Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.

NAS

This repository is an official implementation of the paper Neural Adaptive Content-aware Internet Video Delivery.

Currently, we only provide NAS-MDSR, which is a super-resolution module of NAS.

Prerequisites (p: Python package, b: Binary)

  • Python 3.6
  • (p) PyTorch >= 1.0.0
  • (p) numpy
  • (p) skimage
  • (p) scipy
  • (p) cv2 (Use opencv package from here)
  • (p) pillow
  • (p) ffmpeg
  • (b) MP4Box, x264 (Refer here for installing these binaries)

Prepare MPEG-DASH dataset

Download MPEG-DASH dataset from here and place like:

data
 |------news
        |------original.mp4
        |------240p
        |------360p
        |------480p
        |------720p
        |------1080p

Or, if you want to use own 1080p video, first place it like:

data
 |------[dataset name]
        |------[video file]

Then, to generate MPEG-DASH content from the original video:

cd data/[dataset name]
../../dash_vid_setup.sh -i [video_file]
  • Original video link for provided news dataset: here

How to train NAS-MDSR

To train NAS-MDSR:

python train_nas_awdnn.py --quality [quality level] --data_name [dataset name] --use_cuda --load_on_memory

NAS-MDSR provides total four quality levels as in the paper (e.g., low, medium, high, ultra-high). The higher the quality level, the bigger the model size, the higher the model quality.

Models will be saved like:

checkpoint
 |------[dataset name]
        |------[quality level]
                |------epoch_[index].pth
                |------      ...
                |------DNN_chunk_1.pth
                |------DNN_chunk_2.pth
                |------DNN_chunk_3.pth
                |------DNN_chunk_4.pth
                |------DNN_chunk_5.pth

DNN chunks are save only for the last updated model. These chunks are used for streaming together with video chunks in NAS.

  • Related code: model.py, dataset.py, option.py, trainer.py, train_nas_awdnn.py

How to test NAS-MDSR (image)

To measure the quality of NAS-MDSR both in PSNR,SSIM:

python test_nas_quality.py --quality [quality level] --data_name [dataset name] --use_cuda --load_on_memory

Result will be saved like:

result
 |------[dataset name]
        |------[quality level]
                |------result_quality_detail_0_[epoch].log
                |------result_quality_detail_2_[epoch].log
                |------result_quality_detail_4_[epoch].log
                |------result_quality_detail_6_[epoch].log
                |------result_quality_detail_8_[epoch].log
                |------result_quality_summary_[epoch].log

To measure the inference time of NAS-MDSR:

python test_nas_runtime.py --quality [quality level] --data_name [dataset name] --use_cuda --load_on_memory

Result will be saved like:

result
 |------[dataset name]
        |------[quality level]
                |------result_runtime.log
  • Related code: model.py, dataset.py, option.py, tester.py, test_nas_quality.py, test_nas_runtime.py

How to test NAS-MDSR (video)

NAS-MDSR can also process a video in which decoding, encoding, super-resolution are done parallely.

To apply NAS-MDSR to process video chunks:

python test_nas_video_process.py --quality [quality level] --data_name [dataset name] --use_cuda --load_on_memory

It will generate quality-enhanced video chunks like:

result
 |------[dataset name]
            |------[quality level]
                |------[segment_[chunk index]_[resolution index]]
                        |------input.mp4
                        |------output.mp4 (quality-enhanced video chunk)

You can set chunk index and resolution index in test_nas_video_quality.py.

To measure the latency of NAS-MDSR to process video chunks:

python test_nas_video_runtime.py --quality [quality level] --data_name [dataset name] --use_cuda --load_on_memory

Result will be saved like:

result
 |------[dataset name]
            |------[quality level]
                    |------result_video_runtime.log

Refer process.py to understand detail procedures for processing video chunks.

  • Related code: model.py, dataset.py, option.py, tester.py, test_nas_video_quality.py, test_nas_video_runtime.py

Tip

  • Use the option 'load_on_memory' if you have enough memory since it highly affects on training speed.
  • Use the option 'use_cuda' for using a GPU.

Citation

If you find paper useful for your research, please cite our paper.

Hyunho, et al. "Neural adaptive content-aware internet video delivery." 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 2018. [Website]

@inproceedings{yeo2018neural,
    title={Neural adaptive content-aware internet video delivery},
    author={Yeo, Hyunho and Jung, Youngmok and Kim, Jaehong and Shin, Jinwoo and Han, Dongsu},
    booktitle={13th $\{$USENIX$\}$ Symposium on Operating Systems Design and Implementation ($\{$OSDI$\}$ 18)},
    pages={645--661},
    year={2018}
}

Commercial usage

NAS is currently protected under the patent and is retricted to be used for the commercial usage.

About

This is an official repository of the paper, "Neural Adaptive Content-aware Internet Video Delivery"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published