialises it to
different key/value types. This is orthogonal to Cb and the
Trove approach might also be useful to specialise back-ends.
Closely related work is work on just-in-time data structures
[De Wael 2015]. In this work, a user can implement a data
structure in a number of different ways and get automatic
switching between data representations. This is a feature
very similar to our tunable data structures. The work shows
that such data structures that adapt their representation on
the fly can significantly improve the performance of large
benchmarks. Cb differs because a front-end needs to be im-
plemented only once, and is then freely composed with the
available back-ends, while the user of just-in-time data struc-
ture has to implement all the combinations from scratch.

Adaptive Data Structures Adaptive data structures them-
selves are not a new idea and have been used in many contexts,
from data bases [Mitra et al. 2013] to parallelism [Sagonas and
Winblad 2018]. In Cb, adaptive behaviour can be implemen-
ted by switching between back-end representations during
program execution.

Cb is somewhat similar in spirit to work by Bolz et al.
[2013] that implement storage strategies that optimise the

70

S. Brandauer, E. Castegren, and T. Wrigstad

representation of monomorphic collections at the JIT level.
This allows e.g., storing unboxed integer representations, but
does not focus on e.g., sparse vs. dense collections. Bolz et
al’s collections use the strategy pattern to interact with the
underlying representation, focusing on efficient storage of
objects of different types. A collection can change storage
strategy over time to respond to changes in the objects it
stores. The ability to change storage over time is something
we have considered but not investigated for Cb. For example,
we could support changing between sparse and dense rep-
resentation with respect to some threshold value, or change
from a back-end that premiers efficient insertion to one that
premiers efficient look-up, as data enters a stable state. The
unified external interface to back-ends would facilitate this
kind of optimisation. Automatically identifying triggering
points for changing back-ends, and automatic choice of back-
end on a change point are interesting directions for future
work.

Language Support for Data Layout The impact on data
layout on performance has been well-studied in the past. Two
common techniques are pooling [Franz and Kistler 1998] -
placing objects together in memory based on e.g., type, alloc-
ation site or profiling information, often in combination with
splitting pooling [Chilimbi and Shaham 2006; Curial et al.
2008; van der Spek et al. 2010; Wang et al. 2012]. Lattner et
al. 2003; 2005 apply static analysis to C and C++ program
to perform allocation in a cache-friendly way, and Calder et.
al. 1998 use dynamic profiling information. Aforementioned
systems above are all transparent to the programmer. Franco
et. al 2017 proposed SHAPES, a high-level programming lan-
guage where layout parameters are used to pool and split
objects in a memory-safe way. Whereas in Cb “business lo-
gic” and storage is separated, SHAPES conflates them, albeit
in a tractable way. A SHAPES program may be tuned by
changing e.g., how objects in a pool are split or ordered, but
cannot change on a fundamental level like changing from
array-based to hashmap-based.

Gibbon [Vollmer et al. 2017] compiles large immutable
algebraic data types to packed representations that have be-
nefits for operations that operate on, say, all contained values
in bulk. It is less flexible than Cb but being in the compiler
means that it can likely produce more optimal code.

6 Future Work

The current implementation works well for the data struc-
tures we chose in Sec. 4. However, the data structures we
chose are all degenerate trees: a list, a hash map, a matrix,
and a red-black-tree (omitted from the evaluation for brev-
ity). Our current implementation of a red-black-tree has bad
performance: the reason is that some operations in trees

Cb: A New Modular Approach to Implementing ...

that are very cheap in “standard” Java can not be implemen-
ted in Cb back-ends easily. Consider the following opera-
tion in Java that moves a sub-tree in a binary tree node:
n.left = n.right; n.right = null.

The same operation in current Cb would physically move
all the memory from the right subtree to the corresponding
locations in the left subtree. This requires linear time, O(N),
where N is the number of nodes reachable from n.

We are aware of two solutions to this issue. The first solu-
tion is to build a back-end that tracks move-subtree oper-
ations symbolically (rather than executing the expensive
physical move). This can be done with no changes to our
current implementation, but it puts extra cost on reads. The
second solution generates a back-end that mirrors the ex-
pression’s shape, for every Cb expression. For a binary tree
expression, the internal storage of such a back-end would be
binary tree-shaped, with the same cheap move operation as
the normal Java implementation. This requires changes to
the implementation and a refactoring of the back-end library
but would provide performance close to a traditional Java
implementation — while still having the ability to benefit from
the back-ends presented in Sec. 4 for trees that are not often
re-balanced (like red-black-trees that are modified rarely, but
read many times).

7 Conclusion

We have presented Cb, a novel approach to implementing
collections where the implementation of the logical front-end
is separated from the back-end storage. This separation keeps
the front-end implementation simple and allows the same
front-end to be reused with different back-ends as access
patterns and non-functional requirements vary between use
cases. Similarly, it allows improvements made to the back-end
of one collection to have positive effects to other collections
using the same back-end. Our prototype implementation
shows that Cb can produce collections with performance that
is tunable and fit for most practical uses, and that the front-
end implementations can be kept simple without sacrificing
expressivity of individual collections. There is still work to
be done (c.f- Sec. 6), but our preliminary results suggest that
Cb can make front-ends and back-ends work in harmony to
efficiently implement full-scale collection libraries.

References

Phil Bagwell. 2001. Ideal Hash Trees. Technical Report LAMP-REPORT-2001-
001. Ecole polytechnique fédérale de Lausanne.

Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Storage
strategies for collections in dynamically typed languages. In Proc. of the
2013 ACM SIGPLAN Intl. Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. 167-182. DOI : http://dx.doi.org/
10.1145/2509136.2509531

Aydin Bulug, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E.
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. In SPAA 2009: Proc.

71

Onward! ’18, November 7-8, 2018, Boston, MA, USA

of the 21st Annual ACM Symposium on Parallelism in Algorithms and
Architectures, Calgary, Alberta, Canada, August 11-13, 2009. ACM, 233-244.
DOI: http://dx.doi.org/10.1145/1583991.1584053

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-
conscious Data Placement. SIGPLAN Not. 33, 11 (Oct. 1998), 139-149.
DOI: http://dx.doi.org/10.1145/291006.291036

Trishul M. Chilimbi and Ran Shaham. 2006. Cache-conscious Coallocation
of Hot Data Streams. In PLDI ’06. ACM, 252-262.

Stephen Curial, Peng Zhao, Jose Nelson Amaral, Yaoqing Gao, Shimin Cui,
Raul Silvera, and Roch Archambault. 2008. MPADS: Memory-pooling-
assisted Data Splitting. In ISMM *08. ACM, 101-110.

Mattias De Wael. 2015. Just-in-time Data Structures: Towards Declarative
Swap Rules. In Proc. of the 13th Intl. Workshop on Dynamic Analysis
(WODA 2015). ACM, New York, NY, USA, 33-34. DOI:http://dx.doi.org/
10.1145/2823363.2823371

Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and
Susan Eisenbach. 2017. You can have it all: abstraction and good cache
performance. In Proc. of the 2017 ACM SIGPLAN Intl. Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2017, Vancouver, BC, Canada, October 23 - 27, 2017. 148-167. DOI :
http://dx.doi.org/10.1145/3133850.313386 1

Michael Franz and Thomas Kistler. 1998. Splitting Data Objects to Increase
Cache Utilization. Technical Report. UC Irvine.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2011. Data Representation Synthesis. In Proc. of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI
’11). ACM, New York, NY, USA, 38-49. DOI:http://dx.doi.org/10.1145/
1993498.1993504

Chris Lattner and Vikram Adve. 2003. Data Structure Analysis: A Fast and
Scalable Context-Sensitive Heap Analysis. Technical Report. U. of Illinois.

Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap. In PLDI
’05. ACM, 129-142.

Pinaki Mitra, Girish Sundaram, and Sreedish P. S. 2013. Just In Time Indexing.
CoRR abs/1308.3679 (2013). arXiv:1308.3679 http://arxiv.org/abs/1308.3679

Chris Okasaki. 1996. Functional data structures - Advanced Functional
Programming. Springer Berlin Heidelberg, 131-158.

Konstantinos Sagonas and Kjell Winblad. 2018. A contention adapting
approach to concurrent ordered sets. J. Parallel and Distrib. Comput. 115
(2018), 1 — 19. DOI: http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.
11.007

Michael J. Steindorfer and Jurgen J. Vinju. 2015. Optimizing Hash-array
Mapped Tries for Fast and Lean Immutable JVM Collections. In Proc. of
the 2015 ACM SIGPLAN Intl. Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015). ACM, New York,
NY, USA, 783-800. DOI: http://dx.doi.org/10.1145/2814270.2814312

Development Team of Trove. 2018. GNU Trove: High performance collections
for Java. https://bitbucket.org/trovedj/trove. (2018). BitBucket repository,
accessed April 22 2018.

Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wijshoff.
2010. Automatic Restructuring of Linked Data Structures. In LCPC’09.
Springer, 263-277.

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya
Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton.
2017. Compiling Tree Transforms to Operate on Packed Representations.
In 31st European Conference on Object-Oriented Programming (ECOOP)
(LIPIcs), Vol. 74. Schloss Dagstuhl, Dagstuhl, Germany, 26:1-26:29. DOI:
http://dx.doi.org/10.4230/LIPlcs. ECOOP.2017.26

Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and Di Xu.
2012. On-the-fly Structure Splitting for Heap Objects. ACM TACO 8, 4
(2012), 26:1-26:20. DOI: http://dx.doi.org/10.1145/2086696.2086705

http://dx.doi.org/10.1145/2509136.2509531
http://dx.doi.org/10.1145/2509136.2509531
http://dx.doi.org/10.1145/1583991.1584053
http://dx.doi.org/10.1145/291006.291036
http://dx.doi.org/10.1145/2823363.2823371
http://dx.doi.org/10.1145/2823363.2823371
http://dx.doi.org/10.1145/3133850.3133861
http://dx.doi.org/10.1145/1993498.1993504
http://dx.doi.org/10.1145/1993498.1993504
http://arxiv.org/abs/1308.3679
http://arxiv.org/abs/1308.3679
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.11.007
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.11.007
http://dx.doi.org/10.1145/2814270.2814312
https://bitbucket.org/trove4j/trove
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.26
http://dx.doi.org/10.1145/2086696.2086705

	Abstract
	1 Introduction
	2 Cb in a Nutshell
	2.1 Design Overview
	2.2 Front-Ends: A Collection's Operations
	2.3 Cursors: The Interface between Front-Ends and Back-Ends
	2.4 Back-Ends: Controlling the Storage of Elements

	3 Prototype Implementation
	3.1 C Expressions and The Java Annotation Processor
	3.2 Collection of Front-Ends
	3.3 Collection of Back-Ends

	4 Evaluation
	4.1 Expressiveness and Ease of Use/Complexity
	4.2 Performance Comparison with @java.util@ Collections
	4.3 Tuning Performance by Changing Physical Representation
	4.4 Conclusion of Evaluation

	5 Related Work
	6 Future Work
	7 Conclusion
	References

