
Mining for Safety using
Interactive Trace Analysis

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer

@sbrandauer

1

http://stbr.me/spencer

This Project
• Dynamic, offline analysis of executions of Java programs

• Look for safety properties of objects, classes, fields

• immutability, uniqueness, stack boundedness

• Develop a Spencer: tool to facilitate this, and similar
studies

• “rapid prototyping” of dynamic analyses

• you can use it!

2

• We’re building http://spencer-t.racing

• Openly accessible web service

• For analysing pre-recorded program traces

• 680GB of data, 4.5E9 events, 9 program runs

• Open source (github.com/kaeluka/spencer-all)

3

http://spencer-t.racing
https://github.com/kaeluka/spencer-all

 — Use Cases
• “I’m inventing a language abstraction and want to

find cases that it can’t handle well.”

• “I’m about to implement a new garbage collector
and want to know whether the heaps it optimises
for are common (and which programs could be
problematic).”

• We’re currently using the data to evaluate
hypothetical computer architecture changes.

4

orig.
classes log

Workflow

5

app.jar Spencer-JVM
transform
classes on

load

SQL-DB

6

SQL-DB

6

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

calls

6

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx >= 511073 AND idx <= 511091 ;
 caller | callee | name | method | kind | idx | thread
--------+--------+-------+------------+-----------+--------+--------
 10247 | 10247 | var_1 | startsWith | varstore | 511074 | main
 10247 | 10247 | var_1 | startsWith | varload | 511075 | main
 … snip …
 10247 | 10247 | var_5 | startsWith | varload | 511088 | main
 10247 | 10453 | _0 | startsWith | read | 511089 | main

calls
uses

6

SQL-DB

SELECT * FROM calls WHERE callstart = 511073 ;
 caller | callee | name | callstart | callend | callsitefile | callsiteline | thread
--------+--------+------------+-----------+---------+----------------+--------------+--------
 10530 | 10247 | startsWith | 511073 | 511091 | MetaIndex.java | 242 | main

SELECT * FROM uses WHERE idx >= 511073 AND idx <= 511091 ;
 caller | callee | name | method | kind | idx | thread
--------+--------+-------+------------+-----------+--------+--------
 10247 | 10247 | var_1 | startsWith | varstore | 511074 | main
 10247 | 10247 | var_1 | startsWith | varload | 511075 | main
 … snip …
 10247 | 10247 | var_5 | startsWith | varload | 511088 | main
 10247 | 10453 | _0 | startsWith | read | 511089 | main

SELECT * FROM refs WHERE caller = 10247 AND kind = 'field' ;
 caller | callee | kind | name | refstart | refend | thread
--------+--------+-------+-------+----------+--------+--------
 10247 | 10248 | field | value | 421877 | | main

calls
uses
refs

Spencer DSL

• Object selections are single expressions

• Compiled to SQL queries

• Simplicity for Expressivity Tradeoff

7

Spencer DSL

ImmutableObj()

8

SELECT id FROM objects WHERE id > 4
EXCEPT
 (SELECT DISTINCT callee AS id
 FROM uses_cstore
 WHERE callee > 4
 AND NOT(caller = callee AND method = ‘<init>')
 AND (kind = 'fieldstore' OR kind = 'modify'))

Spencer DSL

StackBoundObj()

9

SELECT id
FROM objects
WHERE id > 4
AND NOT EXISTS (
 SELECT 1
 FROM refs
 WHERE refs.callee = objects.id
 AND refs.kind = 'field'
)

Spencer DSL

HeapUniqueObj()

10

SELECT callee AS id FROM
(SELECT callee, time, SUM(delta) OVER(PARTITION BY
callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL
(SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
GROUP BY callee
HAVING MAX(sum_at_time) = 1

Spencer DSL: Composing
Queries

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

11

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL: Composing
Queries

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

11

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

12

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

Spencer DSL
SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

12

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

Spencer DSL
SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 ?))

13

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 ?(SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

14

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

14

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

15

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

15

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

16

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

* and caching of subexpressions

*

Spencer DSL

HeapRefersTo( 
 And( 
 HeapReferredFrom( 
 InstanceOf(java.lang.String)) 
 Not(HeapUniqueObj())))

16

SELECT caller AS id
FROM refs
WHERE kind = 'field'
AND callee IN (
 (
 SELECT callee AS id
 FROM refs
 WHERE kind = 'field'
 AND caller IN (
 SELECT id FROM objects WHERE klass = 'java.lang.String'
)
) INTERSECT (
 SELECT id FROM objects WHERE id > 4
 EXCEPT
 (SELECT callee AS id FROM
 (SELECT callee, time, SUM(delta) OVER(PARTITION BY callee ORDER BY time) AS sum_at_time
 FROM (
 (SELECT
 callee, refstart AS time, 1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field') UNION ALL (SELECT
 callee, refend AS time, -1 AS delta
 FROM refs
 WHERE callee > 4 AND kind = 'field')
) AS steps) AS integrated_steps
 GROUP BY callee
 HAVING MAX(sum_at_time) = 1)

)
)

* and caching of subexpressions

*

17

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

The Study

18

“Safety”

19

unique at most one variable/field refers to object at a
time

stack bound no field ever refers to the object

heap-unique at most one field refers to object at a time

deeply
immutable

shallow immutable + can only reach (via fields)
other shallow immutable objects

shallow
immutable

object never changed outside of constructor

safe at least one of the above

20

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

“What proportion  
of objects are safe?”

21

Dynamic
Analysis

Static
Analysis

false positives (“upper bound”) false negatives (“lower bound”)

often-used code weighed stronger all code weighed equally

easily deals with runtime code
generation, dynamic code loading easily can produce sound claims

“What proportion of classes 
only produce safe instances?”

“What proportion of fields 
only contain safe instances?”

stack
bound

Per Object Analysis

22

97.7%

unique heap
unique

deeply
imm.

shallow
imm.

“Safe”

Per Class Analysis

23

Out of all classes with more than 10 instances,
how many classes…

Per Class Analysis

23

Out of all classes with more than 10 instances,
how many classes…

1) … have ONLY instances that fulfil a safety property?

Per Class Analysis

23

Out of all classes with more than 10 instances,
how many classes…

2) … have NO instances that fulfil a safety property?

1) … have ONLY instances that fulfil a safety property?

Per Class Analysis

24

Per Class Analysis

24

Classes with NO
heap-unique instances

xy

Per Class Analysis

24

Classes with NO
heap-unique instances

xy

Classes with ONLY
heap-unique instances

xy

Per Class Analysis

24

rest
Classes with NO

heap-unique instances

xy

Classes with ONLY
heap-unique instances

xy

Per Class Analysis

25

xy xy

Per Class Analysis

25

Hypothesis: could annotate class with “heap-shared” keyword

xy xy

Per Class Analysis

25

Hypothesis: could annotate class with “heap-shared” keyword

xy

Hypothesis: could annotate class with “heap-unique” 
keyword

xy

Per Class Analysis

26

Per Class Analysis

26

Per Class Analysis

26

Per Field Analysis

27

Per Field Analysis

27

Further Work/Research

• Put the data to good use!

• What are the classes/fields in the white gaps? Do
they provide different invariants?

• Trace more programs!

• Also in different languages!

28

29

Stephan Brandauer, Tobias Wrigstad
http://stbr.me/spencer

@sbrandauer

http://stbr.me/spencer

