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No Inference Possible as of Now

We haven't spoken about t or F tests. Why is that?

In order to have inference, we need to make explicit random
variable model assumptions e.g.

Y ∼ g(β0 + β1x1 + . . .+ βpxp, σ
2, . . .)

must be assumed to be something like

Y ∼ N
(
β0 + β1x1 + . . .+ βpxp, σ

2
)

Is this a reasonable thing to do?
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Back to Modeling

We said before that our model for Y was

Y = f (x1, . . . , xp) + E

assuming we can know the model, there still is E . Where does it
come from? According to determinism a la Laplace, if one knew all
the causal information, there would be no error

y = t(z1, z2, . . .)

i.e t is the deterministic true mathematical model.

3 / 49

Predictive Analytics Lecture 2



LM Inference, Corr. 6⇒ Causation Mult. Testing Equiv. Testing Design

Laplace Believes in Demons
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Example Lung Cancer Causal Model

y

c1

s1s2

c5 c2

d1

time

c3

c1: smoking
c2: radon gas exposure
c3: asbestos exposure
c4: air pollution

d1: family predisposition

s1: genetic damage
s2: genetic repair

c4

d2

d2: COPD (a disease)

c5: turmeric?

Arrows represent causal directions and diamond boxes represent
�manipulable� variables (more on this soon). What functions for the
response would be deterministic?

y = t(d1, d2, s1), y = t(d1, d2, s2, c1, c2, c3, c4), y = t(d1, d2, c1, c2, c3, c4, c5)
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The Root Cause of Randomness
But let's say we only have information about c1 (a contributory cause,
one among many co-occurrent causes). Since we don't have all the
inputs (nor the information of the states of the co-occurent causes), we
cannot be sure of y . Hence we'll employ a statistical model,

Y ∼ Bernoulli (f (c1))

where we saw before that f (c1 = 1) = 16% and f (c1 = 0) = 0.4% (AKA
�probabilistic causation�). Thus, the response is stochastic only because
we lack information. For regression,

y = f (x1, . . . , xp) + t(z1, z2, . . .)− f (x1, . . . , xp)︸ ︷︷ ︸
E

(i.e. the �noise� is due to ignorance)

Note... some believe that there is still intrinsic randomness in the universe even
with all relevant information known. But we are punting on the actual
philosophy...
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Sidebar: Other Sources of Error

y = f (x1, . . . , xp) + t(z1, z2, . . .)− f (x1, . . . , xp)︸ ︷︷ ︸
E

(i.e. the �noise� is due to ignorance)

Then if we make a parametric assumption,

y = s(x1, . . . , xp; θ1, . . . , θ`) +

f (x1, . . . , xp)− s(x1, . . . , xp; θ1, . . . , θ`)︸ ︷︷ ︸
model misspeci�cation

+

t(z1, z2, . . .)− f (x1, . . . , xp)︸ ︷︷ ︸
E

noise due to ignorance error
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Sidebar: Other Sources of Error

Further, we then have to estimate the parameters to get a �t:

y = ŝ(x1, . . . , xp; θ̂1, . . . , θ̂`)︸ ︷︷ ︸
ŷ

+

s(x1, . . . , xp; θ1, . . . , θ`)− ŝ(x1, . . . , xp; θ̂1, . . . , θ̂`)︸ ︷︷ ︸
model / parameter estimation error

+

f (x1, . . . , xp)− s(x1, . . . , xp; θ1, . . . , θ`)︸ ︷︷ ︸
model misspeci�cation error

+

t(z1, z2, . . .)− f (x1, . . . , xp)︸ ︷︷ ︸
E

noise due to ignorance

Thus, all predictions have three sources of error. What is minimized
with non-parametric machine learning?
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t is Di�cult to Model

y

c1

s1s2

c5 c2

d1

time

c3

c1: smoking
c2: radon gas exposure
c3: asbestos exposure
c4: air pollution

d1: family predisposition

s1: genetic damage
s2: genetic repair

c4

d2

d2: COPD (a disease)

c5: turmeric?

In order to get t, you'll need to know all these functions explicitly:

y = ty (d1, d2, s1)

s1 = ts1(c1, c2, c3, c4, s2)

s2 = fs2(c5, s1)

which means that even if you know all the values of variables, you may
not be able to properly model the response since ... you do not know the
functional forms ty , ts1 and ts2 .

9 / 49

Predictive Analytics Lecture 2



LM Inference, Corr. 6⇒ Causation Mult. Testing Equiv. Testing Design

A �Nice� Type of Ignorance

y

time

x u1 u2 um...

In the situation where the true model is

y = g(x) + h1(u1) + h2(u2) + . . .+ hm(um)

and x is observed but u1, . . . , um are the �unknowns�.

h1(u1) + h2(u2) + . . .+ hm(um)
D→ N

(
m∑

k=1

µk ,

m∑
k=1

σ2k

)
as the number of unseen variables increase (central limit theorem) and if
... they're somewhat independent.
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The Normal Homoskedastic Error Model
Let E0 =

∑m
k=1 µk and σ2

E =
∑m

k=1 σ
2
k , then

y = g(x) + E0︸ ︷︷ ︸
f (x)

+ E s.t. E =
m∑

k=1

hk(uk)− E0 ∼ N
(
0, σ2

E
)

y

time

x u1 u2 um...

Also, since x does not a�ect the other variables in any way, it
cannot have an in�uence on their spread, hence σ2 is not a function
of x . Thus the error spread is the same everywhere across the
range of x (homoskedasticity).
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Parametric Worldview

We are back to the fundamental statistical problem, Y = f (x) + E
where now we are more �okay� with the noise being normal and
homoskedastic for all x .

We now invoke the parametric worldview. Within that parametric
worldview, we will buy into the linear model. Thus,

Y ∼ N
(
β0 + β1x1 + . . .+ βpxp, σ

2
)

But there is one more assumption...
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Independence

We now assume that each response is independent of every other
response.
Second person:

y

c1

s1s2

c5 c2

d1

time

c3

c1: smoking
c2: radon gas exposure
c3: asbestos exposure
c4: air pollution

d1: family predisposition

s1: genetic damage
s2: genetic repair

c4

d2

d2: COPD (a disease)

c5: turmeric?

First person:

y

c1

s1s2

c5 c2

d1

time

c3

c1: smoking
c2: radon gas exposure
c3: asbestos exposure
c4: air pollution

d1: family predisposition

s1: genetic damage
s2: genetic repair

c4

d2

d2: COPD (a disease)

c5: turmeric?

No e�ect of �rst per-
son's y1 (nor any of the
unobserved variables
which generate the E1)
on the second person's
y (or E2).

If there are, we need to
observe them and rotate
them into our estimate
of f (x). Examples for
this cigarette case?
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The Classic OLS Assumptions

Preassuming

linearity (the parametric assumption)

we then further assume

independence (most important)

homoskedasticity (less important)

normality of E (least important if n is large)

in order to get ... inference. Changing these assumptions gives
entirely new modeling techniques and inference. It is called
�generalized linear model� theory.
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A Di�erent Means of Estimation

Last time, we were working on creating a �t f̂ that means we need
estimates of all the parameters:

f̂ (x1, x2, . . . , xp) = β̂0 + β̂1x1 + . . .+ β̂pxp

where the unknown parameters were β0, β1, . . . , βp. Our strategy last

time was to minimize SSE via a calculus to obtain
{
β̂0, β̂1, . . . , β̂p

}
.

Why was this arbitrary?

Given the three new assumptions, we now have a completely speci�ed
joint probability distribution for our observed data,

P (Y1 = y1,Y2 = y2, . . . ,Yn = yn | X 1 = x1,X 2 = x2, . . . ,X n = xn)

where x i := [xi1, xi2, . . . , xip] i.e. the vector of all known measurements /
covariates.
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What's a probability? What's a likelihood?
In general, a parametric density function / mass function of a r.v. looks
like the following:

P (x ; θ) = . . .

where θ are the ... tuning knobs on the model. We ask the question
�what's the probability of this realization x (the data) assuming the
density was parameterized at θ�? Now we ask the inverse question:

L (θ; x) = . . .

that is �what's the likelihood of these parameters assuming we saw x (the
data) come out the way it did�? The L () denotes the likelihood

function. Of course, probability and likelihood are exactly the same
numerically,

P (x ; θ) = L (θ; x) = . . .

but conceptually they couldn't be further apart!
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Maximum Likelihood Estimation (MLE)

Why not just ask the very common-sense question, what θ (what model
within this parametric family) maximizes the probability of seeing what
we observe? That would be a good guess as to what θ is.

θ̂ := arg max
θ∈Θ

{L (θ; x)} = arg max
θ∈Θ

ln (L (θ; x))︸ ︷︷ ︸
`(θ;x)


where Θ represents the space the parameter lives in. In our situation, Θ
represents all real numbers in p dimensions. Let's do this in our example.
The �rst step:

P (Y1 = y1,Y2 = y2, . . . ,Yn = yn | X 1 = x1,X 2 = x2, . . . ,X n = xn)

=
n∏

i=1

P (Yi = yi | X 1 = x i )

How so? Each observation is independent of every other. Recall
P (ABC ) = P (A)P (B)P (C ) if A, B and C are independent.
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MLE of the Linear Model Parameters

We can continue,

=
n∏

i=1

P (Yi = yi | X 1 = x i )

=
n∏

i=1

1√
2πσ2

exp

(
− 1

2σ2
(y − E [Yi | X i ])

2
)

How? Normality and homoskedasticity of E .

=
n∏

i=1

1√
2πσ2

exp

(
− 1

2σ2
(y − (β0 + β1xi1 + . . .+ βpxip))2

)

How? Linearity of E [Yi | X i ]. Now we wish to maximize the above over
all possible β0, β1, . . . , βp, σ

2. That's the arg max
θ∈Θ

{L (θ; x)} step.
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MLE of the Linear Model Parameters
Then, by some precalc tricks,

=
n∏

i=1

1√
2πσ2

exp

(
− 1

2σ2
E2i
)

=

(
1√
2πσ2

)n

exp

(
n∑

i=1

− 1

2σ2
E2i

)

=

(
1√
2πσ2

)n

exp

(
− 1

2σ2

n∑
i=1

E2i

)

Pick
{
β̂0, β̂1, . . . , β̂p, σ̂

2
}

such that the above is minimized. The solutions are

called the �maximum likelihood estimates (MLE's)�.

Using calculus, the solution to
{
β̂0, β̂1, . . . , β̂p

}
is equivalent to minimizing

SSE... What a coincidence!!

Note also: σ̂2 = 1
n
SSE = MSE . Why was there no σ̂2 until now?
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The Likelihood Ratio (LR)

Imagine two models: (a) the �full� model where θ ∈ Θ and (b) a
reduced model where θ ∈ ΘR ⊂ Θ. The reduced space has q less
degrees of freedom for θ to live within. Consider the ratio of the
likelihoods

LR := max
θ∈Θ
L (θ; x) / max

θ∈ΘR

L (θ; x)

representing how much more probable the full model is over the
restricted model. But is this is this increase in probability
statistically signi�cant? It turns out as n gets large and under
pretty forgiving conditions,

Q := 2 ln (LR)︸ ︷︷ ︸
`(θ̂;x)−
`(θ̂R ;x)

D→ χ2
q
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Testing the Simple Reduced Model

Let's test our �naive model� from Lecture 1 (always predicting
ŷ = ȳ) versus having a model having many predictors in a linear
model.

LR =

max
β0,β1,...,βp ,σ2

L
(
β0, β1, . . . , βp, σ

2; y1, . . . , yn, x1, . . . , xn
)

max
β0,σ2

L
(
β0, β1 = 0, . . . , βp = 0, σ2; y1, . . . , yn, x1, . . . , xn

)
=

(
1√
2πσ̂2

)n
exp

(
− 1

2σ̂2
SSE

)(
1√
2πσ̂20

)n

exp

(
− 1

2σ̂20
SSE0

)
=

(
SSE0

SSE

)n/2
exp

(
− n

2SSE SSE
)

exp

(
− n

2SSE0
SSE0

)
︸ ︷︷ ︸

1
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Testing the Simple Reduced Model

Now we build the Q statistic:

Q = 2 ln

((
SSE0

SSE

)n/2
)

= n ln

(
SSE0

SSE

)
D→ χ2

p

This can be used to test

H0 : β1 = 0, β2 = 0, . . . , βp = 0

Ha : at least one is non-zero

There is another test for this you've learned about?
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Omnibus F-test

F =

SSE0−SSE
p

SSE
n−p

=
SSE0 − SSE

SSE

n − p

p
=

(
SSE0

SSE
− 1

)
n − p

p
∼ Fp,n−p

Both tests use the same test statistic, namely SSE0/SSE (up to
constants and a monotonic transformation). It is a harder proof to
demonstrate they have the same power for the same n and α (but
they do).

Some points

The likelihood ratio test / F test can also test any subset of the
predictors (even one).

Thus, we now have inference for every predictor or subset of
predictors i.e.

Hypothesis testing
Con�dence intervals
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What does inference buy you?

Previously,

Y ∼ g(β0 + β1x1 + . . .+ βpxp, σ
2, . . .)

Do not assume OLS assumptions. We picked L2 loss and minimized

to get
{
β̂0, β̂1, . . . , β̂p

}
. What do these numbers means?

Y
ind∼ N

(
β0 + β1x1 + . . .+ βpxp, σ

2
)

Assume OLS assumptions. Using MLE, we wind up minimizing L2

loss and get the same
{
β̂0, β̂1, . . . , β̂p

}
. What do these numbers

means? Same thing, except now ... we can �test� each value and
provide con�dence intervals for each value. You know how �stable�
each number is to the the onslaught of the noise.
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What you want to say about β̂j

[Interpret stolen bases in baseball dataset in JMP].

A change in xj of +1 (a unit increase) causes / induces a βj
di�erence in its mean response y . Correct?
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Umbrella Sales and Car Accidents

Consider a simple example. x : umbrella sales and y : car accidents.
What would the relationship look like?

Does 100 more umbrellas sold cause 15.3 more car accidents (on
average)? No... only an association (assessed by a linear
correlation).
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Correlation Does Not Imply Causation

What can correlation mean?

1 There's a coincidence. How can this be?

2 They are consequence from of a common cause (the lurking or
counfounding variable). How can this be?

3 There is causation

1 x causes y (possibly with intermediates)
2 y causes x (possibly with intermediates)
3 x and y cause each other (cyclic)

(recall time-boundedness property)

27 / 49

Predictive Analytics Lecture 2



LM Inference, Corr. 6⇒ Causation Mult. Testing Equiv. Testing Design

Controlling for the Confounder

The confounding variable is likely z = rainfall.

z (rainfall)

y (accidents) x (umbrellas)

The illustration shows that if you change x obviously y doesn't
change whatsoever (causes always precede their dependent e�ects
an assumption known as temporal boundedness)

[Show regression in R]
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A Proper Interpretation of β̂j
Consider β̂j estimates βj . Imagine n is large and the con�dence

interval is really small. So basically, β̂j = βj 6= 0. Interpretation?

Another object naturally observed with exactly the same features
except that xj is increased by 1 unit will have a βj di�erence in its
mean response y .

Now, the more realistic situation: β̂j estimates βj . Imagine n is not
so large and the con�dence interval is not small but we are still
convinced βj 6= 0. Interpretation?

Another object naturally observed with exactly the same features

except that xj is increased by 1 unit will have a β̂j ± SE
[
β̂j

]
di�erence in its mean response y . (Not much di�erence except
accounting for model estimation error).
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When can you say �causes�?
When can the interpretation be �causal� as follows? Another object
naturally observed with exactly the same features except for a change If

this object in front of us has its xj changed by +1, it will have cause

a β̂j ± SE
[
β̂j

]
di�erence in its mean response y .

1 If we can just assume the model looks as follows:

y

time

x1 u1 u2 um...x2 xp...

(causal for all p features ... how can the illustration be updated for
one variable?)

2 �OR� If we've run a randomized experiment manipulating xj among
the objects AND assuming an linear additive e�ect of xj on y .
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Consider a Realistic Model

y

c

ss

c c

d

time
c c

s

c

s

d

c c c

d

c

ss

c c c

d2

u1 u2 um...
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Consider Realistic Predictors

y

c

ss

c x2

x1

time
c c

s

c

s

x7

c x7 c

d

c

s

s

c c c

d2

u1

u2 um...

x8

x4

x6

x5
x11

x12

x9

x10

Grey variables and known to be dependent but the values are
unknown and the uk 's are the �unknown unknowns�.
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Consider Realistic Predictors

Some observations from the previous illustration:

Maybe some of the predictors x1, . . . , xp are causal, but most are
likely not.

Of the ones that are not causal due to a confounder, you may have
an idea of the lurking variables but it is unlikely you can measure
them. Think college GPA vs SAT with confounder true IQ / ability.

If some variables are causal, it is unlikely they have an additive
causal e�ect; their e�ect is likely moderated by many other
interacting variables possibly in non-linear ways.

Some predictors are completed independent of the response.

A linear model for y on x1, . . . , xp is likely far from the truth (not
related to our discussion on causality).
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Inference and Causality

Models

Mathematical Models

Statistical Models

Parametric Models

correlational inference possible

model assumptions 
justified

Causal Variables 
Manipulated

Inference 
Impossible

Causal Inference 
Possible

Parameter 
Inference 

N/A

Parameters 
Deterministic
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Sidebar: Theories are Hard...

y

c

ss

c c

d

time
c c

s

c

s

d

c c c

d

c

ss

c c c

d2

Maybe we know the predictors, but don't know the causal dependencies. How
many theories are possible? 23 variables, 4 con�gurations between each pair,

23 possible dependences to the the response ... = 4(
23

2
) × 223 = 1.757× 10159.

And that's not even counting the unknown unknowns... thus, many have said
that generally speaking �science is impossible� .
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More on OLS Coe�cient Interpretation
The linear regression coe�cient interpretation again: another object
naturally observed with exactly the same features except that xj is

increased by 1 unit will have a β̂j ± SE
[
β̂j

]
di�erence in its mean

response y .

What do we mean by naturally observed? This other object is realized
from the same joint distribution as all other observations. This means
that whatever multicollinearity / covariance structure exists between the
predictors, {Cov [Xj ,Xk ]}, will give rise to the predictor values in the
other object.

y

time
x1 u1 u2 um...x2 xp...
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The Hidden �Fifth� OLS Assumption

So this language �... exactly the same features except that xj is
increased by ...� is kind of absurd in the context of a strong
covariance structure as ... i.e. it will be very rare to observe an
observation with xj di�erent without any other predictor values
di�erent. Example from baseball dataset?

There is room to argue that to have these interpretations be at all
realistic, we must assume there is not ... a strong multicollinearity
structure between xj and the other predictors.

But isn't getting the adjustments the whole reason we do linear
regression??
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But Real Correlations Still Rock
We've been beating up on correlations and their interpretations e.g.
the following:

But even though higher umbrella sales do not �cause� accidents,
can they still predict them? Yes, R2 is totally agnostic to (a) if
your model is true and (b) if your variables are causal or not.
Predictors truly correlated (a causal link exists) to the response
contain information about the value of the response and it doesn't
matter through what channel it provides that information.
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Fake / Spurious Correlations
x is margarine consumption per capita in America measured yearly for 10 years
from 2000-2009, y is the divorce rate in Maine per 1000 people measured
yearly for 10 years from 2000-2009

Are they linearly predictive of one another?

R2 ≈ 99%, F test pval ≈ 1× 10−8. [R demo]
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Data dredging / mining / p-hacking is a
dangerous enterprise

Be careful about featurization... try to at least have some inkling of an
idea for a causal dependency for the response on the predictors... I
�found� this using by running that demo code for a few hours...
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Unintential Dredging
[JMP Baseball data] Consider all these t-tests. Is it possible some are
true because I've dredged by testing all of them? Of course.

When is an individual t-test / F -test / LR test valid? When you are
looking to test one single theory. Imagine you wished to test
Ha : βnum_RBIs 6= 0. Here's all you �see� then:
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Sidak Correction
If you �see� all of the parameter tests, what theory were you testing?
Every single one... it is as if you were �looking for variables� that matter
(this is called variable selection and we will be doing this later on in the
course). But again, that α := P (Type I error) gets you... the false
positives. What can we do to curb this? Do a �multiple testing
correction�.

Imagine K tests. The strictest correction will be when considering that
they fail to reject H0 implying that their p values are ∼ U (0, 1). A
rejection occurs at p < α which has probability α. This is called the false
positive rate / Type I error. We want to control the �family-wise error
rate� (FWER) meaning the probability of one or more Type I errors is
≤ αFWER .

αFWER := P (≥ 1 rejection) = 1− P (0 rejections) = 1−

(
K

0

)
α0 (1− α)K

= 1− (1− α)K

⇒ α = 1− (1− αFWER)
1

K (AKA the Sidak Correction)

What does this assume among the K tests? Independence. 42 / 49
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Bonferroni Correction
What does the Sidak Correction assume among the K tests?
Independence. Can we assume that here? No. There is multicollinearity

which means Cov
[
β̂i , β̂j

]
6= 0. What can we do now? Call event R a

rejection. Recall inclusion exclusion:

P (R1 ∪ R2) = P (R1) + P (R2)− P (R1 ∩ R2)

αFWER = α + α− ?

which can be used to demonstrate Boole's Inequality:

P

(
K⋃

k=1

Rk

)
≤

K∑
k=1

P (Rk)

αFWER ≤
K∑

k=1

α = Kα

Meaning if I want the typical αFWER = 5%, I'd better set the individual
rejection at 5%/K . This is known as the Bonferroni Correction.
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Sche�e Correction

The Bonferroni Correction is extremely conservative here. Why?
Because in OLS, we know the dependence structure. We can
somewhat �gure out the P (R1 ∩ R2) terms above. One solution
from the 1950's is called Sche�e's Method:

P


(
β̂ − β

)> (
X

T
X
)−1 (

β̂ − β
)

pMSE
≤ Fα,p,n−p

 = 1− α

This also account for every possible contrast you'd ever want to
test e.g. Ha : β3 + β7 6= β5 − β2.

I can't �gure out how to do this in JMP, so if it is on the
homework, we will do it in R.

44 / 49

Predictive Analytics Lecture 2



LM Inference, Corr. 6⇒ Causation Mult. Testing Equiv. Testing Design

Omnibus F test as a �Correction�

Recall:

R2 =
SSE0 − SSE

SSE0
= . . . = 1−

(
1 + F

p − 1

n − p

)−1

F =

SSE0−SSE
p

SSE
n−p

=
SSE0 − SSE

SSE

n − p

p
= . . .

=
R2

1− R2︸ ︷︷ ︸
ratio of variance
explained to
unexplained

× n − p

p︸ ︷︷ ︸
penalty for

too many features

[R Demo]
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Hypothesis Testing: a Review

Conceptually, let's act out the introduction of data assuming H0,
Ha and some predetermined level α.

H0 : UFOs do not exist

Ha : UFOs do exist

and the inverse:

H0 : UFOs do exist

Ha : UFOs do not exist

�Flipping� the null and the research hypothesis represents a
completely di�erent framing. The Type II error is now controlled
for.
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Hypothesis Testing: a Review

For regression, we can consider the same:

H0 : βj = 0

Ha : βj 6= 0

and the inverse:

H0 : βj 6= 0

Ha : βj = 0

[R Demo]
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An Equivalence Test
We are trying to prove βj = 0 so we �rst assume βj 6= 0 and wait until
we have enough evidence (an �equivalence test�). Can you think of a
situation you would need this type of control?

We �rst de�ne δ, a margin of practical equivalence, so if β ∈ [−δ, δ] than
practically speaking we believe it to be zero. You need to set δ yourself.
Then we run two tests at level α:

H0 : βj ≥ δ
Ha : βj < δ

H0 : βj ≤ −δ
Ha : βj > −δ

This is known as TOST (two one sided tests) which is equivalent to
taking the intersection of two α-sized one sided con�dence intervals, i.e.
a two sided con�dence interval at level 2α. Thus, we reject H0 if:

CIβj ,1−α :=
[
β̂j ± tα,n−p−1SE

[
β̂j

]]
∈ [−δ, δ]

[R demo]
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Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the
dataframe (these are the predictors to measure). Once we did this,
we can then go out and sample observations and then measure
each for their predictor values.

But we didn't speak at all about selecting the observations
themselves (assuming you have some modicum of control of
selecting your data). Two things to consider:

1 Generalizability refers to the ability of the model to generalize, or
be externally valid when considering new observations. This comes
down to sampling observations from the same population as your
new data you wish to predict (pretty obvious). Sometimes di�cult
in practice!

2 Optimal Design
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