Skip to content
Switch branches/tags

Latest commit

* modify atari install description on mac

* Installation according to 'bash' and 'zsh'

Git stats


Failed to load latest commit information.
Latest commit message
Commit time


license badge

Hello WoRLd!! Join Our Reinforcement Learning framework for Developing Yours (JORLDY) is an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise. It is named after Jordy, one of the Kakao Niniz character. It provides various RL algorithms and environment and they can be easily used using single code. This repository is opened for helping RL researchers and students who study RL.

🔥 Features

  • 20+ RL Algorithms and various RL environment are provided
  • Algorithms and environment are customizable
  • New algorithms and environment can be added
  • Distributed RL algorithms are provided using ray
  • Benchmark of the algorithms is conducted in many RL environment

✔️ Tested

Python Windows Mac Linux
Windows Server 2022 macOS Big Sur 11
macOS Catalina 10.15
Ubuntu 20.04
Ubuntu 18.04

⬇️ Installation

git clone  
pip install -r requirements.txt

# linux
apt-get update 
apt-get -y install libgl1-mesa-glx # for opencv
apt-get -y install libglib2.0-0    # for opencv
apt-get -y install gifsicle        # for gif optimize

🐳 To use docker

(customize if necessary)


docker pull jorldy/jorldy

# mac, linux
docker run -it --rm --name jorldy -v `pwd`:/JORLDY jorldy/jorldy /bin/bash

# windows
docker run -it --rm --name jorldy -v %cd%:/JORLDY jorldy/jorldy /bin/bash

To use additional environments

- Atari and Super Mario Bros

atari and super-mario-bros need to be installed manually due to licensing issues

# To use atari(bash)
pip install --upgrade gym[atari,accept-rom-license]

# To use atari(zsh)
pip install --upgrade 'gym[atari,accept-rom-license]'
# To use super-mario-bros
pip install gym-super-mario-bros

- Mujoco (Mac and Linux only)

Mujoco is supported in docker. However, if you don't use docker, several subprocesses should be done. Please refer to the mujoco-py github installation

🚀 Getting started

cd jorldy

# Examples: python [run mode] --config [config path]
python --config config.dqn.cartpole
python --async --config config.ape_x.cartpole

# Examples: python [run mode] --config [config path] --[optional parameter key] [parameter value]
python --config config.rainbow.atari breakout
python --sync --config config.ppo.cartpole --train.num_workers 8

🗂️ Release

Version Release Date Source Release Note
0.5.0 April 18, 2022 Source Release Note
0.4.0 April 01, 2022 Source Release Note
0.3.0 March 10, 2022 Source Release Note
0.2.0 January 23, 2022 Source Release Note
0.1.0 December 23, 2021 Source Release Note

🔍 How to

📄 Documentation

👥 Contributors

📫 Contact:

leonard ramanuzan kan erinn
(Kyushik Min)
(Hyunho Lee)
(Kwansu Shin)
(Taehak Lee)
link royce crest lisa
(Hojoon Lee)
(Jinwon Choi)
(Sungho Son)
(Eunkyeong Kim)

🏷️ Citation

  title={JORLDY: a fully customizable open source framework for reinforcement learning},
  author={Min, Kyushik and Lee, Hyunho and Shin, Kwansu and Lee, Taehak and Lee, Hojoon and Choi, Jinwon and Son, Sungho},
  journal={arXiv preprint arXiv:2204.04892},

©️ License

Apache License 2.0

🚫 Disclaimer

Installing in JORLDY and/or utilizing algorithms or environments not provided KEP may involve a use of third party’s intellectual property. It is advisable that a user obtain licenses or permissions from the right holder(s), if necessary, or take any other necessary measures to avoid infringement or misappropriation of third party’s intellectual property rights.