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The Coin Example from Last Class I
I want to explain the coin example from last class in the context of
likelihood. Imagine you �ip a coin three times and get heads, heads, tails;
thus, y1 = 1, y2 = 1, y3 = 0. There is a true probability of heads called θ.
We don't know it.

What is the probability of the data? We employ the mass / density
function:

P (Y1 = y1,Y2 = y2,Y3 = y3; θ) =
3∏

i=1

P (Yi = yi ; θ) =
3∏

i=1

θyi (1− θ)1−yi

=
(
θ(1) (1− θ)1−(1)

)(
θ(1) (1− θ)1−(1)

)(
θ(0) (1− θ)1−(0)

)
= θ2(1− θ)

And now we can calculate the probability of seeing the data assuming θ.
Assume θ = 0.5 then,

P (Y1 = 1,Y2 = 1,Y3 = 0; θ = 0.5) = 0.52(1− 0.5) = 0.125

2 / 40

Predictive Analytics Lecture 3



Max. Likelihood Review Extrapolation Design Logistic Regression Evaluating Binary Classi�cation Models

The Coin Example from Last Class II
Now we ask the inverse question. If we saw this data y1 = 1, y2 = 1, y3 = 0,
what is the most likely model? Equivalently, what is the most likely value of θ?
We �rst write down the likelihood function which it's easy because it's the
same as the mass / density function

L (θ;Y1 = 1,Y2 = 1,Y3 = 0) = P (Y1 = 1,Y2 = 1,Y3 = 0; θ) = θ2(1− θ)

And now we pick the value of θ which maximizes the likelihood,

θ̂ := arg max
θ∈Θ

{L (θ; x)}

How? Calculus 101: we take the derivative, set it equal to zero and solve for θ:

d

dθ

[
θ2(1− θ)

]
=

d

dθ

[
θ2 − θ3

]
= 2θ − 3θ2

and set it equal to zero:

0 = 2θ − 3θ2 = θ(2− 3θ)⇒ 0 = 2− 3θ ⇒ θ̂MLE =
2

3

i.e. the most likely model for this data is a weighted coin with probability of
heads of 2/3.
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Extrapolation
Data driven approaches are all focused on accuracy during interpolation

(estimation within a known range). Extrapolation (estimation outside of
a known range) brings trouble.

It is important to ask the question for a new observation x∗ if it is within
the space of x 's in the historical data. (Hardly anyone does this when
p > 2... but you should)!
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Reconciliation of These Silly Cartoons

Be aware that extrapolation methods of di�erent algorithms di�er
considerably! [R Demo]
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Dataframe Design
We spoke a lot about featurization i.e. selecting the columns in the
dataframe (these are the predictors to measure). Once we did this, we
can then go out and sample observations and then measure each for their
predictor values.

But we didn't speak at all about selecting the observations themselves
(assuming you have some modicum of control of selecting your data).
Two things to consider:

1 Generalizability refers to the ability of the model to generalize, or
be externally valid when considering new observations. This comes
down to sampling observations from the same population as your
new data you wish to predict (pretty obvious). Sometimes di�cult
in practice! Extrapolation??

2 Optimal Design

What to measure? X Who to measure it on???
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Optimal Design for Inferring one Slope

Question: assume (a) OLS with p = 1 and (b) we only care about
inference for β1 (intercept inessential) and (c) we are at liberty to
sample any x values live in their set X e.g. ∈ [xm, xM ]. What
should these n values of x be?

Let xm = 0, xM = 1 and n = 10. The best inference for β1 means

... SE
[
β̂1

]
is minimum (since unbiasedness is guaranteed since we

are using minimum SSE estimation). Design strategies for the x 's:

1 Random sampling

2 Uniform spacing: {0, 0.111, 0.222, . . . , 0.999}
3 Something else?

[R demo]

7 / 40

Predictive Analytics Lecture 3



Max. Likelihood Review Extrapolation Design Logistic Regression Evaluating Binary Classi�cation Models

Optimal Design: Split Between Extremes

Recall the formula from Stat 102 / 613:

SE
[
β̂1

]
=

√
MSE

(n − 1)s2x
=

RMSE√√√√ n∑
i=1

(xi − x̄)2

How can we make this small?

1 Maximize n (duh) ... so we'll assume n is �xed by a budget
constraint so now what?

2 Minimize the numerator, RMSE i.e. minimize the MSE i.e.
minimize SSE . Can we do this? Yes by picking the closest β̂1 to β1
(which we already do).

3 Maximize the denominator (n − 1)s2x . Since n is already maximized,
we can pick x1, . . . , xn to maximize s2x , the sample variance of the
predictor. How? Put half of the x 's at xm and the other half at xM
thereby maximizing the distance from the x 's to x̄ .
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General Optimal Design of Linear Models
We seek the best linear approximation of f (x) which is
β0 + β1x1 + . . .+ βpxp. We pick the x 's to give us the best linear
approximation. What criteria? JMP gives two ways:

1 Note: Var
[
β̂0, β̂1, . . . , β̂p

]
= σ2

(
X

T
X

)−1

D-optimality: maximize
∣∣∣XT

X

∣∣∣ � this minimizes the

variance-covariance among the parameter estimates.

2 Note: Var
[
Ŷ1, . . . , Ŷn

]
= σ2X

(
X

T
X

)−1

X
T

I -optimality: minimize the average prediction variance over the
design space. I'm unsure how JMP de�ned �design space�.

[R Demo] What did we learn? For linear models with no polynomials or
interactions, keep the observations as close to the minimimums and
maximums as possible. For linear models with polynomials and
interactions (more non-parametric than parametric), keep most towards
the minimums and maximums and some in the center of the input space.
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Modeling Categorical Responses

Previously the response y was continuous and via the OLS
assumptions we obtained the statistical model,

Y
ind∼ N

(
β0 + β1x1 + . . .+ βpxp, σ

2
)

If the response y is categorical, can we still use this? No... the only
elements in the support of the r.v. Y are the levels only. [JMP
Churn Dataframe]

First, assume Y is binary i.e. zero or one. The model (AKA
�classi�er�) we use is...

Y ∼ Bernoulli (f (x1, . . . , xp))

since E [Y | x1, . . . , xp] = f (x1, . . . , xp), then f is still the
conditional expectation function like before except now it varies
only within [0, 1] and it is the same as P (Y = 1 | x1, . . . , xp).
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Linear f (x)?

We can model f (x) as the simple linear function but this returns
values smaller than 0 and larger than 1 and thus it cannot be the
conditional expectation function! Why? Lines with nonzero slope
vary between (−∞,+∞).

We need a �link function� to connect the linear function to the
restricted support of the response:

λ(fR(x1, . . . , xp)) = f (x1, . . . , xp)

And the parametric assumption would be

λ(sR(x1, . . . , xp; θ1, . . . , θ`)) = s(x1, . . . , xp; θ1, . . . , θ`)

And assuming a linear form of sR,

λ(β0 + β1x1 + . . .+ βpxp) = ?
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Choice of λ?
We just need λ : R→ [0, 1]. There are in�nite λ's to choose
from... but I've only seen three used:

1 Logistic link: λ(w) = ew

1+ew (most common)

2 Inverse normal (probit) link: λ(w) = Φ−1(w) where Φ is the normal
CDF function (somewhat common)

3 Complementary Log-log (cloglog) link: λ(w) = ln (− ln (w)) (rare!)

Herein, we focus on the logistic link. First, short detour. De�ne
p := P (Y = 1). We can think about probability in another way:

odds(Y = 1) :=
p

1− p

So if odds of an event is 4 (�4:1�), what is p? This means that the
probability of the event happening is four times more likely than the
complement happening. Or... of 4+1 trials, 4 will be a yes (on
average). What is the range of the odds function? [0,∞).

12 / 40

Predictive Analytics Lecture 3



Max. Likelihood Review Extrapolation Design Logistic Regression Evaluating Binary Classi�cation Models

Why Logistic Link is Interpretable
Now let's take the log odds (called the logit function):

logit(Y = 1) := ln (odds(Y = 1)) = ln

(
p

1− p

)
What is the range of the logit function? All of R. Hence, we can now set
this equal to our sR function. In the linear modeling context,

sR = β0 + β1x1 + . . .+ βpxp = logit(Y = 1) = ln

(
p

1− p

)

Thus, a change in the linear model becomes a linear change in log-odds.

eβ0+β1x1+...+βpxp =
p

1− p

(1− p)eβ0+β1x1+...+βpxp = p

eβ0+β1x1+...+βpxp = p + peβ0+β1x1+...+βpxp

p =
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
= λ(β0 + β1x1 + . . .+ βpxp)

This is (I would say) the most interpretable link function situation we've got.
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The Logistic Function (an �S� Shape)
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How to Obtain a Model Fit
A model �t would mean we estimate

{
β̂0, β̂1, . . . , β̂p

}
. We initially did

this estimation for regression (continuous y) by ... de�ning a loss
function, SSE, and �nding the optimal solution via calculus. What do we
do now??

Likelihood to the rescue. First the �logistic regression assumptions�

1 Independence among observations. Thus,

P (Y1 = y1,Y2 = y2, . . . ,Yn = yn | X 1 = x1,X 2 = x2, . . . ,X n = xn)

=
n∏

i=1

P (Yi = yi | X 1 = x i )

2 Bernoulli Model. Thus,

=
n∏

i=1

pyi (1− p)1−yi

3 Linear Logistic conditional expectation. Thus,
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Maximum Likelihood Estimates

=
n∏

i=1

(
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)yi (
1− eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp

)1−yi

= L (β0, β1, . . . , βp; x1, . . . , xn)

This does not have a simple, closed form solution. The computer
iterates numerically using gradient methods. It usually uses the
ln (·) of above, since it's (1) numerically more stable and (2) the
expression is easier to work with. When it �converges� on the values
of the parameters that maximize the above, these are shipped to

you as
{
β̂0, β̂1, . . . , β̂p

}
. This is called �running a logistic

regression�. The above looks complicated but it is instant on a
modern computer for most real-world datasets.
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Prediction with Logistic Regression
Recall that predictions in linear regression were easy:

ŷ = ŷ(x∗) = β̂0 + β̂1x
∗
1 + . . .+ β̂px

∗
p

How do we use a logistic regression model to predict with new data x∗?

p̂ = p̂(x∗) =
eβ̂0+β̂1x1+...+β̂pxp

1 + eβ̂0+β̂1x1+...+β̂pxp

Note the predictions are for the conditional expectation function, the
probability itself, the estimated expected probability. However, you may
actually wish to predict the response, the 1 or the 0. What to do?

You can create a classi�cation rule which allows you to make a decision about
the response based on the probability. What is the most intuitive classi�cation
rule?

ŷ = 1p̂≥0.5 :=

{
1 if p̂ ≥ 0.5

0 if p̂ < 0.5

AKA the �most likely criterion�. We will return to prediction and evaluation of
predictive performance later but �rst... inference.
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Global Test in Logistic Regression
Recall in OLS regression, gaussian (normal) theory directly gave us t-tests and
F -tests. Under the logistic regression assumptions, we have no such analogous

theory! However, we can make use of the ... likelihood ratio test. Recall:

LR := max
θ∈Θ
L (θ; x) / max

θ∈ΘR

L (θ; x)

Let's now do a �whole model� / �global� / �omnibus� test:

H0 : β1 = 0, β2 = 0, . . . , βp = 0, Ha : at least one is non-zero

So Θ would be the space of all β0, β1, . . . , βp and ΘR will restrict the space to
only β0 with zeroes for all other �slope� parameters.

LR =

max
β0,β1,...,βp

L (β0, β1, . . . , βp; y1, . . . , yn, x1, . . . , xn)

max
β0
L (β0, β1 = 0, . . . , βp = 0; y1, . . . , yn, x1, . . . , xn)

So on top the computer iterates to �nd
{
β̂0, β̂1, . . . , β̂p

}
, plugs it in and

computes the likelihood and on the bottom the computer independently iterates

to �nd
{
β̂0
}
, plugs it in and computes the likelihood, then together, the LR.
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Partial Tests in Logistic Regression
We then look at Q = 2 ln (LR) and compare it to the appropriate χ2

distribution. Here, since we've dropped p parameters / degrees of
freedom, we look at the critical χ2p,α value.

Let's say we want to test something like:

H0 : β1 = 0 & β2 = 0, Ha : at least one is non-zero

We can again use the likelihood ratio test:

LR =

max
β0,β1,...,βp

L (β0, β1, . . . , βp; y1, . . . , yn, x1, . . . , xn)

max
β0,β3,...,βp

L (β0, β1 = 0, β2 = 0, β3, . . . , βp = 0; y1, . . . , yn, x1, . . . , xn)

We then look at Q = 2 ln (LR) and compare it to the appropriate χ2

distribution. Here, since we've dropped 2 parameters / degrees of
freedom, we look at the critical χ2

2,α value.
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Individual Tests in Logistic Regression

Let's say we want to test an individual slope coe�cient:

H0 : βj = 0, Ha : βj 6= 0

(a la the �partial-F test�). We can again use the likelihood ratio
test:

LR =

max
β0,β1,...,βp

L (β0, β1, . . . , βp; y1, . . . , yn, x1, . . . , xn)

max
β0,β1,...,βj−1,βj+1,...βp

L (β0, β1, . . . , βj−1, βj = 0, βj+1, . . . βp; y1, . . . , yn, x1, . . . , xn)

We then look at Q = 2 ln (LR) and compare it to the appropriate χ2

distribution. Here, since we've dropped 1 parameter / degrees of
freedom; thus we look at the critical χ2

1,α value.

There is something special about a χ2 r.v. with one degree of freedom.
Note this cool fact from probability theory: Q ∼ χ2

1
⇒
√
Q ∼ N (0, 1)

i.e. a �z-score�. This is how JMP produces standard errors for logistic
regression coe�cients.
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Telecom Company Churn Example

In marketing lingo, �churn� refers to a customer canceling their service.
Studies suggest that it costs 5-10x more to acquire a new customer than
to retain an old customer. Thus, predicting churn is of major interest!

Here's a dataset from a telecom company (likely it's churn on Verizon /
AT&T / T-Mobile /Sprint's cell-phone plan). We have 7,043 customers
with 20 features. This is likely a nearly-mindless dump!! Churn is de�ned
to be a complete cancellation of services in the next month period. Since
we are predicting churn, de�ne y = 1 to be churn, so the p̂'s are
estimates of probability of churning (this just makes everything easier to
understand).

We begin just trying to model y : churn vs. x : tenure (the number of
months customer is currently subscribed for). What do you think the
relationship will be i.e. what is the sign of ∂/∂x [f (x)] generally speaking?
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Results of Simple Logistic Regression

[JMP demo] Which likelihood numbers are �best�? Highest likelihoods
are good which means highest log likelihoods which means smallest

negative log likelihoods.... yup it's confusing. Here's what JMP did:

Q = 2 ln (LR) = 2
(
`
(
θ̂; x
)
− `
(
θ̂R ; x

))
= 2 (−(3595.9341)−−(4075.0729))

= 2 (479.1389) = 958.2778

and χ2
1,5% = qchisq(.95, 1) = 3.84. So this passes the test

(comfortably). We reject H0 and conclude that the model is linearly
useful. ALSO: equivalent to a test of one variable. We reject H0 and
conclude tenure has a linear e�ect on the log-odds of churn.

Also note that LR = 1.22× 10208 but e−3595.9341 = 0 i.e. it's less than
the smallest number a computer can represent (without special
handling). Numbers are cool things... and logs are pretty powerful.
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Basic Predictions I

Predict estimated expected probability of churn for someone who
has 1 month of tenure

p̂ =
e β̂0+β̂1x1

1 + e β̂0+β̂1x1
=

e0.0273+(−0.0288)(1)

1 + e0.0273+(−0.0288)(1)
=

0.9985

1.9985
= 0.500

How about 2 months of tenure?

p̂ =
e β̂0+β̂1x1

1 + e β̂0+β̂1x1
=

e0.0273+(−0.0288)(2)

1 + e0.0273+(−0.0288)(2)
=

0.9702

1.9702
= 0.492

i.e. a di�erence in about 0.8% as measured on a probability scale.
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Basic Predictions II

Predict estimated expected probability of churn for someone who
has 100 month of tenure

p̂ =
e β̂0+β̂1x1

1 + e β̂0+β̂1x1
=

e0.0273+(−0.0288)(100)

1 + e0.0273+(−0.0288)(100)
= 0.055

How about 101 months of tenure?

p̂ =
e β̂0+β̂1x1

1 + e β̂0+β̂1x1
=

e0.0273+(−0.0288)(101)

1 + e0.0273+(−0.0288)(101)
= 0.053

i.e. a di�erence in about 0.2% as measured on a probability scale
(i.e. a 4x di�erence from before). But isn't the model supposedly
to be linear??
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The Logistic Function

A move of one unit in x when x ≈ 0 is a much bigger move than
one unit in x when x ≈ 3
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Parameter Standard Error
To add to the confusion... JMP prefers to calculate parameter
estimates and standard error via the Wald test, which is similar to
the likelihood ratio test. Thus, 761.00 6= 958.28 but, remarkably,
they are about the same conceptually � both large and signi�cant.
The standard errors,

Q = z2︸ ︷︷ ︸
fact from
probability
theory

=

(
β̂1
sβ̂1

)2

⇒ sβ̂1 =

∣∣∣β̂1∣∣∣
√
Q

are expectedly about the same

sβ̂1 =
|−0.0387682|√

761.00
= 0.0014 (via the Wald test)

sβ̂1 =
|−0.0387682|√

958.28
= 0.0013 (via the LR test)
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Multivariate Logistic Regr. Interp. I

Now let's use all variables. Questions:

Which variable(s) should we leave out? customerID � no causal
mechanism.

Why are we getting biased estimates and zeroes? Perfect
multicollinearity. Solution? Kill columns until you don't get the
error anymore. Turns out 6 have to be removed.
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Realistic Predictors Illustration (updated)
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Multivariate Logistic Regr. Interp. II
Now let's use all variables. Questions:

Which variable(s) should we leave out? customerID � no causal
mechanism.

Why are we getting biased estimates and zeroes? Perfect
multicollinearity.

Are all these variables �signi�cant�? No. And further, after a
Bonferroni correction, we �lose� two. Are they for sure insigni�cant?
No, maybe we didn't have enough power to detect them... [review
power concept]

Do the coe�cients sign / size make sense intuitively? Yes?

Which of the �driving� variables are not able to be manipulated?
Senior citizen, total charges (?)

Should you (the manager) try to incentivize electronic checks?
Paperless billing? Dropping multiple phone lines? You can try these
things if you have nothing to lose, but remember, they are not
guaranteed to be causal! And they may back�re!! (Can you think of
an example??) 29 / 40
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Remember Where you At!!

Models

Mathematical Models

Statistical Models

Parametric Models

correlational inference possible

model assumptions 
justified

Causal Variables 
Manipulated

Inference 
Impossible

Causal Inference 
Possible

Parameters 
themselves 
not clearly 

defined 
(inference 

N/A)

Parameters 
Deterministic
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Evaluating Logistic Regression Models

Many, many measures reported by JMP that we generally don't use:

R2(U)

Generalized R2

Mean Negative Log probability

�RMSE�

Mean Absolute Deviation

And ones that we do use:

AICc / BIC (for something a little bit di�erent... we will come back
to this in a couple of lectures)

Misclassi�cation Rate

We now cover evaluating classi�cation models in general (not only
in the context of logistic regression models speci�cally).
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Probability Predictions ⇒ Level Predictions
Recall that ... you can create a classi�cation rule which allows you to
make a decision about the response based on the probability. The most
intuitive classi�cation rule is:

ŷ = 1p̂≥0.5 :=

{
1 if p̂ ≥ 0.5

0 if p̂ < 0.5

In regression, you examined functions of the residuals ei := yi − ŷi to
assess model �t. What is an analagous residual here? There are four
residuals, two representing errors. The best way to see them is to create
the confusion matrix:

ŷ (decision)
1 0

y (truth)
1 true positive (TP) false negative (FN)
0 false positive (FP) true negative (TN)

Why do �correlations rock� here?? We are purely evaluating predictive
performance... no inferential claims!
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Confusion Matrix for Churn Model
JMP gives us the matrix [JMP], but they don't annotate it well.
Here are some numbers I like to see:

ŷ Model
1 0 Totals Errors

y
1 TP = 1012 FN = 857 P = 1869 FNR = 45.9%
0 FP = 531 TN = 4632 N = 5163 FPR = 10.2%

Totals P̂ = 1543 N̂ = 5489 n = 7032

Use errors FDR = 34.3% FOR = 15.6% ME = 19.7%

There are other metrics commonly reported

Sensitivity = Recall = TP
TP+FN = TP

P , the proportion of positives
successfully recovered (large value = good model), 54.9% above

Speci�city = TN
TN+FP = TN

N , the proportion of negatives successfully
recovered (large value = good model), 89.8% above
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Misclassi�cation Error

Already... what is one broad, general metric to evaluate the model?
Misclassi�cation error cost function (or Accuracy):

ME :=
1

n

n∑
i=1

1yi 6=ŷi

ACC := 1−ME =
1

n

n∑
i=1

1yi=ŷi

This essentially treats both types of errors (the FN's and the FP's)
equally (more on this later).
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Production Classi�er Flowchart

New 
data
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TP
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7.5%
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There's a Ton of Metrics...
From wikipedia...

Others (from above) commonly used:

False Discovery Rate (FDR) = FP
TP+FP

= FP

P̂
, the proportion of negatives

of those predicted to be positive (small value = good model)

False Omission Rate (FOR) = FN
TN+FN

= FN

N̂
, the proportion of postives of

those predicted to be negative (small value = good model)

Precision = Positive Predictive Value (PPV) = 1 - FDR = TP
TP+FP

, the
proportion of positives of those predicted to be positive (large value =
good model)
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Generalizing the Classi�cation Rule

Recall the classi�cation rule ŷ = 1p̂≥0.5. Using 0.5 is a principled
default but we can use any rule p0 ∈ (0, 1):

ŷ = 1p̂≥p0 :=

{
1 if p̂ ≥ p0

0 if p̂ < p0

What happens when we change the p0 threshold? If p0 ↑ ⇒ P̂ ↓
and N̂ ↑. If p0 ↓ ⇒ P̂ ↑ and N̂ ↓. Changing p0 changes the
column totals and obviously creates a whole new confusion matrix.

So now it's simple, vary p0 and pick the best model according to
your cost / error / loss function (the ME at the moment). Let's
just do every p0!
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Receiver-Operator Characteristic Table

Here, Prob is what we denoted p0. �Best model� is not de�ned
here by highest ACC (lowest ME ), it's determined by highest
speci�city + sensitivity or equivalently, the highest sensitivity -
(1 - speci�city).JMP indicates that row with a ?. This is an
arbitrary metric, but is a good default.
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Receiver-Operator Characteristic Curve

This is graphical illustration of the table. Each dot represents the
sensitivity-speci�city tradeo� for each p0. The starred row of maximum
sensitivity + speci�city is indicated here by a yellow tangent line. I drew
the diagonal line to indicate predictive performance that is expected �by
chance�. Why? Also, are there other ROC variants? Yes (HW?).
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Area Under the Curve (AUC) Metric

If you built a model by chance the �area under the curve� (or to the right
of the curve) on the graph would be ... 0.5 since the graph is a unit
square. Under the ROC curve itself (or to its right) is an area ... greater
than 0.5. Here, it's 0.844. This metric is called AUC and is widely used
as a metric to assess performance of all possible classi�ers in this set of
models together, it is a composite metric unlike ME or anything derived
from an individual confusion table.

AUC is nice to evaluate overall performance of all possible models... but
at the end of the day... you ship ONE model! So we still need a means
of evaluating our one model from one confusion table.

40 / 40

Predictive Analytics Lecture 3


	Max. Likelihood Review
	Extrapolation
	Design
	Logistic Regression
	Evaluating Binary Classification Models

