
GTC - March 2019

KALDI GPU ACCELERATION

2

AGENDA

1) Brief introduction to speech processing

2) What we have done?

3) How can I use it?

3

Speech Recognition: the process of taking a raw audio signal and transcribing to text

Use of Automatic Speech Recognition has exploded in the last ten years:

Personal assistants, Medical transcription, Call center analytics, Video search, etc

INTRODUCTION TO ASR
Translating Speech into Text

NVIDIA is

cool
0/0.98 1

-:-

2

nvidia:nvidia/1.0

3ai:ai/1.24

4

speech:speech/1.63

-:-

-:-

-:-

4

SPEECH RECOGNITION

• Kaldi fuses known state-of-the-art techniques from speech recognition with deep learning

• Hybrid DL/ML approach continues to perform better than deep learning alone

• "Classical" ML Components:

• Mel-Frequency Cepstral Coefficients (MFCC) features – represent audio as spectrum of spectrum

• I-vectors – Uses factor analysis, Gaussian Mixture Models to learn speaker embedding – helps
acoustic model adapt to variability in speakers

• Predict phone states – HMM - Unlike "end-to-end" DL models, Kaldi Acoustic Models predict
context-dependent phone substates as Hidden Markov Model (HMM) states

• Result is system that, to date, is more robust than DL-only approaches and typically requires less data
to train

State of the Art

5

KALDI

Kaldi is a speech processing framework out of Johns Hopkins University

Uses a combination of DL and ML algorithms for speech processing

Started in 2009 with the intent to reduce the time and cost needed to build ASR systems

http://kaldi-asr.org/

Maintained by Dan Povey

Considered state-of-the-art

Speech Processing Framework

http://kaldi-asr.org/

6

KALDI SPEECH PROCESSING PIPELINE

NVIDIA is

cool

Raw Audio
Feature

Extraction

Acoustic

Model

Language

Model
Output

MFCC &

Ivectors
NNET3 DecoderKaldi

Components:
Lattice

7

FURTHER READING

“Speech Recognition with Kaldi Lectures.” Dan Povey, www.danielpovey.com/kaldi-
lectures.html

Deller, John R., et al. Discrete-Time Processing of Speech Signals. Wiley IEEE Press Imprint,
1999.

http://www.danielpovey.com/kaldi-lectures.html

8

WHAT HAVE WE
DONE?

9

PREVIOUS WORK

Partnership between Johns Hopkins University and NVIDIA in October 2017

Goal: Accelerate Inference processing using GPUs

Used CPU for entire pipeline

NVIDIA Progress reports:

GTC On Demand: DC8189, S81034

https://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

https://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

10

INITIAL WORK

First Step: Move Acoustic Model to GPU

Was already implemented but not enabled, batch NNET3 added by Dan Povey

Enabled Tensor-Cores for NNET3 processing

Feature

Extraction

Acoustic

Model

Language

Model
Output

Feature

Extraction

Acoustic

Model

Language

Model
Output

11

INITIAL WORK

Feature

Extraction

Acoustic

Model

Language

Model
Output

4.9%

94.7%

0.4%
Acoustic model
(GPU)

Language model
(CPU)

Feature
extraction (CPU)

Early on it was clear that we needed to
target language model decoding

12

LANGUAGE MODEL CHALLENGES

Dynamic Problem:

Amount of parallelism changes significantly throughout decode

Can have few or many candidates moving from frame to frame

Limited Parallelism:

Even when there are lots of candidates the amount of parallelism is orders of
magnitude smaller than required to saturate a large GPU

Solution:

1) Use graph processing techniques and a GPU-friendly data layout to maximize
parallelism while load balancing across threads (See previous talks)

2) Process batches of decodes at a time in a single pipeline

3) Use multiple threads for multiple batched-pipelines

13

CHALLENGES

Kaldi APIs are single threaded, single instance, and synchronous

Makes batching and multi-threading challenging

Solution:

Create a CUDA-enabled Decoder with asynchronous APIs

Master threads submit work and later wait for that work

Batching/Multi-threading occur transparently to the user

14

EXAMPLE DECODER USAGE

for (…) {

…

//Enqueue decode for unique “key”

CudaDecoder.OpenDecodeHandle(key, wave_data);

…

}

for (…) {

…

//Query results for “key”

CudaDecoder.GetLattice(key, &lattice);

…

}

More Details: kaldi-src/cudadecoder/README

15

GPU ACCELERATED WORKFLOW

...

(1)
Master threads
opens decode

handles and add
waveforms to

work pool

(2)
Features Placed

in GPU Work
Queue

Master 1

Master N

(4)
Master queries

results. Will block
for lattice
generation

Master i

BatchedThreadedCudaDecoder
GPU Work

Queue

Threaded CPU
Work PoolFeature

Extraction

(3)
Batch of worked

processed by
GPU pipeline

thread

CUDA control threads

Acoustic

Model (NNET3)

Language

Model

Compute

Lattice

16

KALDI SPEECH PROCESSING PIPELINE
GPU Accelerated

NVIDIA is

cool
0/0.98 1

-:-

2

nvidia:nvidia/1.0

3ai:ai/1.24

4

speech:speech/1.63

-:-

-:-

-:-

Raw Audio
Feature

Extraction

Acoustic

Model

Language

Model
Output

17

BENCHMARK DETAILS

Model:

LibriSpeech - TDNN: https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech

Data: LibriSpeech - Clean/Other: http://www.openslr.org/12/

Hardware:

CPU: 2x Intel Xeon Platinum 8168

NVIDIA GPUs: V100, T4, or Xavier AGX

Benchmarks:

CPU: online2-wav-nnet3-latgen-faster.cc (modified for multi-threading)

Online decoding disabled

GPU: batched-wav-nnet3-cuda.cc

2 GPU control threads, batch=100

LibriSpeech

https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech
http://www.openslr.org/12/

18

TESLA V100
World’s Most Advanced
Data Center GPU

5,120 CUDA cores

640 Tensor cores
7.8 FP64 TFLOPS
15.7 FP32 TFLOPS

125 Tensor TFLOPS
20MB SM RF

16MB Cache
32 GB HBM2 @ 900GB/s
300GB/s NVLink

19

2,560 CUDA Cores

320 Turing Tensor Cores
65 FP16 TFLOPS
130 INT8 TOPS

260 INT4 TOPS
16GB | 320GB/s

70 W

TESLA T4
World’s most advanced
scale-out GPU

20

JETSON AGX XAVIER
World’s first AI computer for
Autonomous Machines

AI Server Performance in

30W 15W 10W

512 Volta CUDA Cores 2x NVDLA

8 core CPU

32 DL TOPS • 750 Gbps SerDes

21

KALDI PERFORMANCE
1 GPU, LibriSpeech

2x Xeon*: 2x Intel Xeon Platinum 8168, 410W, ~$13000
Xavier: AGX Devkit, 30W, $1299
T4*: PCI-E, (70+410)W, ~$(2000+13000)
V100*: SXM, (300W+410), ~$(9000+13000)

*Price/Power, not including, system, memory, storage, etc, price is an estimate

Determinized Lattice Output
beam=10

lattice-beam=7
Uses all available HW threads

Hardware Perf (RTFx) WER Perf Perf/$ Perf/watt

LibriSpeech Model, Libri Clean Data

2x Intel Xeon 381 5.5 1.0x 1.0x 1.0x

AGX Xavier 500 5.5 1.3x 13.1x 17.9x

Tesla T4 1635 5.5 4.3x 3.7x 3.7x

Tesla V100 3524 5.5 9.2x 5.5x 5.3x

LibriSpeech Model, Libri Other Data

2x Intel Xeon 377 14.0 1.0x 1.0x 1.0x

AGX Xavier 450 14.0 1.2x 11.9x 16.3x

Tesla T4 1439 14.0 3.8x 3.3x 3.3x

Tesla V100 2854 14.0 7.6x 4.5x 4.4x

22

INCREASING VALUE

Adding more GPUs to a single system increases value

Less system cost overhead

Less system power overhead

Dense systems are the new norm:

DGX1V: 8 V100s in a single node

DGX-2: 16 V100s in a single node

SuperMicro 4U SuperServer 6049GP-TRT: 20 T4s in a single node

Amortizing System Cost

0x

5x

10x

15x

20x

25x

30x

T4 Perf (!) V100 Perf (!)

S
p

e
e

d
u

p
 (!

)
Kaldi Inferencing Speedup Relative to 2x Intel 8168

1 GPU 2 GPUs 4 GPUs 8 GPUs

T4 Performance V100 Performance

1635

RTFx

3371

RTFx

6368

RTFx

7906

RTFx
3524

RTFx

7082

RTFx

10011

RTFx

9399

RTFx

0x

2x

4x

6x

8x

10x

12x

T4 !/$ V100 !/$ T4 !/W V100 !/W

R
el

at
iv

e
Pe

rf
o

rm
an

ce
Kaldi Inferencing Performance Relative to 2x Intel 8168

1 GPU 2 GPUs 4 GPUs 8 GPUs

Performance Per Dollar Performance Per Watt

25

PERFORMANCE LIMITERS

Cannot feed the beast

Feature Extraction and Determinization become bottlenecks

CPU has a hard time keeping up with GPU performance

Small kernel launch overhead

Kernels typically only run for a few microseconds

Launch latency can become dominant

Avoid this by using larger batch sizes (larger memory GPUs are crucial)

26

FUTURE WORK

Feature Extraction on GPU is a natural next step: algorithms map well to GPUs

Allows us to increase density and therefore value

GPU Accelerated Feature Extraction

NVIDIA is

cool
0/0.98 1

-:-

2

nvidia:nvidia/1.0

3ai:ai/1.24

4

speech:speech/1.63

-:-

-:-

-:-

Raw Audio
Feature

Extraction

Acoustic

Model

Language

Model
Output

27

FUTURE WORK
Native Multi-GPU Support

...
Master 1

Master N

Master i

GPU Work
Queue

Threaded CPU
Work PoolFeature

Extraction

CUDA control threads

Acoustic

Model (NNET3)

Language

Model

Compute

Lattice

Native multi-
GPU will

naturally load
balance work

pools

28

FUTURE WORK
Where We Want To Be

...
Master 1

Master N

Master i

GPU Work
Queue

Threaded CPU
Work Pool

CUDA control threads

Acoustic

Model (NNET3)

Language

Model

Compute

Lattice

Feature

Extraction

GPU Accelerated

Feature Extraction
Multi-GPU Backend

29

HOW CAN I USE IT?

30

HOW TO GET STARTED

1) Download Kaldi, Pull in PR, Build yourself

https://github.com/kaldi-asr/kaldi/pull/3114

2) Run NVIDIA GPU Cloud Container

Get up and running in less than 10 minutes!

2 Methods

https://github.com/kaldi-asr/kaldi/pull/3114

31

THE NGC CONTAINER REGISTRY

Discover over 40 GPU-Accelerated Containers
Spanning deep learning, machine learning, HPC
applications, HPC visualization, and more

Innovate in Minutes, Not Weeks
Pre-configured, ready-to-run

Run Anywhere
The top cloud providers, NVIDIA DGX Systems,
PCs and workstations with select
NVIDIA GPUs, and NGC-Ready systems

Simple Access to GPU-Accelerated Software

32

NGC CONTAINER

Get an NGC account: https://ngc.nvidia.com/signup

Free & Easy

#login in to NGC, pull container, and run it

%> docker login nvcr.io

%> docker pull nvcr.io/nvidia/kaldi:19.03-py3

%> docker run --rm -it nvcr.io/nvidia/kaldi:19.03-py3

#prepare models and data

%> cd /workspace/nvidia-examples/librispeech

%> ./prepare_data.sh

#run benchmarks

%> ./run_benchmark.sh

%> ./run_multigpu_benchmark.sh 4

https://ngc.nvidia.com/signup

BENCHMARK OUTPUT
NGC Container

BENCHMARK SUMMARY:

test_set: test_clean

Overall: Aggregate Total Time: 55.1701 Total Audio: 194525 RealTimeX: 3525.91

%WER 5.53 [2905 / 52576, 386 ins, 230 del, 2289 sub]

%SER 51.30 [1344 / 2620]

Scored 2620 sentences, 0 not present in hyp.

test_set: test_other

Overall: Aggregate Total Time: 64.7724 Total Audio: 192296 RealTimeX: 2968.79

%WER 13.97 [7314 / 52343, 850 ins, 730 del, 5734 sub]

%SER 73.94 [2173 / 2939]

Scored 2939 sentences, 0 not present in hyp.

Running test_clean on 4 GPUs with 24 threads per GPU

GPU: 0 RTF: 2469.55

GPU: 1 RTF: 2472.81

GPU: 2 RTF: 2519.33

GPU: 3 RTF: 2515.81

Total RTF: 9977.50 Average RTF: 2494.3750

34

NVIDIA GPUS ARE ON EVERY CLOUD

K520 K80 P40 M60 P4 P100 T4 V100 NGC

Alibaba Cloud

AWS

Baidu Cloud

Google Cloud

IBM Cloud

Microsoft Azure

Oracle Cloud

Tencent Cloud

Over 30 Offerings Across USA and China

https://aws.amazon.com/canada/

35

CONTAINER FUTURE WORK

Add more models

Add scripts to help users run quickly on their own models

NUMA pinning

Continue to update Kaldi source with latest updates

36

KALDI CHANGES

https://github.com/kaldi-asr/kaldi/pull/3114

Added two new directories to source tree

cudadecoder/*:

Implements framework/library classes for use in applications

cudadecoder/README: Detailed documentation on how to use

cudadecoderbin/*:

Binary example using cuda-accelerated decoder

Source Layout

https://github.com/kaldi-asr/kaldi/pull/3114

37

TUNING PERFORMANCE

determinize-lattice:

determinize lattice in CPU pool or not

If not determinized in CPU pool master thread will determinize if GetLattice is called

beam:

width of beam during search

Smaller beam = faster but possibly less accuracy

lattice_beam:

width of lattice beam before determinization

Smaller beam = smaller lattice, less I/O, less determinization time

Functional Parameters

38

TUNING PERFORMANCE

cuda-control-threads:

number of concurrent CPU threads controlling a single GPU pipeline

Typically 2-4 is ideal (more = more GPU memory and less batch size)

cuda-worker-threads:

number of CPU threads in the CPU workpool, should use all CPU resources available

max-batch-size:

maximum batch size per pipeline (more = more GPU memory and less control threads)

Want as large as memory allows (<200 is currently possible)

batch-drain-size:

how far to drain a batch before refilling (batches NNET3)

typically 20% of max-batch-size works well

cuda-use-tensor-cores:

Turn on Tensor Cores (FP16)

GPU Performance

39

TUNING PERFORMANCE

max-outstanding-queue-length:

Length of GPU work queue, Consumes CPU memory only

ntokens-preallocated:

Preallocated host memory to store output, CPU memory only

Will grow dynamically if needed

max-tokens-per-frame:

Maximum tokens in GPU memory per frame

Cannot resize, will reduce accuracy if it fills up

max-active:

maximum number of arcs retained in a given frame (keeping only the max-active best ones)

Less = faster & less accurate

Memory Utilization

40

AUTHORS

Justin Luitjens is a Senior Developer Technology Engineer at NVIDIA. He has spent the last 16 years
working on HPC applications with the last 8 focusing directly on CUDA acceleration at NVIDIA. He
holds a Ph.D. in Scientific Computing from the University of Utah, a Bachelor of Science in Computer
Science from Dakota State University and a Bachelor of Science in Mathematics for Information
Systems from Dakota State University.

Ryan Leary is a Senior Applied Research Scientist specializing in speech recognition and natural
language processing at NVIDIA. He has published research in peer-reviewed venues on machine
learning techniques tailored for scalability and performance as well as natural language processing for
health applications. He holds a M.S. in Electrical & Computer Engineering from Johns Hopkins
University, and a Bachelor of Science in Computer Science from Rensselaer Polytechnic Institute.

Hugo Braun is a Senior AI Developer Technology Engineer at NVIDIA. With a background in mathematics
and physics, he has been working on performance-oriented machine learning algorithms. His work at
NVIDIA focuses on the design and implementation of high-performance GPU algorithms, specializing in
deep learning and graph analytics. He holds a M.S. in Mathematics and Computer Science from Ecole
Polytechnique, France.

