

KALDI GPU ACCELERATION

GTC - March 2019

AGENDA

- 1) Brief introduction to speech processing
- 2) What we have done?
- 3) How can I use it?

INTRODUCTION TO ASR Translating Speech into Text

Speech Recognition: the process of taking a raw audio signal and transcribing to text

Use of Automatic Speech Recognition has exploded in the last ten years:

Personal assistants, Medical transcription, Call center analytics, Video search, etc

SPEECH RECOGNITION

State of the Art

- Kaldi fuses known state-of-the-art techniques from speech recognition with deep learning
- Hybrid DL/ML approach continues to perform better than deep learning alone
- "Classical" ML Components:
 - Mel-Frequency Cepstral Coefficients (MFCC) features represent audio as spectrum of spectrum
 - I-vectors Uses factor analysis, Gaussian Mixture Models to learn speaker embedding helps acoustic model adapt to variability in speakers
 - Predict phone states HMM Unlike "end-to-end" DL models, Kaldi Acoustic Models predict context-dependent phone substates as Hidden Markov Model (HMM) states
- Result is system that, to date, is more robust than DL-only approaches and typically requires less data to train

KALDI Speech Processing Framework

Kaldi is a speech processing framework out of Johns Hopkins University

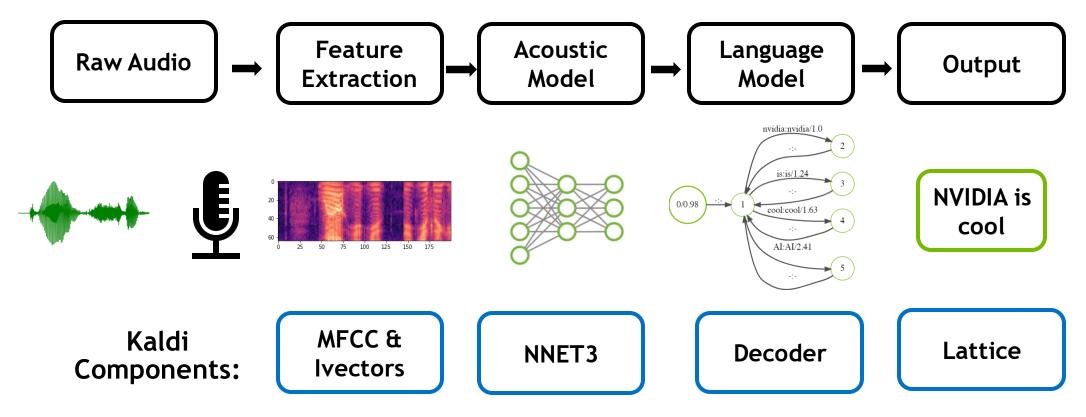
Uses a combination of DL and ML algorithms for speech processing

Started in 2009 with the intent to reduce the time and cost needed to build ASR systems http://kaldi-asr.org/

Maintained by Dan Povey

Considered state-of-the-art

KALDI SPEECH PROCESSING PIPELINE



FURTHER READING

"Speech Recognition with Kaldi Lectures." *Dan Povey*, <u>www.danielpovey.com/kaldi-lectures.html</u>

Deller, John R., et al. *Discrete-Time Processing of Speech Signals*. Wiley IEEE Press Imprint, 1999.

WHAT HAVE WE DONE?

PREVIOUS WORK

Partnership between Johns Hopkins University and NVIDIA in October 2017

Goal: Accelerate Inference processing using GPUs

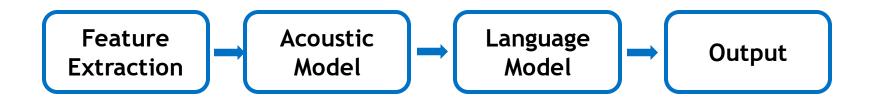
Used CPU for entire pipeline

NVIDIA Progress reports:

GTC On Demand: DC8189, S81034

https://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

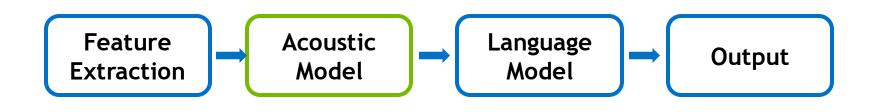
INITIAL WORK



First Step: Move Acoustic Model to GPU

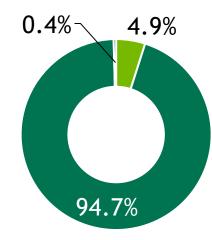
Was already implemented but not enabled, batch NNET3 added by Dan Povey

Enabled Tensor-Cores for NNET3 processing



INITIAL WORK

Early on it was clear that we needed to target language model decoding



- Acoustic model (GPU)
- Language model (CPU)
- Feature extraction (CPU)

LANGUAGE MODEL CHALLENGES

Dynamic Problem:

Amount of parallelism changes significantly throughout decode

Can have few or many candidates moving from frame to frame

Limited Parallelism:

Even when there are lots of candidates the amount of parallelism is orders of magnitude smaller than required to saturate a large GPU

Solution:

1) Use graph processing techniques and a GPU-friendly data layout to maximize parallelism while load balancing across threads (See previous talks)

2) Process batches of decodes at a time in a single pipeline

3) Use multiple threads for multiple batched-pipelines

CHALLENGES

Kaldi APIs are single threaded, single instance, and synchronous

Makes batching and multi-threading challenging

Solution:

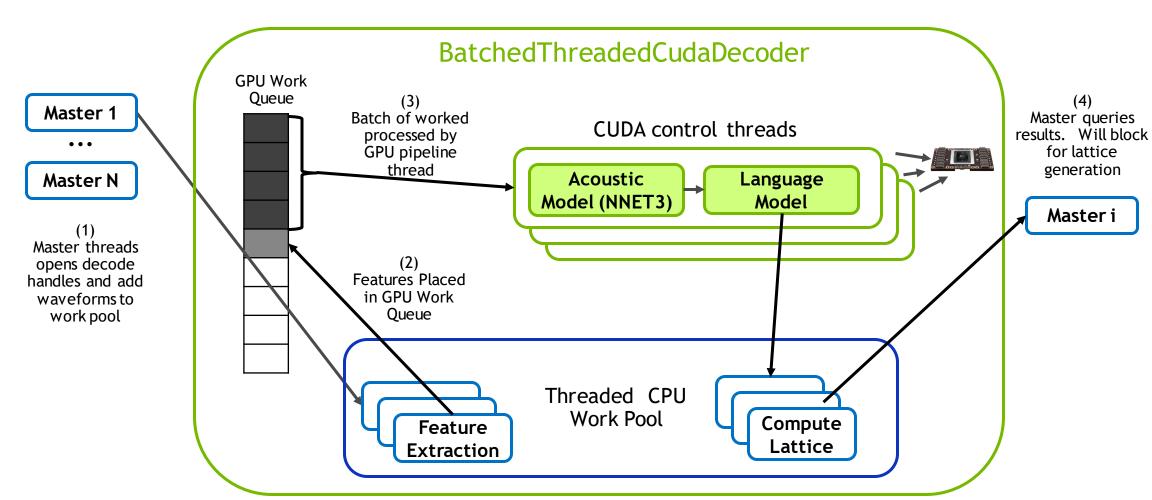
Create a CUDA-enabled Decoder with asynchronous APIs Master threads submit work and later wait for that work Batching/Multi-threading occur transparently to the user

EXAMPLE DECODER USAGE

More Details: kaldi-src/cudadecoder/README

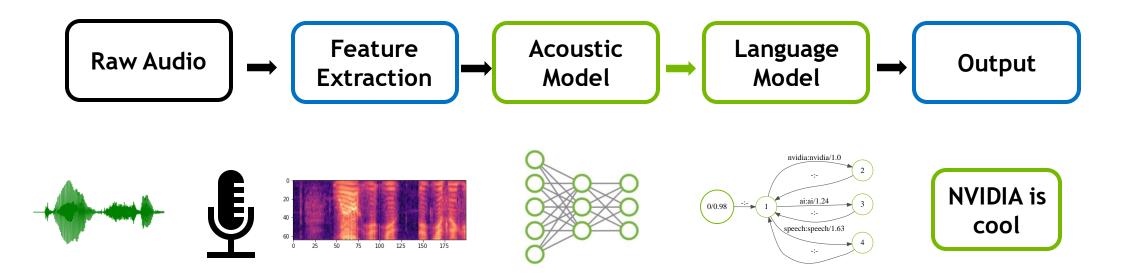
```
for ( ... ) {
    //Enqueue decode for unique "key"
    CudaDecoder.OpenDecodeHandle(key, wave_data);
    ...
}
for ( ... ) {
    //Query results for "key"
    CudaDecoder.GetLattice(key, &lattice);
    ...
```

GPU ACCELERATED WORKFLOW



KALDI SPEECH PROCESSING PIPELINE

GPU Accelerated



BENCHMARK DETAILS LibriSpeech

Model:

LibriSpeech - TDNN: <u>https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech</u>

Data: LibriSpeech - Clean/Other: http://www.openslr.org/12/

Hardware:

CPU: 2x Intel Xeon Platinum 8168

NVIDIA GPUs: V100, T4, or Xavier AGX

Benchmarks:

CPU: online2-wav-nnet3-latgen-faster.cc (modified for multi-threading)

Online decoding disabled

GPU: batched-wav-nnet3-cuda.cc

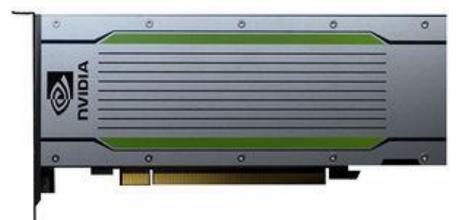
2 GPU control threads, batch=100

TESLA V100 World's Most Advanced Data Center GPU

5,120 CUDA cores 640 Tensor cores 7.8 FP64 TFLOPS 15.7 FP32 TFLOPS 125 Tensor TFLOPS 20MB SM RF 16MB Cache 32 GB HBM2 @ 900GB/s 300GB/s NVLink

TESLA T4 World's most advanced scale-out GPU

2,560 CUDA Cores 320 Turing Tensor Cores 65 FP16 TFLOPS 130 INT8 TOPS 260 INT4 TOPS 16GB | 320GB/s 70 W



JETSON AGX XAVIER

World's first AI computer for Autonomous Machines

Al Server Performance in 30W • 15W • 10W 512 Volta CUDA Cores • 2x NVDLA 8 core CPU 32 DL TOPS • 750 Gbps SerDes

2x Xeon*: 2x Intel Xeon Platinum 8168, 410W, ~\$13000 Xavier: AGX Devkit, 30W, \$1299 T4*: PCI-E, (70+410)W, ~\$(2000+13000) V100*: SXM, (300W+410), ~\$(9000+13000)

KALDI PERFORMANCE

1 GPU, LibriSpeech

Determinized Lattice Output beam=10 lattice-beam=7 Uses all available HW threads

Hardware	Perf (RTFx)	WER	Perf	Perf/\$	Perf/watt							
LibriSpeech Model, Libri Clean Data												
2x Intel Xeon	381	5.5	1.0x	1.0x	1.0x							
AGX Xavier	500	5.5	1.3x	13.1x	17.9x							
Tesla T4	1635	5.5	4.3x	3.7x	3.7x							
Tesla V100	3524	5.5	9.2x	5.5x	5.3x							
LibriSpeech Model, Libri Other Data												
2x Intel Xeon	377	14.0	1.0x	1.0x	1.0x							
AGX Xavier	450	14.0	1.2x	11.9x	16.3x							
Tesla T4	1439	14.0	3.8 x	3.3x	3.3x							
Tesla V100	2854	14.0	7.6x	4.5x	4.4x							

*Price/Power, not including, system, memory, storage, etc, price is an estimate

INCREASING VALUE

Amortizing System Cost

Adding more GPUs to a single system increases value

Less system cost overhead

Less system power overhead

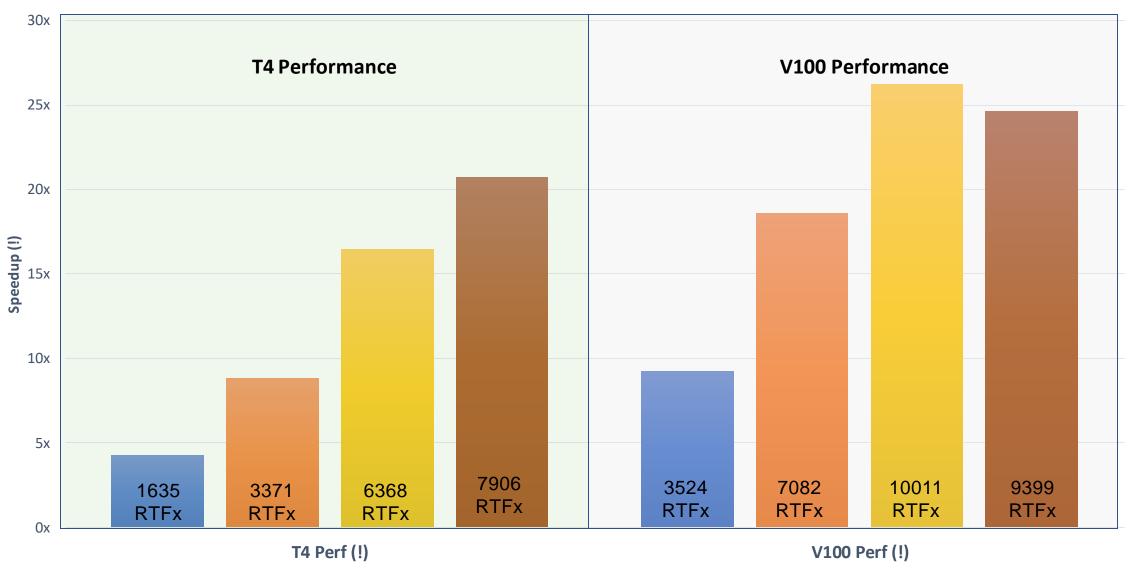
Dense systems are the new norm:

DGX1V: 8 V100s in a single node

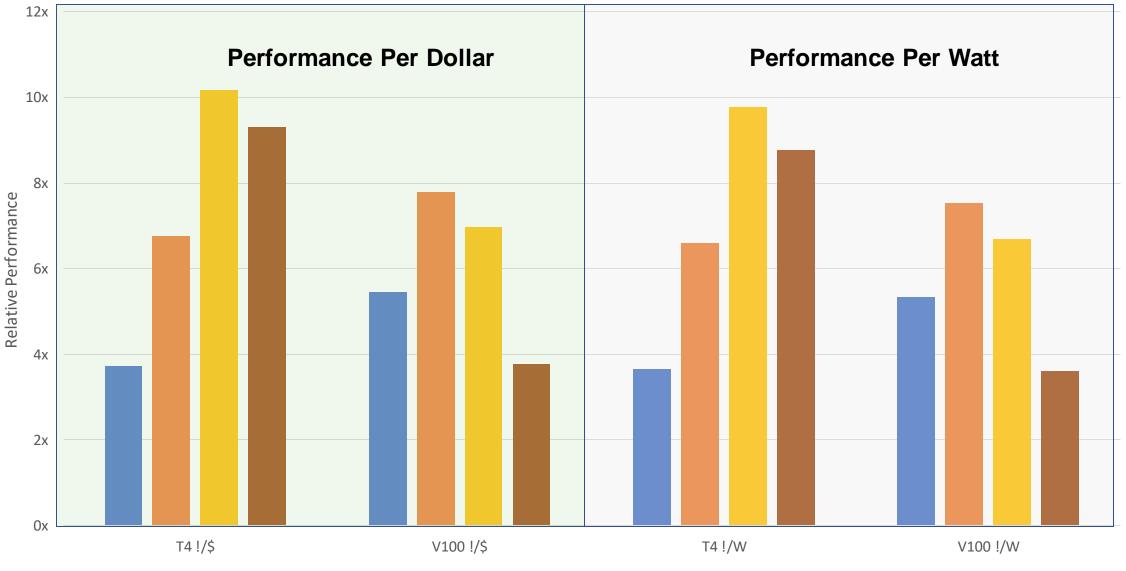
DGX-2: 16 V100s in a single node

SuperMicro 4U SuperServer 6049GP-TRT: 20 T4s in a single node

Kaldi Inferencing Speedup Relative to 2x Intel 8168



Kaldi Inferencing Performance Relative to 2x Intel 8168



■ 1 GPU ■ 2 GPUs ■ 4 GPUs ■ 8 GPUs

PERFORMANCE LIMITERS

Cannot feed the beast

Feature Extraction and Determinization become bottlenecks CPU has a hard time keeping up with GPU performance Small kernel launch overhead

Kernels typically only run for a few microseconds

Launch latency can become dominant

Avoid this by using larger batch sizes (larger memory GPUs are crucial)

FUTURE WORK

GPU Accelerated Feature Extraction

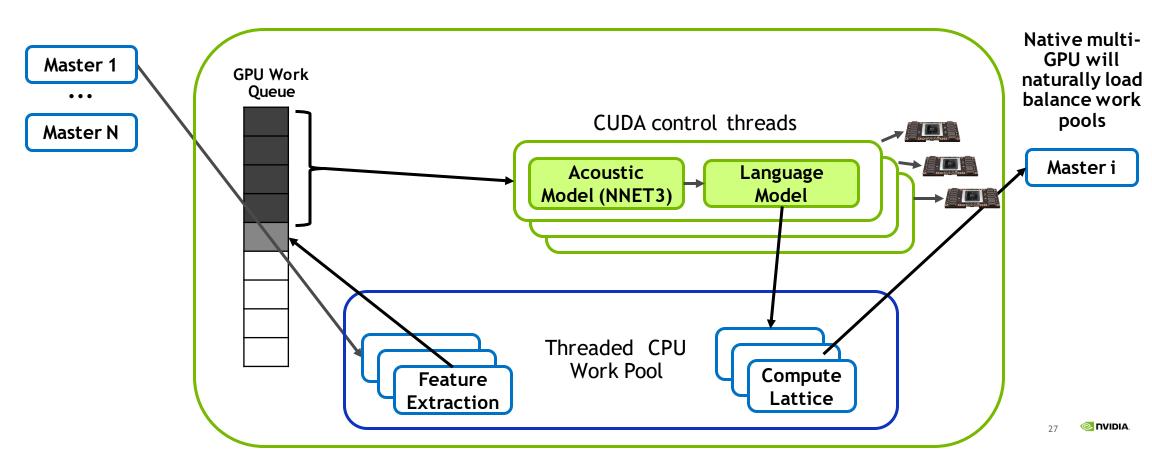


Feature Extraction on GPU is a natural next step: algorithms map well to GPUs

Allows us to increase density and therefore value

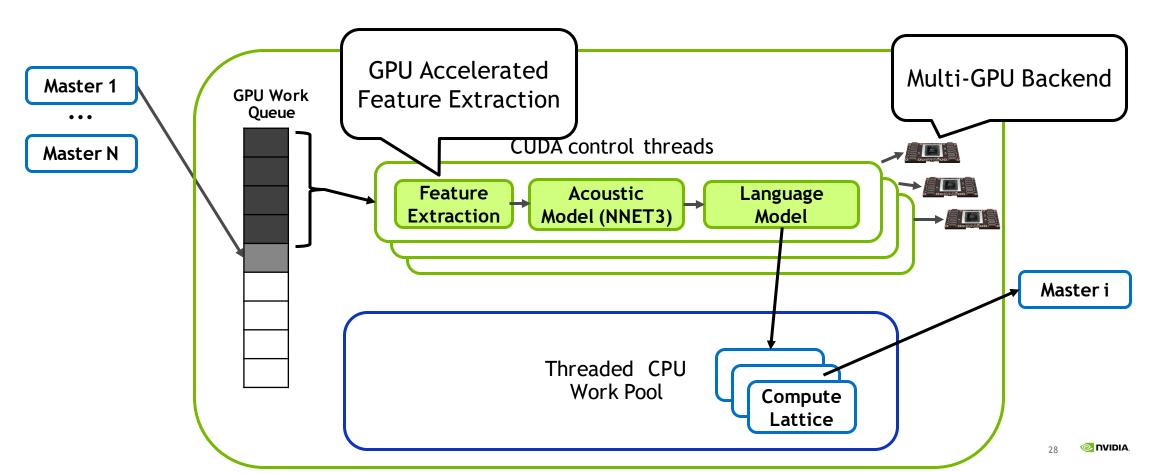
FUTURE WORK

Native Multi-GPU Support



FUTURE WORK

Where We Want To Be



HOW CAN I USE IT?

HOW TO GET STARTED 2 Methods

1) Download Kaldi, Pull in PR, Build yourself

https://github.com/kaldi-asr/kaldi/pull/3114

2) Run NVIDIA GPU Cloud Container

Get up and running in less than 10 minutes!

THE NGC CONTAINER REGISTRY

Simple Access to GPU-Accelerated Software

Discover over 40 GPU-Accelerated Containers Spanning deep learning, machine learning, HPC applications, HPC visualization, and more

Innovate in Minutes, Not Weeks Pre-configured, ready-to-run

Run Anywhere

The top cloud providers, NVIDIA DGX Systems, PCs and workstations with select NVIDIA GPUs, and NGC-Ready systems

NGC CONTAINER Free & Easy

Get an NGC account: <u>https://ngc.nvidia.com/signup</u>

```
#login in to NGC, pull container, and run it
%> docker login nvcr.io
%> docker pull nvcr.io/nvidia/kaldi:19.03-py3
%> docker run --rm -it nvcr.io/nvidia/kaldi:19.03-py3
#prepare models and data
%> cd /workspace/nvidia-examples/librispeech
%> ./prepare data.sh
#run benchmarks
%> ./run benchmark.sh
%> ./run multigpu benchmark.sh 4
```

22

BENCHMARK OUTPUT

NGC Container

```
BENCHMARK SUMMARY:
  test set: test clean
    Overall: Aggregate Total Time: 55.1701 Total Audio: 194525 RealTimeX: 3525.91
      %WER 5.53 [ 2905 / 52576, 386 ins, 230 del, 2289 sub ]
      %SER 51.30 [ 1344 / 2620 ]
      Scored 2620 sentences, 0 not present in hyp.
  test set: test other
    Overall: Aggregate Total Time: 64.7724 Total Audio: 192296 RealTimeX: 2968.79
      %WER 13.97 [ 7314 / 52343, 850 ins, 730 del, 5734 sub ]
      %SER 73.94 [ 2173 / 2939 ]
      Scored 2939 sentences, 0 not present in hyp.
Running test clean on 4 GPUs with 24 threads per GPU
GPU: 0 RTF: 2469.55
GPU: 1 RTF: 2472.81
GPU: 2 RTF: 2519.33
GPU: 3 RTF: 2515.81
Total RTF: 9977.50 Average RTF: 2494.3750
```

NVIDIA GPUS ARE ON EVERY CLOUD

Over 30 Offerings Across USA and China

	K520	K80	P40	M60	Ρ4	P100	T4	V100	NGC
Alibaba Cloud					•	•		•	•
aws AW S	•	•		•				•	•
Baidu Cloud			•		•		•		
Google Cloud		•			•	•	•	•	•
للله BM Cloud		•		•		•		•	
📑 Microsoft Azure		•	•	•		•		•	•
ORACLE Claud Infrastructure Oracle Cloud						•		•	•
🔗 Tencent Cloud			•		•				

CONTAINER FUTURE WORK

Add more models

Add scripts to help users run quickly on their own models

NUMA pinning

Continue to update Kaldi source with latest updates

KALDI CHANGES

Source Layout

https://github.com/kaldi-asr/kaldi/pull/3114

Added two new directories to source tree

cudadecoder/*:

Implements framework/library classes for use in applications

cudadecoder/README: Detailed documentation on how to use

cudadecoderbin/*:

Binary example using cuda-accelerated decoder

TUNING PERFORMANCE

Functional Parameters

determinize-lattice:

determinize lattice in CPU pool or not

If not determinized in CPU pool master thread will determinize if GetLattice is called

beam:

width of beam during search

Smaller beam = faster but possibly less accuracy

lattice_beam:

width of lattice beam before determinization

Smaller beam = smaller lattice, less I/O, less determinization time

TUNING PERFORMANCE

GPU Performance

cuda-control-threads:

number of concurrent CPU threads controlling a single GPU pipeline

Typically 2-4 is ideal (more = more GPU memory and less batch size)

cuda-worker-threads:

number of CPU threads in the CPU workpool, should use all CPU resources available **max-batch-size**:

maximum batch size per pipeline (more = more GPU memory and less control threads) Want as large as memory allows (<200 is currently possible)

batch-drain-size:

how far to drain a batch before refilling (batches NNET3) typically 20% of max-batch-size works well

cuda-use-tensor-cores:

Turn on Tensor Cores (FP16)

TUNING PERFORMANCE

Memory Utilization

max-outstanding-queue-length:

Length of GPU work queue, Consumes CPU memory only

ntokens-preallocated:

Preallocated host memory to store output, CPU memory only

Will grow dynamically if needed

max-tokens-per-frame:

Maximum tokens in GPU memory per frame

Cannot resize, will reduce accuracy if it fills up

max-active:

maximum number of arcs retained in a given frame (keeping only the max-active best ones) Less = faster & less accurate

AUTHORS

Hugo Braun is a Senior AI Developer Technology Engineer at NVIDIA. With a background in mathematics and physics, he has been working on performance-oriented machine learning algorithms. His work at NVIDIA focuses on the design and implementation of high-performance GPU algorithms, specializing in deep learning and graph analytics. He holds a M.S. in Mathematics and Computer Science from Ecole Polytechnique, France.

Justin Luitjens is a Senior Developer Technology Engineer at NVIDIA. He has spent the last 16 years working on HPC applications with the last 8 focusing directly on CUDA acceleration at NVIDIA. He holds a Ph.D. in Scientific Computing from the University of Utah, a Bachelor of Science in Computer Science from Dakota State University and a Bachelor of Science in Mathematics for Information Systems from Dakota State University.

Ryan Leary is a Senior Applied Research Scientist specializing in speech recognition and natural language processing at NVIDIA. He has published research in peer-reviewed venues on machine learning techniques tailored for scalability and performance as well as natural language processing for health applications. He holds a M.S. in Electrical & Computer Engineering from Johns Hopkins University, and a Bachelor of Science in Computer Science from Rensselaer Polytechnic Institute.

