
Improving Trust and
Security in Open
Source Projects
Mark Curphey & David A. Wheeler

A Publication of The Linux Foundation
Third Edition • February 2020

www.linuxfoundation.org

The Linux Foundation2Improving Trust and Security in Open Source Projects

Contents

Summary	 3
Overview	 4
The Eight Best Practices	 6

Roles and Responsibilities	 6
Security Policy	 8
Know Your Contributors	 9
The Software Supply Chain	 11
Technical Security Guidance	 14
Security Playbooks	 16
Security Testing	 17
Secure Releases and Updates	 20

A Certification Scheme	 22
Other Security Issues That Need Investment & Help	 23

Security Build Certificate	 23
The Lack of Good Open Source Security Testing Tools	 24
Open Source Package Distribution is a Risk to The Internet	 25
Vulnerability Disclosure is Broken	 26

The Linux Foundation3Improving Trust and Security in Open Source Projects

This document is a proposal to the Linux Foundation
(the ‘Foundation’) to build and operate a program I am
calling the Trust and Security Initiative (TSI) and a set of
recommendations for other security issues that need
investment and help.

The proposed TSI describes a collection of Eight
Best Practices with specific tasks supporting them
that should be used by open-source teams to secure
the software they produce as well as a Certification
Scheme to verify adoption and validate products being
shipped that follow it. It is anticipated that the TSI could
be adopted introspectively to secure and verify the
Foundations projects, could be adopted by Foundation
members to secure and verify software they produce
and could be made available to the world at large to
be adopted and extended as they see fit, raising the
collective security bar of the worlds software.

This document is written to provide enough detail to
describe a potential end-state and facilitate meaningful
discussion but does not itself contain the complete material
to operate the program. This proposal builds on previous
industry work implementing software security at scale
and leans heavily on Microsoft’s Trustworthy Computing
(TWC) initiative and their Secure Development Lifecycle
(SDL). Unlike the SDL which was originally focused on how
to secure Microsoft products and was aligned to the way
MSFT built closed source software at the time, this proposal
is tailored to the open-source community and specifically
to modern software development teams, embracing
Continuous Delivery and Cloud Native Computing.
As such it is opinionated and not intended to be a one
size fits all solution to all software development teams.

This proposal also acknowledges (or is of the opinion)
that developers generally want to focus on innovation
and therefore promotes wide-spread adoption by
favoring low cost, low friction practices, especially
automation integrated with Linux Foundation projects
such as Spinnaker and Kubernetes.

An organization implementing all of the best practices
to the highest levels of assurance set out in the TSI
will not be immune from security issues such is the
complex nature of security but they will undoubtedly
raise their bar and provide a higher level of confidence
in their software to their userbase. This first draft is
intended to be published to a set of industry experts
for comment and feedback and it is anticipated that
the scheme itself would be updated and enhanced over
time based on feedback and adoption.

The ‘Other Security Issues That Need Investment
and Help’ are recommendations for big ticket items
that are either causing current significant pain across
the Internet or have the potential to raise the bar on
Internet security as a whole.

Summary

The Linux Foundation4Improving Trust and Security in Open Source Projects

Overview

If you open the news on any given day and read about
the latest data breach, you are reminded that software
security is hard. When you take a step back and think
about the volume of emerging technology and think
about industry trends such as increasing the velocity of
software releases and the reuse of code and services,
you could be forgiven for holding your hands up and
concluding that things are trending in the wrong
direction for us to ever have secure software.

But there is hope. The problem of insecure software
is not a new one and there is significant prior art for
how to achieve it. Commercial companies like Microsoft
have made radical changes going from industry pariahs
to relatively shiny examples while some new tech
companies now bake security into their DNA from the
outset. Security of course doesn’t come without a cost
across the team but after decades of examples we have
now learned what works and what doesn’t work, and
can match techniques and tools to team culture and
minimize the impact; in fact in most cases creating a net
positive effect on overall development.

This document is arranged into three main sections,
‘Eight Best Practices’, a ‘Certification scheme’ and
‘Other Security Issues That Need Investment and
Help’. Core sections and / or sub-sections start with
text describing the intent and goal of the section and
then describes specific practices in a table format.
Where possible each practice has been written in a
manner so that it can easily be verified for example
“The project team publishes the security policy, visibly
linked from the main project page and at /security”.
Using this structure teams implementing the TSI can

quickly see what is required and anyone verifying
implementation are not required to make subjective
decisions. The open source development model itself
is of course as varied as the type of projects that
embrace it and it is not realistic to develop a “one size
fits all” scheme. The scheme as written is designed to
be able to be taken and implemented “as is” but also
is designed to allow teams to meet the goals with valid
alternative solutions or compensating controls so as
to allow teams to embed security into their process
without having to change their process for the sake of
security.

The Eight Best Practices describes a set of “activities”
that teams producing secure software should do.
This section balances guidance that is meaningful
and relatively easy to implement without being overly
prescriptive or rigid. They are:

1.	Roles and
Responsibilities

2.	Security Policy

3.	Know Your
Contributors

4.	The Software Supply
Chain

5.	Technical Security
Guidance

6.	Security Playbooks

7.	Security Testing

8.	Secure Releases and
Updates

The final section of the document describes a
Certification Scheme that is designed to enable open-
source projects to self-certify, and for commercial
open-source companies to provide higher levels
of independent third party certification through

The Linux Foundation5Improving Trust and Security in Open Source Projects

a network of Linux Foundation certified security
consultants. Throughout the document we allow for
levels of security maturity and ease of getting started
by describing varying depth of specific practices as
Basic, Standard and Advanced.

Basic practices are considered things that everyone
should do, regardless of their project type and
maturity. They are generally easy to implement and
have a low overhead to the team while providing a
basic level of assurance. Knowing that a team applies
all of the Basic practices allows consumers to quickly
appreciate that all the basics have been thought about
and are being implemented.

Standard practices provide a higher level of assurance
but usually require a higher degree of overhead

therefore are suited to more mature projects and
teams. Standard practices require some thought
and come with some over-head but are appropriate
to software teams producing applications that run
in production. Knowing that a team applies all of
the Standard practices allows consumers to quickly
appreciate that security is important to the project.

Advanced practices go further than Standard and are
designed for teams producing mission critical software
or for teams wishing to use and or demonstrate
security as a differentiator. Advanced practices usually
require careful implementation and come with a
cost. Knowing that a team applies all of the Advanced
practices allows consumers to quickly appreciate that
security is of utmost importance to the project.

The Linux Foundation6Improving Trust and Security in Open Source Projects

The Eight Best Practices

Roles and Responsibilities

This sections goal is to define the ‘who’ of a teams
security program. In this section we describe how each
organization should assign responsibility for policy and
technical security to individuals and make sure that
everyone is aware of their responsibilities across the
organization. While assigning ownership feels formal,
bureaucratic and even old school; a lack of clear roles

and responsibilities is one of the biggest root causes
leading to security issues and therefore one of the
highest value practices any team can undertake. Care
has been taken to consider roles and responsibilities
in the context of open-source projects. Please note
that one individual may fill multiple roles, especially in
smaller projects.

Reference Task and Description Basic Standard Advanced

PO-1 The Organization has assigned an individual to act as the
Chief Security Officer.

It is essential that there is an individual who is ultimately
responsible for security. This individual should be
responsible for setting the security policy and making
risk based decisions and defining the organization’s
security release criteria (see section 8).

X X X

PO-2 The organization has assigned an individual to act as the
Lead Security Engineer.

The technical security lead works with the CSO to make
the technical judgements about vulnerabilities and
incidents and is the owner of the organization’s security
guidance.

X X

CONT >

The Linux Foundation7Improving Trust and Security in Open Source Projects

Reference Task and Description Basic Standard Advanced

PO-3 The Organization has assigned an individual to act as the
Lead Security Architect.

The lead security architect makes and adjudicates
security architecture decisions in products produced
by the organization. This role owns the Security
Architecture guide.

X X

PO-4 Everyone in the organization is made aware of their
responsibilities for security.

Security is everyone’s responsibility and by ensuring
everyone is aware of the organizations policy and key
roles and responsibilities such as that of the CSO, the
collective power of the team can be harnessed.

X X X

PO-5 Everyone in the org attends annual training which
explains the policy, people’s roles and responsibilities,
key processes and covers the top eight best practices.

Periodic group training is widely thought of as an immunity
booster. Attaching relevant training to company
meetings or events is often an effective approach.

X X

PO-6 The organization has a dedicated full-time security team.

By having a set of dedicated security members who only
work on security related projects, the organization is not
forced to inevitably trade priorities.

X

The Linux Foundation8Improving Trust and Security in Open Source Projects

Security Policy

This sections goal is to define the ‘what’ of a teams
security program. In this section we describe how each
organization should publish a policy that describes,
at a high level how the organization thinks about and
intends to implement security. While the term ‘policy’

feels formal, bureaucratic and even old school; they can
be written in a human voice with clear and concise text
that provides a clear north star for all members of the
organization. Care has been taken to consider policies
in the context of open-source projects.

Reference Description Basic Standard Advanced

SP-1 Publish an organizational security policy.

The organization should create and publish their
organization security policy linked from their main page
and available at/security.

X X X

SP-2 Publish project level security readme files.

Each project should publish the security policy along with
any project specific overrides in a security readme file that
can be found in the root of each projects git repo.

X X

SP-3 Read and Acknowledge the Policy

Everyone in the organization is required to read
and acknowledge the security policy. This provides
awareness and responsibility to the broad organization.

X X

SP-4 Attend Annual Security Policy Training

Everyone in the organization attends annual training on
the security policy to enhance or refresh their knowledge.

X X

SP-5 Contractors should read and acknowledge the security policy.

All contractors and third parties are required to read
and acknowledge the security policy. This provides
awareness and responsibility to third parties.

X

The Linux Foundation9Improving Trust and Security in Open Source Projects

Know Your Contributors

This section’s goal is to define a set of practices so that
organizations can trust those contributing to it and so
that consumers can trust that the software was produced
by well intentioned people. In the current cyber security
climate we have seen malicious backdoors and malware
become commonplace in open-source such as NPM
packages and such offensive techniques of poisoning

upstream code is a known offensive playbook of cyber
warfare. Knowing your contributors so you and your
projects consumers can make risk based decisions about
what to trust just makes for common sense. As with other
sections care has been taken to consider policies in the
context of open-source projects.

Reference Description Basic Standard Advanced

KYC-1 Verify The Identity of All Contributors

Knowing who is contributing to designs and
implementation allows you to place trust in those
individuals. Identity verification can range from
personal verification with known individuals to checking
government issued identification and online systems
like those that use personal and financial information.

X X X

KYC-2 Require Strong Authentication

Using strong authentication such as multiple factors
means a higher level of trust and more confidence in
maintaining the identity chain.

X X X

KYC-3 Roles Based Access and Principle of Least Privilege

Only grant users the permissions to do their job and no
more. Use roles to place users into common groups and
assign permissions to the group rather than to individuals.

X X

CONT >

The Linux Foundation10Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

KYC-4 Implement a Contributor License Agreement

Requiring that all code commits require the completion of
legally enforceable contributor license agreement, raises
the bar on the quality of contributions. Adding security
provisions into the CLA usually leads to a higher level of
assurance.

X X

KYC-5 Publish list of contributors and their contributions

By publishing a complete list of all contributions to the
software, consumers are able to make their own decisions
about what to trust by correlating contributors and their
work. For instance caution can be taken if an unknown
developer contributed complex data handling code.

X

The Linux Foundation11Improving Trust and Security in Open Source Projects

The Software Supply Chain

Attacks on the software supply chain have become
commonplace with adversaries clearly understanding
that they can have a bigger and more effective impact
with less effort than targeting individual systems or
indeed individuals. This section describes how to lock-
down the toolchain and verify things that flow across
it and as with all other sections care has been taken to
consider policies in the context of open-source

projects. Like other sections there are a myriad of
potential additional controls that could be suggested
here but in the spirit of making the TSI something that
could be relatively easily adopted with as little friction
as is necessary for organizations we have chosen what
we consider to the ones that offer the biggest bang for
the buck.

Reference Description Basic Standard Advanced

SC-1 Accept PR’s Only

Git Pull Requests or PR’s should be the only way to get
changes onto master branches. PR’s should implement a
peer review which includes security.

X

SC-2 Use Protected branches

Protected branches should be configured for all projects
to prevent developers making changes without a PR and
to avoid the commit history from being modified.

X X

SC-3 Use Digitally Signed Commits

Git systems can digitally sign commits which provide for
a stronger authentication to verify the committer and
which provides an integrity check on the commit itself.

X X

SC-4 Assign Security Issues Immediately

Security issues should be investigated immediately
triaged and assigned a risk level and an owner before
being acted on in accordance with the risk.

X X X

CONT >

The Linux Foundation12Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

SC-5 Use private issues for security issues.

Use private issues to users to submit security issues.
Security issues should only be seen by the projects
security team until they are ready to be disclosed in
accordance with your disclosure policy.

X X

SC-6 Control the build servers access to infrastructure, code
and packages.

Package managers and build tools and very powerful
and if coerced into malicious behavior can be
dangerous. Build servers need to be setup so they cant
damage infrastructure (including their own hosting),
modify code they are building (beyond optimizations)
and only access trusted packages.

X

SC-7 Use GRAFEAS and SPIFFE to authenticate your build
pipeline ?

NEED RESEARCH
X

SC-8 Use a secrets management system

Never allow secrets to be stored on code and use a
secrets management solution like Hashicorp Vault. Scan
commits to prevent secrets from being committed.

X X

SC-9 Don’t use vulnerable code in libraries.

Block the use of vulnerable packages where you call
vulnerable code in the build process. Implement
software composition analysis (SCA).

X X X

CONT >

The Linux Foundation13Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

SC-10 Use a private package repo

Use a private package repository which contains vetted
and secure libraries. Ensure that the build servers can
only connect to this system. Cache all binaries and
code into this repo to protect from potential upstream
availability issues.

X X

SC-11 Use only valid signed packages

Digitally signed packages provide a higher level of
assurance of who created the software. All major
package systems support signing although to date
few packages sign. Please note PGP as implemented
by maven central is not a good system and should not
satisfy this requirement.

X

SC-12 Verify security of Open Source

Verify the security of others open-source before
incorporating it into your projects. Open source code
should be scanned with SAST, manually review it if
appropriate and look at the projects issue list and history.

X

The Linux Foundation14Improving Trust and Security in Open Source Projects

Technical Security Guidance

Much like the value in having a security policy that
serves as a north star on how you want people to
do security, technical security guidance is needed
to narrow potential solutions down to the ones an
organization feels are appropriate and that provide the
desired level of security. Technical security guidance
has always suffered from two major afflictions. The
first is that the surface area is vast and rapidly changing
meaning documentation is rarely complete and very
often out of date. The second is that when dealing with
software there are many ways to accomplish the

same things and two alternative security solutions
may offer the same level of assurance. In many ways
both fundamental issues are ‘scale’ problems that I
think the Linux Foundation could solve by maintaining
centralized core technical guidance and allowing
organizations to extend and customize it. This would
make an ideal ‘value add” for a subscription based
membership organization. Of course just like other
sections care has been taken to consider policies in the
context of open-source projects.

Reference Description Basic Standard Advanced

MTSG-1 Have an AppSec guide

Have an application security that provides prescriptive
guidance to your developers on how your organization
wants them to avoid common security issues like those
described in the OWASP Top Ten.

X X

MTSG-2 Have an OS security configuration guide

Have a technical guide that provides prescriptive
guidance on how your organization requires OS’s to be
configured, including security latches, accounts and
network configuration.

X X

MTSG-3 Have a cloud security configuration guide

Have a technical guide that provides prescriptive
guidance on how your organization requires your cloud
environment to be configured.

X X

CONT >

The Linux Foundation15Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

MTSG-4 Have language specific security guidelines for all
languages that you use

Provide language specific guidance to avoid security
issues inherent to languages, how to use security
features of languages and provide reusable solutions to
common problems in code.

X

MTSG-5 Have a security architecture best practices

Have a technical guide that provides prescriptive
guidance on how your organization requires your
applications to be designed and architected. Provide
reusable solutions to common problems in code.

X X

MTSG-6 Have a cryptography guide

Have a technical guide that provides prescriptive
guidance on how your organization requires your
applications to use cryptoga[hy. Include crypto libs,
algorithms, key management and key lengths.

X X

The Linux Foundation16Improving Trust and Security in Open Source Projects

Security Playbooks

This sections goal is to define ‘how’ to do specific
security processes, specifically incident response and
vulnerability management processes. Like creating
roles and responsibilities or publishing security policies
this may feel formal, antiquated and old school but
having pre-defined playbooks means that teams can
focus on shipping software and not learning how to do
security, especially at what is usually the time that is
least convenient and most stressful. Like the technical

security guidance I think the Linux Foundation could
develop and maintain a centralized set of playbooks
and allowing organizations to extend and customize
them. This would again make an ideal ‘value add’ for a
subscription based membership organization. And yes
as with other sections care has been taken to consider
the need to document security processes in the context
of open-source projects.

Reference Description Basic Standard Advanced

SP-1 Incident Response Playbook

An incident response playbook should be published that
documents important ways in which an incident should
be handled in your organization including; What is an
incidents (including levels), Roles and Responsibilities,
Service Level Agreement, and Communication Protocols.

X X

SP-2 Vulnerability Management Playbook

A vulnerability management playbook should be
published that documents how the organization
manages vulnerabilities including; Vulnerability types
and severities, Roles and responsibilities, Service Level
Agreement, and Communication Protocols.

X X

The Linux Foundation17Improving Trust and Security in Open Source Projects

Security Testing

This section describes various techniques and levels of
security testing. In this section is a strong preference
for automated testing which scales better, has less friction
and less cost to the teams and aligns well to modern
Continuous Delivery. The section does also cover
some levels of manual testing, either for areas where
currently automation is not available or practical and
or to provide additional or higher levels of assurance
under specific circumstances. Like all sections care has

been taken to consider the need to document security
processes in the context of open-source projects
and it shouldn be worth noting that elsewhere in the
document I recommend the Linux Foundation invests
in building free open-source versions of some of these
tools. High quality free versions do not exist today and
this is an area that if they were available and widely
used the security quality of software they were used on
would likely significantly rise.

Reference Description Basic Standard Advanced

PST-1 Implement security linting on all checkins

“Linting” code can prevent simple security issues such as
developers checking in secret keys or using vulnerable
deprecated functions. It is a low effort, high value
activity that should be done by everyone.

X X X

PST-2 Perform a final manual security review on all major releases.

While “automation is king” the current state of security
tools is poor. Having a skilled human check a release
including confirming that items in this list have been
complete and using domain knowledge for each major
release serves as a valuable additional control gate.

X X X

CONT >

The Linux Foundation18Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

PST-3 Do manual security reviews on all minor releases, having
a skilled human check a release including confirming that
items in this list have been complete and using domain
knowledge serves as a valuable additional control gate.
Perform a final manual security view on all minor release.

Do manual security reviews on all minor releases, having
a skilled human check a release including confirming that
items in this list have been complete and using domain
knowledge serves as a valuable additional control gate.

X X

PST-4 Perform threat modelling on new projects during design

Threat modelling is a process of determining
the potential threats to a system and identifying
countermeasures. Performing threat modeling on new
systems during design helps avoid mistakes typically
found in downstream testing.

X X

PST-5 Perform threat model on all major architectural changes

Performing threat modeling when changes are proposed
to major system architecture or components, helps
avoid mistakes typically found in downstream testing.

X X

PST-6 Use control flow based SAST (Static Analysis Security
Testing) on all major releases

Control flow analysis balances speed and completeness
and can be useful in identifying potential security issues.

X X X

PST-7 Use control flow based SAST on all merges to master

Control flow analysis balances speed and completeness
and can be useful in identifying potential security issues.

X X

CONT >

The Linux Foundation19Improving Trust and Security in Open Source Projects

Reference Description Basic Standard Advanced

PST-8 Use data flow based SAST on all releases

Data flow analysis is usually slow but favors
completeness and can be useful in identifying potential
vulnerabilities.

X X X

PST-9 Use data flow based SAST on all merges to master

Data flow analysis is usually slow but favors
completeness and can be useful in identifying potential
vulnerabilities.

X

PST-10 Use SCA tools

Use Software Composition Analysis (SCA) tools and block
the use of all components where a vulnerable method is
being used and potentially exploitable

X X X

Note: With SAST there is control flow analysis that generates a control flow graph and iterates over it to find potential security
issues. It is faster than data flow analysis but not as complete. Data flow analysis creates a control flow graph and a data flow
graph. This is slower but more complete.

Note: More than 90% of the time vulnerable open source components are being used, the vulnerable parts of the code are not
being called and therefore there is not an immediate vulnerability. Only when the vulnerable method of a vulnerable library is
used should there be considered a vulnerability.

The Linux Foundation20Improving Trust and Security in Open Source Projects

Secure Releases and Updates

The final of the eight best practices is arguably the
most important for end users and in many ways can
be considered the one that will have the most visible
impact. By defining a “secure release” and being
transparent about what went into that definition,
organizations can earn the trust of consumers and
consumers can adopt open-source projects with a
higher degree of confidence. The Certification scheme

that is later in this document proposes that the Linux
Foundation hosts a directory of certified secure
releases and has a process for invalidating releases
when issues are found or incidents occur. In many
ways this is analogous to running a secure open-source
package distribution system, something else I believe
the foundation should consider.

Reference Description Basic Standard Advanced

SRU-1 Have a security release criteria

Having a security release criteria that defines the
security quality of releases means that engineering have
a definition of what is acceptable and that auditors and
users can validate security against this criteria. Criteria
should include processes that have been followed and
results such as no high risk vulnerabilities.

X X X

SRU-2 Digitally sign releases

By digitally signing software releases, users
and tools built around users can verify the identity of the
developers and therefore make decisions about what to
trust.

Note: hashes on web sites and PGP doesn’t count.

X X

SRU-3 Ship a “Security Build Certificate” with with each release.

See the Security Build Certificate section later in this
document.

X X

CONT >

The Linux Foundation21Improving Trust and Security in Open Source Projects

SRU-4 Publish information about and deprecate insecure
versions

Armed with vulnerability information users will almost
always chose safe versions. When vulnerabilities are
found in versions, the organization should deprecate
the version and publish information about the
vulnerabilities.

X X

SRU-5 Implement an automated secure update system

As has been shown in operating systems, users will
take security updates if the mechanism is easy. Free
open source technology such as the Trusted Update
Framework already exists to fulfill this need.

X

The Linux Foundation22Improving Trust and Security in Open Source Projects

A Certification Scheme

There is a real opportunity to build and operate a
“certification Scheme” that is based on the established
model of the Cloud Security Alliance or CSA
(https://cloudsecurityalliance.org/) STAR program
(https://cloudsecurityalliance.org/star/). Here are some
examples from Atlassian, SalesForce and GitHub.

At a high level the CSA publishes a set of criteria much
like the eight best practices that proceed this section in
the document. The CSA then allows software producers
to register for free on their web site and self-certify
with the results being published to a central directory.
The CSA additionally certifies security consultants who
can provide independent assurance.

The scheme works because it has incentives for the
software producers, software consumers and the
security consulting industry.

The advantage to software producers is that they can
point potential customers to a directory location rather

than the tiresome buredon of completing vendor
security questionnaires.

The advantage to consumers is that they can quickly
look in a single directory for answers avoiding
procurement duplication.

The advantage to the security industry is that they
can earn services revenue assessing and remediating
security issues for companies.

The model has worked extremely well for cloud service
providers and I believe a version of this would work
extremely well for open-source software providers. The
foundation could find ways to include levels of access
to material that help an organization get certified such
as security standards (see previous sections) and even
discounts to certified assessors.

https://cloudsecurityalliance.org/
https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/star/registry/atlassian/
https://cloudsecurityalliance.org/star/registry/salesforce-com-inc/
https://cloudsecurityalliance.org/star/registry/github-inc/

The Linux Foundation23Improving Trust and Security in Open Source Projects

Other Security Issues That Need
Investment & Help
This section describes a set of specific security issues that fall outside of the Trustworthy
Security Initiative but represent significant security issues facing the industry and as such need to
be addressed.

Security Build Certificate

One of the greatest challenges the industry faces is being
able to know “how secure” a product is. Today there
is rarely a transparent way to know what has been
done and what the results are leaving consumers to
be “in the dark” and vendors able to hide behind their
own practices often disguised as subjective opinion.
While analogies almost always have flaws, it’s hard to
imagine a car coming off a production line without a
safety certificate yet acceptable that software including
software that goes into the car has no such thing.

I propose that the foundation builds a specification
and a set of tools that produce a certificate that can
be attached to a software release that addresses this.
The certificate would be able to be validated against a
release and allow both a machine and or human to be
able to parse a set of security claims and reproduce
them if needed. For example a security vendor may

claim that they have ran a security tools over the code
base and remediated all high risk findings. A consumer
should be able to replicate this test and verify that this
was indeed the case. The types of verification can and
should include the use of automated security tools like
SAST, DAST and SCA as well as verification of security
processes like the presence of security readmes in
repos and that security response emails are valid.

I am very aware that there are many details that
would need to be figured out and that there would be
significant political alignment required from software
vendors and from security tools vendors, but a scheme
like this could have a significant and lasting effect on
the security quality of open source software and the
internet at large.

The Linux Foundation24Improving Trust and Security in Open Source Projects

The Lack of Good Open Source Security Testing Tools

One of the greatest impediments to the widespread
adoption of security testing tools is the lack of credible
free open-source options and while its true that some
companies like Coverity offer limited free scanning,
commercial tools are cumbersome, not extensible and
don’t fit well with the ethos and culture of open-source
projects. I believe that having high quality free open
source security testing tools would have a significant
impact on open-source projects willingness and
ability to find security issues and I propose that the
foundation invests in developing them.

Static Analysis Security Testing commercial tools can
be as much as a million dollars a year for making them
out of the reach or used sparingly for those that can
afford them. They are also generally produced by
late stage companies that are focused on maximizing
revenue and not innovating or keeping up with the pace
of change of languages and development techniques
like DevOps. No current commercial tools for instance
would work well in a CNCF Cloud Native pipeline based
in Spinnaker and the closed source also means that teams
can’t extend or customize tools to fit their use cases.

A good example is that in the Java community the
FindBugs tool has seen little development for almost
ten years, with frustrated users forking the core code
periodically and that fork then inevitably dying.

There are several promising projects that could be
used as the base for such an effort. All have significant
holes and may well not work together well and so it’s
entirely possible that starting from scratch is a more
sensible approach.

FindSecBugs - https://find-sec-bugs.github.io/

Zap - https://www.owasp.org/index.php/OWASP_
Zed_Attack_Proxy_Project

SRCLib - https://www.owasp.org/index.php/OWASP_
Zed_Attack_Proxy_Project

OWASP Dependency Checker - https://www.owasp.
org/index.php/OWASP_Dependency_Check

OSS Fuzz and ClsuterFuzz - https://github.com/
google/oss-fuzz https://google.github.io/
clusterfuzz/

I would recommend trying to recruit Jacob West to lead
this effort. Jacob is an amazing guy, a first class human,
local to San Francisco, one of the core engineers at
Fortify and co-author of the defacto static analysis
book.

https://find-sec-bugs.github.io/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/google/oss-fuzz https://google.github.io/clusterfuzz/
https://github.com/google/oss-fuzz https://google.github.io/clusterfuzz/
https://github.com/google/oss-fuzz https://google.github.io/clusterfuzz/

The Linux Foundation25Improving Trust and Security in Open Source Projects

Open Source Package Distribution is a Risk to The Internet

Open source package distribution is plain broken. At
the heart of the problem is the fact that commercial
companies have inherited the sites that have become
the defacto distribution systems for languages or
frameworks such as Maven Central and NPMJS. Their
commercial interests do not line up with those of the
Internet at large resulting in a multitude of broken
situations such as:

•	you can not take a complete copy of all free open
source java libraries to analyze their security
without asking SonaType (who will say no).

•	None of the package distribution sites offer /
enforce strong authentication for publishers

•	Sites provide weak signing such as Mavens PGP
which only verifies the publisher owns an email
address.

•	None of the publishers deplecate vulnerable
packages

•	NPMJS offers a free audit service which is
notoriously laden with false positives and appears
to be targeting an upsell into a paid version.

•	All registries have had upstream malware which is
removed on a best efforts basis. No registries to my
knowledge have invested in building technologies
such as those from Google or Apple to protect they
upstream appstores.

I propose the foundation develops and operates a
central library distribution system for all supported
languages and builds in the appropriate security
features.

The Linux Foundation26Improving Trust and Security in Open Source Projects

Vulnerability Disclosure is Broken

Knowing what vulnerabilities exist in open source code
is critical in being able to determine if your code or
code you are consuming is vulnerable. The Common
Vulnerability and Exposure system that was developed
and operated by Mitre has long stood as the defacto
vulnerability disclosure system and central database of
all vulnerabilities.

About a decade ago when development practices started
to change CVE started to become irrelevant and has been
unable to adapt. There are several underlying problems.

Format - The CVE format itself is a human readable
format that is not intended to be parsed by tools and
describe were in code and under what circumstances
a vulnerability can occur. The CVE format was also
created before dependency managers were prevalent
and so have no real notion of the impact of dependent
libraries. As a result CVE’s today are simply pointers
to potential issues and many that would appear to be
correct on the surface are simply not when analyzed.

Disclosure Process - The generally followed and widely
accepted coordinated disclosure process was born from
an IETF draft authored by Chris Wysopal. At the time
we lived in a world of predominantly waterfall created
closed source software created by a relatively small
number of vendors and so the draft aligned to giving
vendors long periods of time behind closed doors to fix
issues. This doesn’t work in an open-source devops world
where bad actors can research potential issues and
hunt for in-flight fixes. We need to rethink disclosure
for the era of devops and open-source and develop a
new IETF style draft that the industry can support.

Scale - CVE was designed in an era when we had a
handful of large software vendors and a handful of
products. As such they would follow process and the

flow of issues was manageable. Today we have millions
of software producers releasing millions of products,
many as open source libraries. When combined with
the speeds of DevOps, most developers today
fix issues inline, sometimes documenting the fix in a
commit log or readme but rarely getting a CVE number
assigned. I am aware of a study conducted for the US
Intelligence community in which it was suggested that
there are approximately 250,000 vulnerabilities in open
source libraries compared to the approximateoy 10,000
disclosed through the CVE system.

Commercial Conflicts - Vulnerabilities that can be
exploited have a very large value on the dark market.
So called Zero day vulnerabilities in popular software
that can give root or equivalent access can sell for as
much as a million dollars a time. Software Composition
Vendors have found that searching for what have
become know as half-days (in plain sight in commit
comments and similar if you know where to look) are
a valuable differentiator and security researchers are
able to monetize zero days into a profitable business.
Malware gangs continue to exploit these issues and
we are starting to see some uses in the creation of
ransomware.

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

	Summary
	Overview
	The Eight Best Practices
	Roles and Responsibilities
	Security Policy
	Know Your Contributors
	The Software Supply Chain
	Technical Security Guidance
	Security Playbooks
	Security Testing
	Secure Releases and Updates

	A Certification Scheme
	Other Security Issues That Need Investment & Help
	Security Build Certificate
	The Lack of Good Open Source Security Testing Tools
	Open Source Package Distribution is a Risk to The Internet
	Vulnerability Disclosure is Broken

