Welcome to IWACO’17!

International Workshop on Aliasing, Capabilities and
Ownership

Morning Schedule

- Spencer: Tracing as a service
Stephan Brandauer

- Are Your Incoming Aliases Really Necessary?
Remembering the Cost of Object Ownership
Alex Potanin

- Reference Capabilities in Practice: Examining Real-World
Pony Code
Sylvan Clebsch

Lunch: 12:30-14:00

Schedule

- Aliasing, Capabilities and Ownership in Rust
Felix Klock

- Introducing Ownership Type Constraints to UML/OCL
Jagadeeswaran Thangaraj & Senthil Kumaran

- Towards Reasonable Ownership
Anya Helene Bagge, Kristoffer Haugsbakk & Vadim Zaytsev

Coffee: 15:30-16:00

- Adding Safe Manual Memory Management to .NET
Dimitrios Vytiniotis

Spencer:
TRACING AS A SERVICE

UPPSALA
UNIVERSITET

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer
W sbrandauer

4

http://stbr.me/spencer

&0

* Web service: analyse pre-recorded program traces

* Web service: analyse pre-recorded program traces

* Focus on side effects, heap structure, aliasing, ...

* Web service: analyse pre-recorded program traces
* Focus on side effects, heap structure, aliasing, ...

 Domain specific language (DSL) for trace analysis

n Ce r Available Data Sets API

Query

v ~ P30 =0 IO —~—0 0> 0~ 0)) O+~ @O Objects that are never changed owtside their constructor.

refioe query >

1

—

ImmutableObi()

222620, 55290, 108807 0, 404468, 85330, 666090, 9243, 106270, 413088, 547930, 660930, 48678, 561968, 77345, 128584 0, 547310, 16276, 298018, 96673 8, 39154 8, 85392 s,
68518, 164088, 1412268, 541218, 1399168, 11934100, 6221508, 402530, 490568, 7956108, 963178, 653420, 634280, 99460, 12476400, 11523108, 1010958, 65977 8, 848028, 47793 I,
34937, 64994, 75497, 8716, 1468740, 185398, 640908, 360168, 38397, 55562, 112008, 990368, 24838, 6234400, 120748, 454338, 106361 8, 32199 . 857683 0, 984668, 74916 8,
SS5009, 712908, 277218, 1437680, 49658 0, 40971 08, 14374700, 14250400, 7438100, 446850, 2601500, 1865908, 11283300, 432790, 49995, 712240, 763330, 55733, 994768, 1241390,
10018508, 31268108, 443010, 82081 00, 1395430, 76363 0, 822990, 1464660, 1141030, 191300, 670008, 860228, 5027400, 1455590, 1216700, 568300, 45940 8 77441 total

Object Variables
7 \ 7/ N /7 N\
I I | |
v thread ~ klass v allocationSite
. O B Q 4+~ ~N B .& . 7/
of objs p. klass
30k
20k
10k
0""_‘0——3:—°F‘6'°E“‘5?‘&"°3““""‘"’°‘6‘:‘°‘&"“E’°°
—
NPI <c8<<B8<<<a885S S8 <8 <§ <843
¢..9';,,9',°’¢*9'9'9'c_..'8-- Do VLY 2
o o) o = o o o
xﬁgﬁﬁxﬁﬁﬁxcgi gxpxﬁpgxx
D =5 = 8 = ==90 3 O mH ® = EC =00
3 & 9 c > > 3 3 33 a:;-:z':. 5 5
B EEEETEEEER a ® ol S
AR 33823 ¢cc : e 328 8%
ququnmmx.‘cc cC X :mé_r_v_x
T 3axTf 2 ScEedd @ 3 =20 3 0?7
'011000,030’0'0'-’.-'. - Do X T 5 0
2 o0 @ ® ~ ST o8 o0 T o PO v S 3 6
B2 aZ2Zho? Sz3co O £ saze
Q & o gioar' @ o . =z “ o o
THh23 3 253 S 2% a5 35 o > 335 2 X%
in = O s O O O < 0o X o= m o @®w A = 9

Collecting Data

A\
app.jar —>

Bncer -ovm

-

transform
classes on
load

SELECT * FROM calls WHERE callstart = 511073 ;
caller | callee | | callstart | callend | <callsitefile | callsiteline |

———————— e T e T e e

startsWith | 511073 | MetaIndex.java | 242 | main

SELECT * FROM calls WHERE callstart = 511073 ;
caller | callee | | callstart | callend | <callsitefile | callsiteline |

———————— e T e T e e

startsWith | 511073 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx > 511073 AND idx
caller callee | name | method kind

10247 10247 > startswWith varstore

10247 10247 s startsWith varload

..snip ..

10247 | 10247 - startswWith | varload 511088
10247 | 10453 startswWith read 511089

SELECT * FROM calls WHERE callstart = 511073 ;
caller | callee | | callstart | callend | <callsitefile | callsiteline |

———————— e T e T e e

startsWith | 511073 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx > 511073 AND idx
caller callee | name | method kind

10247 10247 > startswWith varstore

10247 10247 s startsWith varload

..snip ..

10247 | 10247 - startswWith | varload 511088
10247 | 10453 startswWith read 511089

SELECT * FROM refs WHERE caller = AND kind = 'field'
caller | callee | kind | name refstart | refend | thread

field | value | 421877

SELECT * FROM calls WHERE callstart = 511073 ;
caller | callee | | callstart | callend | <callsitefile | callsiteline |

———————— e T e T e e

startsWith | 511073 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx > 511073 AND idx
caller callee | name | method kind

10247 10247 > startswWith varstore

10247 10247 s startsWith varload

..snip ..

10247 | 10247 - startswWith | varload 511088
10247 | 10453 startswWith read 511089

SELECT * FROM refs WHERE caller = AND kind = 'field'
caller | callee | kind | name refstart | refend | thread

field | value | 421877

Spencer DSL

* Object selections as single expressions
 Compiled to SQL queries

o Simplicity > Expressivity

Spencer DSL

* Query combinators combine queries for more
powerful analysis

* Query results are cached

10

Spencer DSL

— Immutable Aggregates —

MutableObj ()

Spencer DSL

— Immutable Aggregates —

MutableObj ()

Spencer DSL

— Immutable Aggregates —

Not (MutableObj ())

Spencer DSL

— Immutable Aggregates —

Not (MutableObj ())

E ./.

. --m

12

Spencer DSL

— Immutable Aggregates —

HeapDeeply (Not (MutableObj()))

E ./.

. --m

13

Spencer DSL

— Immutable Aggregates —

HeapDeeply (Not(MutableObj()))

"

13

Spencer DSL
— All Strings —

InstanceOf (java. lang.String)

14

Spencer DSL
— All Data of Strings —

HeapReferredFrom(
InstanceOf(java. lang.String)

)

15

Spencer DSL
— All Data of Strings —

HeapReferredFrom(
InstanceOf(java. lang.String)

)
O

—~0

S .

15

Spencer DSL
— All Shared Data of Strings —

And (
HeapReferredFrom(
InstanceOf(java. lang.String)

)
O

) —~0

S .

16

Spencer DSL
— All Shared Data of Strings —

And (
HeapReferredFrom(
InstanceOf(java. lang.String)

)
Not (HeapUniqueObj()) B

) —~0

S .

17

Spencer DSL
— All Shared Data of Strings —

And (

HeapReferredFrom(
InstanceOf(java. lang.String)

)
Not (HeapUniqueObj()) o

) —

L.

17

Spencer DSL
— All Objects Sharing Data With Strings —

HeapRefersTo(
And (

HeapReferredFrom(
InstanceOf(java. lang.String)

)
Not (HeapUniqueObj()) o

) —
)
o

18

Spencer DSL
— All Objects Sharing Data With Strings —

HeapRefersTo(
And (
HeapReferredFrom(
InstanceOf(java. lang.String)

)
Not (HeapUniqueObj()) o

) >
) -

18

Spencer DSL: Primitive
(Queries

Query Meaning

MutableObij() Obijects that are mutated after being constructed.

InstanceOf(java. foo.Bar) Instances of a given class.

Objects that are never written after being read for

SEMEELI]) the first time — “lazily initialised immutability”.

Objects that have one, not more aliases from
fields of other objects.

HeapUniqueObij()

Objects that have no field references to other

Uzl objects.

19

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Meaning

Q) Objects that have references to objects selected by Q.

CanReach(()

ReferredFrom(()

ReachableFrom(()

Deeply()

20

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Meaning

Q) Objects that have references to objects selected by Q.

CanReach(() /.
. _
ReferredFrom(() - B
/—’
ReachableFrom(() A =
—> ==

Deeply()

20

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Meaning

Q) Objects that have references to objects selected by Q.

CanReach(()

ReferredFrom(()

ReachableFrom(()

Deeply()

21

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(()

ReachableFrom(()

Deeply()

22

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(()

ReachableFrom(()

Deeply()

22

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(()

ReachableFrom(()

Deeply()

23

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

Q) Objs that have transitive references to objs selected by Q.

ReferredFrom(()

ReachableFrom(()

Deeply()

24

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

CanReach(() Objs that have transitive references to objs selected by Q.

Q) Objects that are referenced from objects selected by Q.

ReachableFrom((Q)

Deeply()

25

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

CanReach(() Objs that have transitive references to objs selected by Q.

ReferredFrom(() Objects that are referenced from objects selected by Q.

Q) Objs that are transitively referenced from objs selected by Q.

20

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects that have references to objects selected by Q.

CanReach(() Objs that have transitive references to objs selected by Q.

ReferredFrom(() Objects that are referenced from objects selected by Q.

FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo((Q) Objects t —-./' — elected by Q.

CanReach(() Objs that . ,) selected by Q.
./' N

ReferredFrom(() Objects tf selected by Q.

T — T

FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects t @ elected by Q.
2 8
CanReach((Q) Objs that) selected by Q.
&

ReferredFrom(() Objects t A selected by Q.

T — T

FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects t @ elected by Q.
E N
CanReach(() Objs that /._’ selected by Q.

ReferredFrom(() Objects tl

selected by Q.

A
FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects t Q elected by Q.
E N
CanReach(() Objs that /._’ selected by Q.

ReferredFrom(() Objects tl

selected by Q.

A
FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objects t Q elected by Q.
E N
CanReach(() Objs that /._’ selected by Q.

ReferredFrom(() Objects tl

selected by Q.

A
FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

27

Spencer DSL: Query Combinators
— Walking the Reference Graph —

Query Meaning

RefersTo(() Objectst — 7 elected by Q.

CanReach(() Objs that /._’) selected by Q.

ReferredFrom(() Objects t selected by Q.

T — T

FEETH] L1 6111 [(@) B Objs that are transitively referenced from objs selected by Q.

Objects selected by @ that can only transitively
reach objects selected by Q.

9

28

Spencer DSL: Query Combinators
— Walking the [Heap —

Meaning
Query

RefersTo((Q)

Can Reach(Q)

Like before — byt only considering

. fields, rather than fields ang stack
Referred From(Q) ‘ variables

/
ReachableFrom(() d

Deeply(Q)

29

Spencer DSL: Query Combinators

— Logical Connectives —

Meaning

Objects that are selected by all inner
gueries — set intersection.

30

Spencer DSL: Query Combinators

— Logical Connectives —

Query Meaning

Objects that are selected by all inner

And L. i | |
nd(Q @) queries — set intersection.

Objects that are selected by at least one
INnner queries — set union.

31

Spencer DSL: Query Combinators

— Logical Connectives —

Query Meaning

Objects that are selected by all inner

And L. i | |
nd(Q @) queries — set intersection.

Objects that are selected by at least one
INnner queries — set union.

Objects that are not selected by the inner
query.

32

Spencer: ITracing as a Service
Spencer hosts trace data for you to analyse.

We built a DSL for object queries
that lets you explore a data set iteratively.

http://spencer-t.racing

e “Mining for Safety using Interactive Trace Analysis”, Workshop on
Quantitative Aspects of Programming Languages and Systems (QAPL) 2017

o ‘“Spencer: Interactive Heap Analysis for the Masses”, 14th International
Conference on Mining Software Repositories (MSR) 2017

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer
wsbrandauer

http://stbr.me/spencer
http://spencer-t.racing

Demo

http://spencer.it.uu.se/query/test/InstanceOf(java.lang.String)

34

http://spencer.it.uu.se/query/test/InstanceOf(java.lang.String)

Demo Failure Slides

©® ©® B HeapRefersTo(And(HeapRefc x ¢ S

&« C 0O O www.spencer-t.racing/query/test/HeapRefersTo(And(HeapReferredFrom(InstanceOf(java.lang.String))%20Not(Hea... Q & @& @ O E”mo <) Q)

' ﬂcer Available Data Sets I

Query

. ® >0 ® o 05> © Objects that are field-referring 1o objects that are heap-referred to from objects that are instances of ¢l
>0 * ®0 Javalang String, and not are never aliased.

refine query >

dFrom(InstanceOf(java.lang String)) Not(HeapUniqueObj())))

Object Variables

v thread ~ klass v allocationSite

of objs p. klass

2000
1500
1000

500

java.lang.String java.lang.StringBuffer

@ @® 8 HeapReforsTo(And(HoapRek X () S

& C O ‘ spencer-tracmg/query/test/HeapRefersTo(And(HeapReferredFrom(lnstanceOf(java lang Stnng))%QONot(Hea 9’* O 20 E’BO .1 9 Q)

Yencer ST S | Available Data Sets 4

Query

HeapRerean(And(Hea ReferredFrom(InstanceOf(java lang String) - 30 —0 390 0> 0 0> 0 PYe) Objects that are field-referring 1o objects that are heap-referred to from objects that are instances of ¢l

Javalang String, and not are never aliased.

refine query >

dFrom(InstanceOf(java.lang String)) Not(HeapUniqueObj())))

Object Variables

N\

v thread ~ klass v allocationSite

of objs p. klass

2000
1500
1000

500

java.lang.String java.lang.StringBuffer

©® ©® B HeapRefersTo(And(HeapRefc x ¢ S

&« C 0O O www.spencer-t.racing/query/test/HeapRefersTo(And(HeapReferredFrom(InstanceOf(java.lang.String))%20Not(Hea... Q & @& @ O E”mo <) Q)

' ﬂcer Available Data Sets I

Query

. ® >0 ® o 05> © Objects that are field-referring 1o objects that are heap-referred to from objects that are instances of ¢l
>0 * ®0 Javalang String, and not are never aliased.

refine query >

dFrom(InstanceOf(java.lang String)) Not(HeapUniqueObj())))

Object Variables

v thread ~ klass v allocationSite

of objs p. klass

2000
1500
1000

500

java.lang.String java.lang.StringBuffer

® ©® B HeapRefersTo(And(HeapRelc x s

&« C 0 © www.spencer-t.racing/query/test/HeapRefersTo(And(HeapReferredFrom(InstanceOf(java.lang.String))%20Not(Hea... Q & & @ O Pﬂo 1 6 Q)

' ﬂcer Available Data Sets A

Query

. ® 550 ® > ® Objects that are field-referring 1o objects that are heap-referred to from objects that are instances of ¢l
>0 - o ®0 Javalang String, and not are never aliased.

refine query >

dFrom(InstanceOf(java.lang String)) Not(HeapUniqueObj())))

Object Variables

v thread ~ klass ;' allocationSite

of objs p. klass

2000
1500
1000

500

java.lang.String java.lang.StringBuffer

O @ . HeapRefersTo(And(HeapRefc x () S

C 0 © www.spencer-t.racing/query/test/HeapRefersTo(And(HeapReferredFrom(InstanceOf(java.lang.String))%20Not(Hea... Q & & @ O E”BO 1 6 O

@encer ——

Query

- 30 —0 390 00> 0 00 PYe) Objects that are field-referring 1o objects that are heap-referred to from objects that are instances of ¢l

HeapReters]o(And(Hea ReferredFrom(InstanceOf(java lang String)
3 Javalang String, and not are never aliased.

refine query >

dFrom(InstanceOf(java.lang String)) Not(HeapUniqueObj())))

Object Variables

4 N\ 7/ \ [/ 3\

v thread

v klass ~ allocationSite

of objs p. allocationSite

2000
1500
1000

500

Per Field Statistics

Percentage of objects referred to from a field that was selected by the query.

HeapUniqueObij()

Field Name Selected [%]

net.sourceforge.pmd.rules.basic.BooleanInstantiation::description 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :properties 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :examples 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :description 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation::properties 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation::ruleChainVisits 100
sun.util.locale.provider.LocaleServiceProviderPool: :providers 100
java.io.BufferedWriter::cb 100
sun.util.locale.provider.LocaleResources: :cache 100
sun.util.locale.provider.JRELocaleProviderAdapter: :numberFormatProvider 100

sun.util.locale.provider.JRELocaleProviderAdapter: :localeResourcesMap 100

Per Field Statistics

Percentage of objects referred to from a field that was selected by the query.

HeapUniqueObij()

Field Name Selected [%]

net.sourceforge.pmd.rules.basic.BooleanInstantiation::description 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :properties 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :examples 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :description 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation: :properties 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation::ruleChainVisits 100
sun.util.locale.provider.LocaleServiceProviderPool: :providers 100
java.io.BufferedWriter::cb 100
sun.util.locale.provider.LocaleResources: :cache 100
sun.util.locale.provider.JRELocaleProviderAdapter: :numberFormatProvider 100

sun.util.locale.provider.JRELocaleProviderAdapter: :localeResourcesMap 100

Per Field Statistics

Percentage of objects referred to from a field that was selected by the query.

HeapUniqueObij()

Field Name

net.sourceforge.pmd.rules.basic.BooleanInstantiation::description
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :properties
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :examples
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :description
net.sourceforge.pmd.rules.basic.BooleanInstantiation::properties
net.sourceforge.pmd.rules.basic.BooleanInstantiation::ruleChainVisits
sun.util.locale.provider.LocaleServiceProviderPool: :providers
java.io.BufferedWriter::cb
sun.util.locale.provider.LocaleResources: :cache
sun.util.locale.provider.JRELocaleProviderAdapter: :numberFormatProvider
sun.util.locale.provider.JRELocaleProviderAdapter: :localeResourcesMap

Per Field Statistics

Percentage of objects referred to from a field that was selected by the query.

HeapUniqueObij()

Field Name Selected [%]

net.sourceforge.pmd.rules.basic.BooleanInstantiation::description 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :properties 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :examples 100
net.sourceforge.pmd.rules.basic.BrokenNullCheck: :description 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation: :properties 100
net.sourceforge.pmd.rules.basic.BooleanInstantiation::ruleChainVisits 100
sun.util.locale.provider.LocaleServiceProviderPool: :providers 100
java.io.BufferedWriter::cb 100
sun.util.locale.provider.LocaleResources: :cache 100
sun.util.locale.provider.JRELocaleProviderAdapter: :numberFormatProvider 100

sun.util.locale.provider.JRELocaleProviderAdapter: :localeResourcesMap 100

ImmutableObj0 / HeapUniqueObj0)

® ©® B immutableObj() / HeapUniqu: x () Stephan
& 2> C (O @@ spencerit.uu.se/query/test/ImmutableObj(/HeapUniqueObij() w9 O ‘a (U} & B V)
' Apps) Reddit: Progs E1AD2 ¢ Book rooms & YouTube Video Co... * Downloads |c] WIkiCFP : Call For... [} AUPortal "l <3..." Presentati... 7100PM » [Other Bookmarks

&]):ncer

v (NTEREN) - 20 —0 290 ——0 @ 00— 099 0—— ¢ 0 00 V¥ X Objects that are never changed outside their constructor.
v GCENUTETESSD ~ 20 —0 990 ——0 @ 00— 0> 0—— ¢ 0 00 4 x Objects that are never aliased.

refine query >

59%

lmmutableObj(- 30%
HeapUniqueObj() 394 ﬂ

1mmutab‘°0b3%wpu n'\q"°0b.30

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(..
..And(HeapReferredFrom(InstanceOf(java.lang.String))..
..%20Not(HeapUniqueObj())))

$ curl http://spencer-t.racing/json/select/test/HeapRefersTo(..
..And(HeapReferredFrom(InstanceOf(java.lang.String))..
..%20Not(HeapUniqueObj())))

{
cqueTy Tt s
“objects":
[42171,42174,42259, ..]

meta_ info(' ImmutableObj()')

In [35]: meta =
meta. sample(10)
selected 484576 bytes
meta: got 10167219 bytes
out[35]* allocationSite firstusage |id klass lastusage numCalls numFieldReads numFieIdWri‘t;
16265 ZipCoder.]ava:?B 3910628 |38553 [C 3910847 |1 0 0 B
2501 StringBuilder.]ava:BQ 0 11435 |[C 0 1 0 0 B
48147 ZipCoder.]ava:BQ 0 g7599 |[B 0 1 0 0 -
31971 String.]ava:207 7320085 62982 |[C 7320298 |1 0 0 B
31436 ZipCoder.java:89 0 61918 |[B 0 1 0 0 B
56210 String.java:2032 10765482 | 100566 C 12765509 |1 0 0 B
33053 String.java:207 0 64394 |[C 0 1 0 0 B
60881 StringBuﬁer.iava:671 0 112662 |[C 0 1 0 0 B
51189 ZipCoder.]ava:BQ 0 g2728 |[B 0 1 0 0 B
52143 String.iava:1933 12257310 94185]ava.lang.String 12257718 |12 14 1 -
________—-————_" I I

39

Number of Calls

I To show a histogram of the calls, we can do this:

In [17]: meta['numCalls'].where(meta['numCalls'] < 10).plot(kind = ‘hist’, bins=10)

Out[17]: <matplot1ib.axes._subplots.AxesSubplot at 0x11750bed0>

Frequency
3
o
o
o

20000 |

10000 |

39

Number of Allocations per Allocation Site (Top 20)

value_counts()[:20].plot(kind=‘bar')

s meta['allocationsite'].

In [18]

axes._subplots.AxesSubplot at 0x11731ea50>

<matplotlib.

out[18]

’ bil’ls:lo)

16000

14000

12000

10000

8000

6000

4000

2000

o~ﬁm>c:ut:moc5m

65 eael 12p0oDdiZ
Zy L1 enel depyseH
[T11-eael32in0s3y

g11-eAel1ayngbuus
zeoz-eael buuxs
(80Z:-eael buux
cep1-enel buus
£6E-eaela)14diZ

¢ 19:eael 1ayngbuuis
gg:-eael Jap|IngbuLls
129:eael 1angbuuis
m\._.m>m_.oc_.oouoc5m
6961 -eAel buuxs
Lop-enel 12p|Ingbuuls
gy enel JapoHdiZ
6g-enel 1apoddiZ

€ T-enel 13p|INgbULIISIORRSAY
1-:<uoljewLIojul Juasqe>
L0zZ-eael’ buus

Backup Slides

Dynamic
Analysis

false positives (“upper bound”)

often-used code weighed stronger

easily deals with runtime code
generation, dynamic code loading

41

Static
Analysis

false negatives (“lower bound”)

all code weighed equally

easily can produce sound claims

“Safety”

at most one variable/field refers to object at a
time

unique

stack bound no field ever refers to the object

heap-unique at most one field refers to object at a time

deeply shallow immutable + can only reach (via fields)
immutable other shallow immutable objects

shallow

_ object never changed outside of constructor
iImmutable

safe at least one of the above

42

Static
Analysis Analysis

D —————————

“What proportion
of objects are safe?”

Static
Analysis Analysis

+

“What proportion of classes
only produce safe instances”?”

“What proportion of fields
only contain safe instances®?”

Per Object Analysis

100% - T+~ 97.7%

75% — .
L 54.99

50% N + 3986_455%_47.3 /0: —
I

Prop. of objects

25% - 9 24.0%
. .

0%

unique stack h@&p deeply shallow “Safe”
bound unique M7

*x—

Per Class Analysis

Out of all classes with more than 10 instances,
how many classes...

Per Class Analysis

Out of all classes with more than 10 instances,
how many classes...

1) ... have ONLY instances that fulfil a safety property?

Per Class Analysis

Out of all classes with more than 10 instances,
how many classes...

1) ... have ONLY instances that fulfil a safety property?

2) ... have NO instances that fulfil a safety property?

—_—

Spencer DSL

— Compiling to SQL —

SELECT id FROM o bjects WHERE klass = 'java.lang.String'
InstanceOf(java.lang.String)

47

Spencer DSL

— Compiling to SQL —
InstanceOf(java.lang.String) ‘ '
8
B
B

47

Spencer DSL

SELECT callee AS id
FROM refs
WHERE kind = 'field'
AND caller IN (
SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|

InstanceOf(java.lang.String))

48

Spencer DSL

SELECT callee AS id
FROM refs
WHERE kind = 'field'
AND caller IN (
SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|

InstanceOf(java.lang.String))

48

Spencer DSL

SELECT callee AS id
FROM refs

WHERE kind = 'field'
AND caller IN (

And(
HeapReferredFrom(|

InstanceOf(java.lang.String))) INTERSECT (
?)

49

SELECT id FROM objects WHERE klass =

'java.lang.String'

Spencer DSL

SELECT callee AS id
FROM refs
And(WHERE kind = 'field'
AND caller IN (
SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

SELECT id FROM objects WHERE id > 4

Not(HeapUniqueObj())) EXCEPT

(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time

FROM (
(SELECT
. callee, refstart AS time, 1 AS delta
/ FROM refs
- WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
—>. FROM refs

WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
GROUP BY callee
HAVING MAX(sum_at_time) = 1)

@ |

50

Spencer DSL

SELECT callee AS id
FROM refs
And(WHERE kind = 'field'
AND caller IN (
SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

. . SELECT id FROM objects WHERE id > 4
Not(HeapUnigueObj())) EXCEPT
(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
FROM (
(SELECT
callee, refstart AS time, 1 AS delta
/— FROM refs
WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
—> FROM refs
WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
GROUP BY callee
HAVING MAX(sum_at_time) = 1)

50

Spencer DSL

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
(
SELECT callee AS id
FROM refs
WHERE kind = 'field'
AND caller IN (

HeapRefersTo(

SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

. . SELECT id FROM objects WHERE id > 4
Not(HeapUnigueObj()))) EXCEPT
(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
FROM (
(SELECT
callee, refstart AS time, 1 AS delta
/— FROM refs
WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
—> FROM refs
WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
GROUP BY callee
HAVING MAX(sum_at_time) = 1)

51

Spencer DSL

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
(
SELECT callee AS id
FROM refs
WHERE kind = 'field'
AND caller IN (

HeapRefersTo(

SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

. . SELECT id FROM objects WHERE id > 4
Not(HeapUnigueObj()))) EXCEPT
(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
FROM (
(SELECT
callee, refstart AS time, 1 AS delta
/— FROM refs
WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
—> FROM refs
WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps

GROUP BY callee
B -
HAVING MAX(sum_at_time) = 1)

51

Spencer DSL

SELECT caller AS 1id
FROM refs

WHERE kind = 'field'
AND callee IN (

:I:(
SELECT callee AS 1id

FROM refs
WHERE kind = 'field'
AND caller IN (

HeapRefersTo(

SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

. . SELECT id FROM objects WHERE id > 4
Not(HeapUnigueObj()))) EXCEPT
(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
FROM (
(SELECT
callee, refstart AS time, 1 AS delta
FROM refs
WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
FROM refs
WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
GROUP BY callee
HAVING MAX(sum_at_time) = 1)

* . .
and caching of subexpressions
52

Spencer DSL

SELECT caller AS id
FROM refs

WHERE kind = 'field'
AND callee IN (

:I:(
SELECT callee AS 1id

FROM refs
WHERE kind = 'field'
AND caller IN (

HeapRefersTo(

SELECT id FROM objects WHERE klass = 'java.lang.String'

HeapReferredFrom(|
InstanceOf(java.lang.String))) INTERSECT (

. . SELECT id FROM objects WHERE id > 4
Not(HeapUnigueObj()))) EXCEPT
(SELECT callee AS id FROM
(SELECT callee, time, SuM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
FROM (
(SELECT
callee, refstart AS time, 1 AS delta
/— FROM refs
- WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
callee, refend AS time, -1 AS delta
—> FROM refs
WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
— GROUP BY callee

HAVING MAX(sum_at_time) = 1)
/ Ve :
o)

* . .
and caching of subexpressions
52

Per Class Analysis

Per Class Analysis

heap unique

Classes wilh NG
k@.&p*umque thstanees

—_—

Per Class Analysis

Classes wilh ONLY
keapmuméque thstanees

Xy%
heap unique

Classes wilh NG
k@.&p*umque thstanees

—_—

Per Class Analysis

Classes wilh ONLY
keapmuhéque thstanees

heap unique

resk

Classes wilh NG
k@.&p*umque thstanees

—_—

Per Class Analysis

Per Class Analysis

Xy%
heap unique

H:jpoékesés: could annotate
class wikh “keapwskared”

w’éjward

—_—

Per Class Analysis

H:jpoéhesés: could annotate
class wikh “heap*uhéque"
M‘eyword

Xy%
heap unique

ngo%kesés: could annotate
class wikh “keapwskared”

w’éjword

—_—

Per Class Analysis

49% 2%

unique

Ii

stack bound 52% 8 22%
27%

heap unique 36%
48%
28%

B 21%
8%

deeply immutable

shallow immutable

: 72%
0% 25% S0% 75% 100%

—_—l

safe

Per Class Analysis

49%

unique m
stack bound 52% f

heap unique 36% 27%

deeply immutable 48% f m
shallow immutable 28%

N 72%
0% 25% 50% 75% 100%

—_—l

safe

Per Class Analysis

deeply immutable

shallow immutable 2

safe ¥4
0%

Per Field Analysis

unique 69%

25%

heap unique 47 % 46%

deeply immutable 63% 26%

40%

shallow immutable

45%

22% B 67 %

0% 25% 50% 75% 100%

—_—l

safe

Per Field Analysis

unique

n_
T
4/ :

235Y% 50% 75% 100%

—_—l

heap unique

deeply immutable

shallow immutable

