
Welcome to IWACO’17!
International Workshop on Aliasing, Capabilities and

Ownership

Morning Schedule
• Spencer: Tracing as a service 

Stephan Brandauer

• Are Your Incoming Aliases Really Necessary?  
Remembering the Cost of Object Ownership 
Alex Potanin

• Reference Capabilities in Practice: Examining Real-World
Pony Code  
Sylvan Clebsch

Lunch: 12:30-14:00

Schedule
• Aliasing, Capabilities and Ownership in Rust  

Felix Klock

• Introducing Ownership Type Constraints to UML/OCL  
Jagadeeswaran Thangaraj & Senthil Kumaran

• Towards Reasonable Ownership 
Anya Helene Bagge, Kristoffer Haugsbakk & Vadim Zaytsev

• Adding Safe Manual Memory Management to .NET 
Dimitrios Vytiniotis

Coffee: 15:30-16:00

Spencer: 
TRACING AS A SERVICE

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer

@sbrandauer

4

http://stbr.me/spencer

5

• Web service: analyse pre-recorded program traces

5

• Web service: analyse pre-recorded program traces

• Focus on side effects, heap structure, aliasing, …

5

• Web service: analyse pre-recorded program traces

• Focus on side effects, heap structure, aliasing, …

• Domain specific language (DSL) for trace analysis

5

• “I’m inventing a language
abstraction and want to
find cases that it can’t
handle well.”

• “I’m about to implement a
new garbage collector
and want to know whether
the heaps it optimises for
are common (and which
programs could be
problematic).”

• We’re currently using the
data to evaluate
hypothetical computer
architecture changes.

6

orig.
classes log

Collecting Data

7

app.jar Spencer-JVM
transform
classes on

load

SQL-DB

8

SQL-DB

8

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

calls

8

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx >= 511073 AND idx <= 511091 ;
 caller | callee | name | method | kind | idx | thread
--------+--------+-------+------------+-----------+--------+--------
 10247 | 10247 | var_1 | startsWith | varstore | 511074 | main
 10247 | 10247 | var_1 | startsWith | varload | 511075 | main
 … snip …
 10247 | 10247 | var_5 | startsWith | varload | 511088 | main
 10247 | 10453 | _0 | startsWith | read | 511089 | main

calls
uses

8

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx >= 511073 AND idx <= 511091 ;
 caller | callee | name | method | kind | idx | thread
--------+--------+-------+------------+-----------+--------+--------
 10247 | 10247 | var_1 | startsWith | varstore | 511074 | main
 10247 | 10247 | var_1 | startsWith | varload | 511075 | main
 … snip …
 10247 | 10247 | var_5 | startsWith | varload | 511088 | main
 10247 | 10453 | _0 | startsWith | read | 511089 | main

SELECT * FROM refs WHERE caller = 10247 AND kind = 'field' ;
 caller | callee | kind | name | refstart | refend | thread
--------+--------+-------+-------+----------+--------+--------
 10247 | 10248 | field | value | 421877 | | main

calls
uses
refs

8

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx >= 511073 AND idx <= 511091 ;
 caller | callee | name | method | kind | idx | thread
--------+--------+-------+------------+-----------+--------+--------
 10247 | 10247 | var_1 | startsWith | varstore | 511074 | main
 10247 | 10247 | var_1 | startsWith | varload | 511075 | main
 … snip …
 10247 | 10247 | var_5 | startsWith | varload | 511088 | main
 10247 | 10453 | _0 | startsWith | read | 511089 | main

SELECT * FROM refs WHERE caller = 10247 AND kind = 'field' ;
 caller | callee | kind | name | refstart | refend | thread
--------+--------+-------+-------+----------+--------+--------
 10247 | 10248 | field | value | 421877 | | main

calls
uses
refs
 …

Spencer DSL

• Object selections as single expressions

• Compiled to SQL queries

• Simplicity > Expressivity

9

Spencer DSL

• Query combinators combine queries for more
powerful analysis

• Query results are cached

10

Spencer DSL
— Immutable Aggregates —

11

MutableObj()

Spencer DSL
— Immutable Aggregates —

11

MutableObj()

Not()

Spencer DSL
— Immutable Aggregates —

12

MutableObj()

Not()

Spencer DSL
— Immutable Aggregates —

12

MutableObj()

HeapDeeply()Not()

Spencer DSL
— Immutable Aggregates —

13

MutableObj()

HeapDeeply()Not()

Spencer DSL
— Immutable Aggregates —

13

MutableObj()

Spencer DSL
— All Strings —

14

InstanceOf(java.lang.String)

Spencer DSL
— All Data of Strings —

15

InstanceOf(java.lang.String)
HeapReferredFrom(

)

Spencer DSL
— All Data of Strings —

15

InstanceOf(java.lang.String)
HeapReferredFrom(

)

And(

)

Spencer DSL
— All Shared Data of Strings —

16

InstanceOf(java.lang.String)
HeapReferredFrom(

)

And(

)

Spencer DSL
— All Shared Data of Strings —

17

InstanceOf(java.lang.String)
HeapReferredFrom(

)
Not(HeapUniqueObj())

And(

)

Spencer DSL
— All Shared Data of Strings —

17

InstanceOf(java.lang.String)
HeapReferredFrom(

)
Not(HeapUniqueObj())

And(

)

Spencer DSL
— All Objects Sharing Data With Strings —

18

InstanceOf(java.lang.String)
HeapReferredFrom(

)
Not(HeapUniqueObj())

HeapRefersTo(

)

And(

)

Spencer DSL
— All Objects Sharing Data With Strings —

18

InstanceOf(java.lang.String)
HeapReferredFrom(

)
Not(HeapUniqueObj())

HeapRefersTo(

)

19

Query Meaning

MutableObj() Objects that are mutated after being constructed.

InstanceOf(java.foo.Bar) Instances of a given class.

StationaryObj() Objects that are never written after being read for
the first time — “lazily initialised immutability”.

HeapUniqueObj() Objects that have one, not more aliases from
fields of other objects.

TinyObj() Objects that have no field references to other
objects.

…

Spencer DSL: Primitive
Queries

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q)

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

20

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q)

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

20

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q)

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

21

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

22

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

22

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

23

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q)

ReachableFrom(Q)

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

24

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q)

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

25

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)

Spencer DSL: Query Combinators
— Walking the Reference Graph —

26

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

27

Query Meaning

RefersTo(Q) Objects that have references to objects selected by Q.

CanReach(Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(Q) Objects that are referenced from objects selected by Q.

ReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

Deeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Reference Graph —

28

Query Meaning

HeapRefersTo(Q) Objects that have references to objects selected by Q.

CanHeapReach(Q) Objs that have transitive references to objs selected by Q.

HeapReferredFrom(Q) Objects that are referenced from objects selected by Q.

HeapReachableFrom(Q) Objs that are transitively referenced from objs selected by Q.

HeapDeeply(Q)
Objects selected by Q that can only transitively

reach objects selected by Q.

Spencer DSL: Query Combinators
— Walking the Heap —

Like before — but only considering fields, rather than fields and stack variables

29

Query Meaning

And(Q Q’ ..) Objects that are selected by all inner
queries — set intersection.

Or(Q Q’ ..)

Not(Q)

Spencer DSL: Query Combinators
— Logical Connectives —

30

Query Meaning

And(Q Q’ ..) Objects that are selected by all inner
queries — set intersection.

Or(Q Q’ ..) Objects that are selected by at least one
inner queries — set union.

Not(Q)

Spencer DSL: Query Combinators
— Logical Connectives —

31

Query Meaning

And(Q Q’ ..) Objects that are selected by all inner
queries — set intersection.

Or(Q Q’ ..) Objects that are selected by at least one
inner queries — set union.

Not(Q) Objects that are not selected by the inner
query.

Spencer DSL: Query Combinators
— Logical Connectives —

32

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer

@sbrandauer

Spencer hosts trace data for you to analyse.

We built a DSL for object queries  
that lets you explore a data set iteratively.

http://spencer-t.racing

Spencer: Tracing as a Service

• “Mining for Safety using Interactive Trace Analysis”, Workshop on
Quantitative Aspects of Programming Languages and Systems (QAPL) 2017 

• “Spencer: Interactive Heap Analysis for the Masses”, 14th International
Conference on Mining Software Repositories (MSR) 2017

http://stbr.me/spencer
http://spencer-t.racing

Demo

34

http://spencer.it.uu.se/query/test/InstanceOf(java.lang.String)

http://spencer.it.uu.se/query/test/InstanceOf(java.lang.String)

Demo Failure Slides

35

36

36

36

36

36

ImmutableObj() / HeapUniqueObj()

38

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))

39

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))
{ 
 “query”:”...”,
 “objects":  
 [42171,42174,42259, …]
}

39

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))
{ 
 “query”:”...”,
 “objects":  
 [42171,42174,42259, …]
}

39

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))
{ 
 “query”:”...”,
 “objects":  
 [42171,42174,42259, …]
}

39

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(.. 
 ..And(HeapReferredFrom(InstanceOf(java.lang.String)).. 
 ..%20Not(HeapUniqueObj())))
{ 
 “query”:”...”,
 “objects":  
 [42171,42174,42259, …]
}

39

Backup Slides

40

41

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

“Safety”

42

unique at most one variable/field refers to object at a
time

stack bound no field ever refers to the object

heap-unique at most one field refers to object at a time

deeply
immutable

shallow immutable + can only reach (via fields)
other shallow immutable objects

shallow
immutable

object never changed outside of constructor

safe at least one of the above

43

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

“What proportion  
of objects are safe?”

44

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

“What proportion of classes 
only produce safe instances?”

“What proportion of fields 
only contain safe instances?”

stack
bound

Per Object Analysis

45

97.7%

unique heap
unique

deeply
imm.

shallow
imm.

“Safe”

Per Class Analysis

46

Out of all classes with more than 10 instances,
how many classes…

Per Class Analysis

46

Out of all classes with more than 10 instances,
how many classes…

1) … have ONLY instances that fulfil a safety property?

Per Class Analysis

46

Out of all classes with more than 10 instances,
how many classes…

2) … have NO instances that fulfil a safety property?

1) … have ONLY instances that fulfil a safety property?

Spencer DSL
— Compiling to SQL —

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

47

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL
— Compiling to SQL —

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

47

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

48

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

Spencer DSL
SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

48

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

Spencer DSL
SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 ?))

49

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 ?(SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

50

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

50

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

51

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

51

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

52

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

* and caching of subexpressions

*

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

52

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

* and caching of subexpressions

*

Per Class Analysis

53

Per Class Analysis

53

Classes with NO
heap-unique instances

xy

Per Class Analysis

53

Classes with NO
heap-unique instances

xy

Classes with ONLY
heap-unique instances

xy

Per Class Analysis

53

rest
Classes with NO

heap-unique instances

xy

Classes with ONLY
heap-unique instances

xy

Per Class Analysis

54

xy xy

Per Class Analysis

54

Hypothesis: could annotate class with “heap-shared” keyword

xy xy

Per Class Analysis

54

Hypothesis: could annotate class with “heap-shared” keyword

xy

Hypothesis: could annotate class with “heap-unique” 
keyword

xy

Per Class Analysis

55

Per Class Analysis

55

Per Class Analysis

55

Per Field Analysis

56

Per Field Analysis

56

