Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Browse files

sha2-1.0.0b1

  • Loading branch information...
commit 7c3cc2f3ffbe034362f71f03394200f1a2663a0e 1 parent 7dea550
itojun authored
Showing with 810 additions and 294 deletions.
  1. +704 −248 kame/sys/crypto/sha2/sha2.c
  2. +106 −46 kame/sys/crypto/sha2/sha2.h
View
952 kame/sys/crypto/sha2/sha2.c
@@ -1,7 +1,7 @@
/*
* sha2.c
*
- * Version 0.8
+ * Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
@@ -34,26 +34,115 @@
*/
-#include <string.h> /* bzero() and memcpy() */
+#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
+#include <assert.h> /* assert() */
#include "sha2.h"
+/*
+ * ASSERT NOTE:
+ * Some sanity checking code is included using assert(). On my FreeBSD
+ * system, this additional code can be removed by compiling with NDEBUG
+ * defined. Check your own systems manpage on assert() to see how to
+ * compile WITHOUT the sanity checking code on your system.
+ *
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file). Either define on the command line, for example:
+ *
+ * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ * #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+
+
+/*** SHA-256/384/512 Machine Architecture Definitions *****************/
+/*
+ * BYTE_ORDER NOTE:
+ *
+ * Please make sure that your system defines BYTE_ORDER. If your
+ * architecture is little-endian, make sure it also defines
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
+ * equivilent.
+ *
+ * If your system does not define the above, then you can do so by
+ * hand like this:
+ *
+ * #define LITTLE_ENDIAN 1234
+ * #define BIG_ENDIAN 4321
+ *
+ * And for little-endian machines, add:
+ *
+ * #define BYTE_ORDER LITTLE_ENDIAN
+ *
+ * Or for big-endian machines:
+ *
+ * #define BYTE_ORDER BIG_ENDIAN
+ *
+ * The FreeBSD machine this was written on defines BYTE_ORDER
+ * appropriately by including <sys/types.h> (which in turn includes
+ * <machine/endian.h> where the appropriate definitions are actually
+ * made).
+ */
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
+#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
+#endif
+
+/*
+ * Define the followingsha2_* types to types of the correct length on
+ * the native archtecture. Most BSD systems and Linux define u_intXX_t
+ * types. Machines with very recent ANSI C headers, can use the
+ * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
+ * during compile or in the sha.h header file.
+ *
+ * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
+ * will need to define these three typedefs below (and the appropriate
+ * ones in sha.h too) by hand according to their system architecture.
+ *
+ * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
+ * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
+ */
+#ifdef SHA2_USE_INTTYPES_H
+
+typedef uint8_t sha2_byte; /* Exactly 1 byte */
+typedef uint32_t sha2_word32; /* Exactly 4 bytes */
+typedef uint64_t sha2_word64; /* Exactly 8 bytes */
+
+#else /* SHA2_USE_INTTYPES_H */
+
+typedef u_int8_t sha2_byte; /* Exactly 1 byte */
+typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
+typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
+/* NOTE: Most of these are in sha2.h */
+#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
+#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
+#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
+
-#ifdef LITTLE_ENDIAN
/*** ENDIAN REVERSAL MACROS *******************************************/
-#define REVERSE16(w) (((w) >> 8) | ((w) << 8))
-#define REVERSE32(w) (((w) << 24) | \
- (((w) & 0x0000ff00) << 8) | \
- (((w) & 0x00ff0000) >> 8) | \
- ((w) >> 24))
-#define REVERSE64(w) (((w) << 56) | \
- (((w) & 0x000000000000ff00) << 40) | \
- (((w) & 0x0000000000ff0000) << 24) | \
- (((w) & 0x00000000ff000000) << 8) | \
- (((w) & 0x000000ff00000000) >> 8) | \
- (((w) & 0x0000ff0000000000) >> 24) | \
- (((w) & 0x00ff000000000000) >> 40) | \
- ((w) >> 56))
-#endif /* LITTLE_ENDIAN */
+#if BYTE_ORDER == LITTLE_ENDIAN
+#define REVERSE32(w,x) { \
+ sha2_word32 tmp = (w); \
+ tmp = (tmp >> 16) | (tmp << 16); \
+ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
+}
+#define REVERSE64(w,x) { \
+ sha2_word64 tmp = (w); \
+ tmp = (tmp >> 32) | (tmp << 32); \
+ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
+ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
+ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
+ ((tmp & 0x0000ffff0000ffffULL) << 16); \
+}
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
@@ -67,6 +156,33 @@
} \
}
+/*
+ * Macros for copying blocks of memory and for zeroing out ranges
+ * of memory. Using these macros makes it easy to switch from
+ * using memset()/memcpy() and using bzero()/bcopy().
+ *
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
+ * choose to use:
+ */
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
+/* Default to memset()/memcpy() if no option is specified */
+#define SHA2_USE_MEMSET_MEMCPY 1
+#endif
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
+/* Abort with an error if BOTH options are defined */
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
+#endif
+
+#ifdef SHA2_USE_MEMSET_MEMCPY
+#define MEMSET_BZERO(p,l) memset((p), 0, (l))
+#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
+#endif
+#ifdef SHA2_USE_BZERO_BCOPY
+#define MEMSET_BZERO(p,l) bzero((p), (l))
+#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
+#endif
+
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
@@ -80,9 +196,9 @@
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
-#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
+#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
-#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
+#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
@@ -100,97 +216,178 @@
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
+/* NOTE: These should not be accessed directly from outside this
+ * library -- they are intended for private internal visibility/use
+ * only.
+ */
+void SHA512_Last(SHA512_CTX*);
+void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
+void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
+
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
const static sha2_word32 K256[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+ 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+ 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+ 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+ 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+ 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+ 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+ 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+ 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+ 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+ 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+ 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+ 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+ 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+ 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+ 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
const static sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667,
- 0xbb67ae85,
- 0x3c6ef372,
- 0xa54ff53a,
- 0x510e527f,
- 0x9b05688c,
- 0x1f83d9ab,
- 0x5be0cd19
+ 0x6a09e667UL,
+ 0xbb67ae85UL,
+ 0x3c6ef372UL,
+ 0xa54ff53aUL,
+ 0x510e527fUL,
+ 0x9b05688cUL,
+ 0x1f83d9abUL,
+ 0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static sha2_word64 K512[80] = {
- 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
- 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
- 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
- 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
- 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
- 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
- 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
- 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
- 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
- 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
- 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
- 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
- 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
- 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
- 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
- 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
- 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
- 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
- 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
- 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
+ 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+ 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+ 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+ 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+ 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+ 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+ 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+ 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+ 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+ 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+ 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+ 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+ 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+ 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+ 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+ 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+ 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+ 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+ 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+ 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+ 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+ 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+ 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+ 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+ 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+ 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+ 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+ 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+ 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+ 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+ 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+ 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+ 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
+ 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+ 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+ 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+ 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+ 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+ 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+ 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
const static sha2_word64 sha384_initial_hash_value[8] = {
- 0xcbbb9d5dc1059ed8,
- 0x629a292a367cd507,
- 0x9159015a3070dd17,
- 0x152fecd8f70e5939,
- 0x67332667ffc00b31,
- 0x8eb44a8768581511,
- 0xdb0c2e0d64f98fa7,
- 0x47b5481dbefa4fa4
+ 0xcbbb9d5dc1059ed8ULL,
+ 0x629a292a367cd507ULL,
+ 0x9159015a3070dd17ULL,
+ 0x152fecd8f70e5939ULL,
+ 0x67332667ffc00b31ULL,
+ 0x8eb44a8768581511ULL,
+ 0xdb0c2e0d64f98fa7ULL,
+ 0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
const static sha2_word64 sha512_initial_hash_value[8] = {
- 0x6a09e667f3bcc908,
- 0xbb67ae8584caa73b,
- 0x3c6ef372fe94f82b,
- 0xa54ff53a5f1d36f1,
- 0x510e527fade682d1,
- 0x9b05688c2b3e6c1f,
- 0x1f83d9abfb41bd6b,
- 0x5be0cd19137e2179
+ 0x6a09e667f3bcc908ULL,
+ 0xbb67ae8584caa73bULL,
+ 0x3c6ef372fe94f82bULL,
+ 0xa54ff53a5f1d36f1ULL,
+ 0x510e527fade682d1ULL,
+ 0x9b05688c2b3e6c1fULL,
+ 0x1f83d9abfb41bd6bULL,
+ 0x5be0cd19137e2179ULL
};
+/*
+ * Constant used by SHA256/384/512_End() functions for converting the
+ * digest to a readable hexadecimal character string:
+ */
+static const char *sha2_hex_digits = "0123456789abcdef";
+
/*** SHA-256: *********************************************************/
-void SHA256_Init(SHA256_CTX *context) {
+void SHA256_Init(SHA256_CTX* context) {
if (context == (SHA256_CTX*)0) {
return;
}
- memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
- bzero(context->buffer, SHA256_BLOCK_LENGTH);
+ MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
-};
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
-void SHA256_Transform(SHA256_CTX *context) {
- sha2_word32 a, b, c, d;
- sha2_word32 e, f, g, h;
- sha2_word32 T1, T2, *W256 = (sha2_word32*)context->buffer;
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ REVERSE32(*data++, W256[j]); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + W256[j]; \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + (W256[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256(a,b,c,d,e,f,g,h) \
+ s0 = W256[(j+1)&0x0f]; \
+ s0 = sigma0_256(s0); \
+ s1 = W256[(j+14)&0x0f]; \
+ s1 = sigma1_256(s1); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, *W256;
int j;
+ W256 = (sha2_word32*)context->buffer;
+
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
@@ -201,13 +398,75 @@ void SHA256_Transform(SHA256_CTX *context) {
g = context->state[6];
h = context->state[7];
- for (j = 0; j < 16; j++) {
-#ifdef LITTLE_ENDIAN
- /* Convert TO host byte order */
- W256[j] = REVERSE32(W256[j]);
-#endif
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds to 64: */
+ do {
+ ROUND256(a,b,c,d,e,f,g,h);
+ ROUND256(h,a,b,c,d,e,f,g);
+ ROUND256(g,h,a,b,c,d,e,f);
+ ROUND256(f,g,h,a,b,c,d,e);
+ ROUND256(e,f,g,h,a,b,c,d);
+ ROUND256(d,e,f,g,h,a,b,c);
+ ROUND256(c,d,e,f,g,h,a,b);
+ ROUND256(b,c,d,e,f,g,h,a);
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, T2, *W256;
+ int j;
+
+ W256 = (sha2_word32*)context->buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Copy data while converting to host byte order */
+ REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+ /* Apply the SHA-256 compression function to update a..h with copy */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
@@ -217,14 +476,20 @@ void SHA256_Transform(SHA256_CTX *context) {
c = b;
b = a;
a = T1 + T2;
- }
- for (j = 16; j < 64; j++) {
- /* Compute expanded message block */
- W256[j%16] += sigma1_256(W256[(j-2)%16]) + W256[(j-7)%16] + sigma0_256(W256[(j-15)%16]);
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W256[(j+1)&0x0f];
+ s0 = sigma0_256(s0);
+ s1 = W256[(j+14)&0x0f];
+ s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j%16];
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
@@ -234,7 +499,9 @@ void SHA256_Transform(SHA256_CTX *context) {
c = b;
b = a;
a = T1 + T2;
- }
+
+ j++;
+ } while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
@@ -248,16 +515,21 @@ void SHA256_Transform(SHA256_CTX *context) {
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
-};
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
-void SHA256_Update(SHA256_CTX *context, sha2_byte *data, unsigned int len) {
+void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
- /* Quick sanity check: */
- if (context == (SHA256_CTX*)0 || data == (sha2_byte*)0 || len < 1) {
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
return;
}
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
+
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
@@ -265,113 +537,234 @@ void SHA256_Update(SHA256_CTX *context, sha2_byte *data, unsigned int len) {
if (len >= freespace) {
/* Fill the buffer completely and process it */
- memcpy(&context->buffer[usedspace], data, freespace);
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
- SHA256_Transform(context);
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
} else {
/* The buffer is not yet full */
- memcpy(&context->buffer[usedspace], data, len);
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
- memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
- SHA256_Transform(context);
+ SHA256_Transform(context, (sha2_word32*)data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
- memcpy(context->buffer, data, len);
+ MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
-};
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
sha2_word32 *d = (sha2_word32*)digest;
unsigned int usedspace;
- if (context == (SHA256_CTX*)0) {
- /* Hey, ya gotta at least pass in a context! */
- return;
- }
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
-#ifdef LITTLE_ENDIAN
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
- context->bitcount = REVERSE64(context->bitcount);
+ REVERSE64(context->bitcount,context->bitcount);
#endif
- /* Append a 1 bit to start padding */
- context->buffer[usedspace++] = 0x80;
- if (usedspace < SHA256_SHORT_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace < SHA256_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA256_BLOCK_LENGTH) {
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
}
- SHA256_Transform(context);
- bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
- }
- }
- SHA256_Transform(context);
+ } else {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- /* Save the hash data for output (IF a digest buffer was provided) */
- if (d != (sha2_word32*)0) {
-#ifdef LITTLE_ENDIAN
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- *d++ = REVERSE32(context->state[j]);
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Set the bit count: */
+ *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
+
+ /* Final transform: */
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 8; j++) {
+ REVERSE32(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
}
#else
- memcpy(d, context->state, SHA256_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
}
- /* Zero out state data */
- bzero(context, sizeof(context));
-};
+ /* Clean up state data: */
+ MEMSET_BZERO(context, sizeof(context));
+ usedspace = 0;
+}
char *SHA256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
- if (context == (SHA256_CTX*)0 || buffer == (char*)0) {
- return (char*)0;
- }
- SHA256_Final(digest, context);
- for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
- *buffer++ = ((*d & 0xf0) >> 4) + ((*d & 0xf0) > 0x90 ? 'a' - 10 : '0');
- *buffer++ = (*d & 0x0f) + ((*d & 0x0f) > 0x09 ? 'a' - 10 : '0');
- d++;
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA256_Final(digest, context);
+
+ for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(context));
}
- *buffer = 0x00;
- bzero(digest, SHA256_DIGEST_LENGTH);
+ MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
+char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+ SHA256_CTX context;
+
+ SHA256_Init(&context);
+ SHA256_Update(&context, data, len);
+ return SHA256_End(&context, digest);
+}
+
/*** SHA-512: *********************************************************/
-void SHA512_Init(SHA512_CTX *context) {
+void SHA512_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
return;
}
- memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
- bzero(context->buffer, SHA512_BLOCK_LENGTH);
+ MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
-};
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-512 round macros: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
+ REVERSE64(*data++, W512[j]); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ K512[j] + W512[j]; \
+ (d) += T1, \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
+ j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ K512[j] + (W512[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512(a,b,c,d,e,f,g,h) \
+ s0 = W512[(j+1)&0x0f]; \
+ s0 = sigma0_512(s0); \
+ s1 = W512[(j+14)&0x0f]; \
+ s1 = sigma1_512(s1); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+ sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+ ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds up to 79: */
+ do {
+ ROUND512(a,b,c,d,e,f,g,h);
+ ROUND512(h,a,b,c,d,e,f,g);
+ ROUND512(g,h,a,b,c,d,e,f);
+ ROUND512(f,g,h,a,b,c,d,e);
+ ROUND512(e,f,g,h,a,b,c,d);
+ ROUND512(d,e,f,g,h,a,b,c);
+ ROUND512(c,d,e,f,g,h,a,b);
+ ROUND512(b,c,d,e,f,g,h,a);
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
-void SHA512_Transform(SHA512_CTX *context) {
- sha2_word64 a, b, c, d;
- sha2_word64 e, f, g, h;
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+ sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
int j;
@@ -385,13 +778,17 @@ void SHA512_Transform(SHA512_CTX *context) {
g = context->state[6];
h = context->state[7];
- for (j = 0; j < 16; j++) {
-#ifdef LITTLE_ENDIAN
+ j = 0;
+ do {
+#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
- W512[j] = REVERSE64(W512[j]);
-#endif
+ REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+ /* Apply the SHA-512 compression function to update a..h with copy */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
@@ -401,14 +798,20 @@ void SHA512_Transform(SHA512_CTX *context) {
c = b;
b = a;
a = T1 + T2;
- }
- for (j = 16; j < 80; j++) {
- /* Compute expanded message block */
- W512[j%16] += sigma1_512(W512[(j-2)%16]) + W512[(j-7)%16] + sigma0_512(W512[(j-15)%16]);
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W512[(j+1)&0x0f];
+ s0 = sigma0_512(s0);
+ s1 = W512[(j+14)&0x0f];
+ s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j%16];
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
@@ -418,7 +821,9 @@ void SHA512_Transform(SHA512_CTX *context) {
c = b;
b = a;
a = T1 + T2;
- }
+
+ j++;
+ } while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
@@ -432,16 +837,21 @@ void SHA512_Transform(SHA512_CTX *context) {
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
-};
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
-void SHA512_Update(SHA512_CTX *context, sha2_byte *data, unsigned int len) {
+void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
- /* Quick sanity check: */
- if (context == (SHA512_CTX*)0 || data == (sha2_byte*)0 || len < 1) {
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
return;
}
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
+
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
@@ -449,163 +859,209 @@ void SHA512_Update(SHA512_CTX *context, sha2_byte *data, unsigned int len) {
if (len >= freespace) {
/* Fill the buffer completely and process it */
- memcpy(&context->buffer[usedspace], data, freespace);
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
- SHA512_Transform(context);
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
} else {
/* The buffer is not yet full */
- memcpy(&context->buffer[usedspace], data, len);
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
+ /* Clean up: */
+ usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
- memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
- SHA512_Transform(context);
+ SHA512_Transform(context, (sha2_word64*)data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
- memcpy(context->buffer, data, len);
+ MEMCPY_BCOPY(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
-};
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
void SHA512_Last(SHA512_CTX* context) {
- unsigned int usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+ unsigned int usedspace;
- if (usedspace > 0) {
-#ifdef LITTLE_ENDIAN
- /* Convert FROM host byte order */
- context->bitcount[0] = REVERSE64(context->bitcount[0]);
- context->bitcount[1] = REVERSE64(context->bitcount[1]);
+ usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
+ /* Convert FROM host byte order */
+ REVERSE64(context->bitcount[0],context->bitcount[0]);
+ REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
- /* Append a 1 bit to start padding */
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
+
if (usedspace < SHA512_SHORT_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
+ MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
}
- SHA512_Transform(context);
- bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
- *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
+ /* Do second-to-last transform: */
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
}
+ } else {
+ /* Prepare for final transform: */
+ MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
}
- SHA512_Transform(context);
+ /* Store the length of input data (in bits): */
+ *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
+ *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
+
+ /* Final transform: */
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
}
void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
- if (context == (SHA512_CTX*)0) {
- /* Hey, ya gotta at least pass in a context! */
- return;
- }
-
- SHA512_Last(context);
-
- /* Save the hash data for output (IF a digest buffer was provided) */
- if (d != (sha2_word64*)0) {
-#ifdef LITTLE_ENDIAN
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- *d++ = REVERSE64(context->state[j]);
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ SHA512_Last(context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 8; j++) {
+ REVERSE64(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
}
#else
- memcpy(d, context->state, SHA512_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
- bzero(context, sizeof(context));
-};
+ MEMSET_BZERO(context, sizeof(context));
+}
char *SHA512_End(SHA512_CTX* context, char buffer[]) {
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
- if (context == (SHA512_CTX*)0 || buffer == (char*)0) {
- return (char*)0;
- }
- SHA512_Final(digest, context);
- for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
- *buffer++ = ((*d & 0xf0) >> 4) + ((*d & 0xf0) > 0x90 ? 'a' - 10 : '0');
- *buffer++ = (*d & 0x0f) + ((*d & 0x0f) > 0x09 ? 'a' - 10 : '0');
- d++;
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA512_Final(digest, context);
+
+ for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(context));
}
- *buffer = 0x00;
- bzero(digest, SHA512_DIGEST_LENGTH);
+ MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
+char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
+ SHA512_CTX context;
+
+ SHA512_Init(&context);
+ SHA512_Update(&context, data, len);
+ return SHA512_End(&context, digest);
+}
+
/*** SHA-384: *********************************************************/
-void SHA384_Init(SHA384_CTX *context) {
+void SHA384_Init(SHA384_CTX* context) {
if (context == (SHA384_CTX*)0) {
return;
}
- memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
- bzero(context->buffer, SHA384_BLOCK_LENGTH);
+ MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
-};
+}
-void SHA384_Update(SHA384_CTX *context, sha2_byte *data, unsigned int len) {
+void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
SHA512_Update((SHA512_CTX*)context, data, len);
-};
+}
void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
sha2_word64 *d = (sha2_word64*)digest;
- if (context == (SHA384_CTX*)0) {
- /* Hey, ya gotta at least pass in a context! */
- return;
- }
-
- SHA512_Last((SHA512_CTX*)context);
-
- /* Save the hash data for output (IF a digest buffer was provided) */
- if (d != (sha2_word64*)0) {
-#ifdef LITTLE_ENDIAN
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 6; j++) {
- *d++ = REVERSE64(context->state[j]);
+ /* Sanity check: */
+ assert(context != (SHA384_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ SHA512_Last((SHA512_CTX*)context);
+
+ /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 6; j++) {
+ REVERSE64(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
}
#else
- memcpy(d, context->state, SHA384_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
- bzero(context, sizeof(context));
-};
+ MEMSET_BZERO(context, sizeof(context));
+}
char *SHA384_End(SHA384_CTX* context, char buffer[]) {
sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
- if (context == (SHA384_CTX*)0 || buffer == (char*)0) {
- return (char*)0;
- }
- SHA384_Final(digest, context);
- for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
- *buffer++ = ((*d & 0xf0) >> 4) + ((*d & 0xf0) > 0x90 ? 'a' - 10 : '0');
- *buffer++ = (*d & 0x0f) + ((*d & 0x0f) > 0x09 ? 'a' - 10 : '0');
- d++;
+ /* Sanity check: */
+ assert(context != (SHA384_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA384_Final(digest, context);
+
+ for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(context));
}
- *buffer = 0x00;
- bzero(digest, SHA384_DIGEST_LENGTH);
+ MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
+char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
+ SHA384_CTX context;
+
+ SHA384_Init(&context);
+ SHA384_Update(&context, data, len);
+ return SHA384_End(&context, digest);
+}
+
View
152 kame/sys/crypto/sha2/sha2.h
@@ -1,7 +1,7 @@
/*
* sha2.h
*
- * Version 0.8
+ * Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
@@ -40,93 +40,153 @@
extern "C" {
#endif
-/*** SHA-256/384/512 Machine Architecture Definitions *****************/
-/*
- * Define this if your machine is LITTLE_ENDIAN, otherwise
- * comment it out or #undef it.
- */
-#define LITTLE_ENDIAN
/*
- * Define each of the below types according to your
- * architecture to make sure that they are EXACTLY
- * the required length (and no longer):
+ * Import u_intXX_t size_t type definitions from system headers. You
+ * may need to change this, or define these things yourself in this
+ * file.
*/
-typedef unsigned char sha2_byte; /* 8 bit type (1 byte) */
-typedef unsigned short sha2_doublebyte; /* 16 bit type (2 bytes) */
-typedef unsigned long sha2_word32; /* 32 bit type (4 bytes) */
-typedef unsigned long long sha2_word64; /* 64 bit type (8 bytes) */
+#include <sys/types.h>
-/*** SHA-256/384/512 Various Length Definitions ***********************/
+#ifdef SHA2_USE_INTTYPES_H
+
+#include <inttypes.h>
+#endif /* SHA2_USE_INTTYPES_H */
+
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
-#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
-
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
-#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
-
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
-#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/*** SHA-256/384/512 Context Structures *******************************/
-/* The SHA context structures: */
+/* NOTE: If your architecture does not define either u_intXX_t types or
+ * uintXX_t (from inttypes.h), you may need to define things by hand
+ * for your system:
+ */
+#if 0
+typedef unsigned char u_int8_t; /* 1-byte (8-bits) */
+typedef unsigned int u_int32_t; /* 4-bytes (32-bits) */
+typedef unsigned long long u_int64_t; /* 8-bytes (64-bits) */
+#endif
+/*
+ * Most BSD systems already define u_intXX_t types, as does Linux.
+ * Some systems, however, like Compaq's Tru64 Unix instead can use
+ * uintXX_t types defined by very recent ANSI C standards and included
+ * in the file:
+ *
+ * #include <inttypes.h>
+ *
+ * If you choose to use <inttypes.h> then please define:
+ *
+ * #define SHA2_USE_INTTYPES_H
+ *
+ * Or on the command line during compile:
+ *
+ * cc -DSHA2_USE_INTTYPES_H ...
+ */
+#ifdef SHA2_USE_INTTYPES_H
+
typedef struct _SHA256_CTX {
- sha2_word32 state[8];
- sha2_word64 bitcount;
- sha2_byte buffer[SHA256_BLOCK_LENGTH];
+ uint32_t state[8];
+ uint64_t bitcount;
+ uint8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
+typedef struct _SHA512_CTX {
+ uint64_t state[8];
+ uint64_t bitcount[2];
+ uint8_t buffer[SHA512_BLOCK_LENGTH];
+} SHA512_CTX;
+
+#else /* SHA2_USE_INTTYPES_H */
+typedef struct _SHA256_CTX {
+ u_int32_t state[8];
+ u_int64_t bitcount;
+ u_int8_t buffer[SHA256_BLOCK_LENGTH];
+} SHA256_CTX;
typedef struct _SHA512_CTX {
- sha2_word64 state[8];
- sha2_word64 bitcount[2];
- sha2_byte buffer[SHA512_BLOCK_LENGTH];
+ u_int64_t state[8];
+ u_int64_t bitcount[2];
+ u_int8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
+#endif /* SHA2_USE_INTTYPES_H */
+
typedef SHA512_CTX SHA384_CTX;
/*** SHA-256/384/512 Function Prototypes ******************************/
-
#ifndef NOPROTO
-
-void SHA256_Init(SHA256_CTX *context);
-void SHA256_Update(SHA256_CTX *context, sha2_byte *data, unsigned int len);
-void SHA256_Final(sha2_byte digest[SHA256_DIGEST_LENGTH], SHA256_CTX* context);
-char *SHA256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]);
-
-void SHA384_Init(SHA384_CTX *context);
-void SHA384_Update(SHA384_CTX *context, sha2_byte *data, unsigned int len);
-void SHA384_Final(sha2_byte digest[SHA384_DIGEST_LENGTH], SHA384_CTX* context);
-char *SHA384_End(SHA384_CTX* context, char buffer[SHA384_DIGEST_STRING_LENGTH]);
-
-void SHA512_Init(SHA512_CTX *context);
-void SHA512_Update(SHA512_CTX *context, sha2_byte *data, unsigned int len);
-void SHA512_Final(sha2_byte digest[SHA512_DIGEST_LENGTH], SHA512_CTX* context);
-char *SHA512_End(SHA512_CTX* context, char buffer[SHA512_DIGEST_STRING_LENGTH]);
+#ifdef SHA2_USE_INTTYPES_H
+
+void SHA256_Init(SHA256_CTX *);
+void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
+void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
+char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
+
+void SHA384_Init(SHA384_CTX*);
+void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
+void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
+char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
+
+void SHA512_Init(SHA512_CTX*);
+void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
+void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
+char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
+
+#else /* SHA2_USE_INTTYPES_H */
+
+void SHA256_Init(SHA256_CTX *);
+void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
+void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
+char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
+
+void SHA384_Init(SHA384_CTX*);
+void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
+void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
+char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
+
+void SHA512_Init(SHA512_CTX*);
+void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
+void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
+char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
+
+#endif /* SHA2_USE_INTTYPES_H */
#else /* NOPROTO */
void SHA256_Init();
void SHA256_Update();
void SHA256_Final();
-char *SHA256_End();
+char* SHA256_End();
+char* SHA256_Data();
void SHA384_Init();
void SHA384_Update();
void SHA384_Final();
-char *SHA384_End();
+char* SHA384_End();
+char* SHA384_Data();
void SHA512_Init();
void SHA512_Update();
void SHA512_Final();
-char *SHA512_End();
+char* SHA512_End();
+char* SHA512_Data();
#endif /* NOPROTO */
Please sign in to comment.
Something went wrong with that request. Please try again.