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Modeling Framework Refresher
Recall the general regression model:

Y = f (x1, . . . , xp) + E
A couple lectures ago, we made the parametric assumption that:

Y = s(x1, . . . , xp; θ1, . . . , θ`) + Ẽ

where the Ẽ term now includes the previous E plus f − s, the
misspeci�cation error. The parametric model s we employed was the
linear model and the θ's we called β's:

Y = β0 + β1x1 + . . .+ βpxp + Ẽ
Last lecture, we started adding interactions and polynomials (as well as
other transformations e.g. log which we did not cover). This was a
means of �expanding� the feature set �visible� to the model using
�derived� features:

{x1, . . . , xp} ⇒
{
x ′
1
, . . . , x ′p′

}
where p′ > p and maybe much, much greater.

2 / 41

Predictive Analytics Lecture 6



Automatic Model Selection: Stepwise Linear Model Subset Decision Trees Random Forests Course Conclusion!

�Non-parametric� Linear Regression

Once we expand this feature set, we can now �t a larger linear
model:

Y = β0 + β1x
′
1 + . . . . . . . . . . . . . . . . . . . . .+ βpx

′
p′ + Ẽ

Given more degrees of freedom with this expanded feature set
allows the linear model to �t more complicated real-world functions.
This is essentially a means of doing non-parametric parametric
modeling (it's oxymoronic). It's technically parametric but
conceptually it's non-parametric since we don't have our parametric
bene�ts: parsimony, inference nor interpretation. Hopefully Ẽ will
be close to E , the irreducible noise.

Back to our problem... we can curb over�tting by ... using 3-way
split oos validation but we need to select good models... how to do
so? One approach is termed subset selection methods.
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Stepwise Regression

First we expand the feature set from {x1, . . . , xp} ⇒
{
x ′
1
, . . . , x ′p′

}
.

Then we attempt to �nd the �best� model consisting of a subset of
these features. However there are 2p

′
possible models. For p′ = 20

that's about 1,000,000. So we try to �nd a model close to the
optimal using a �heuristic� (a rule of thumb that seems to generally
be useful).

That heuristic is called stepwise model construction. We begin
with forward stepwise model construction:

1 Find the �best� feature from the list of expanded features.

2 Find the �next best� feature from the remaining expanded features.

3 Repeat step 2 until you believe you are over�tting.
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Estimating Over�tting (again)

If you choose the feature to give you the best in-sample R2, you will
eventually take all the features (until n = p + 1) and you will get
R2 = 100%. We need a metric to tell us when we may be over�tting and
halt at that moment. Here are a few:

1 oos RMSE (keep a holdout set and quit when this starts increasing)

2 Only include a variable if its t stat (or partial F stat) is signi�cant

3 Use AICc .

−AIC = 2`
(
β̂; y , x

)
− 2p

The �rst component (the log-likelihood) represents in-sample �t. ` () is
like R2 though... as the �t gets closer to the points, the likelihood goes
to 1 (and the log likelihood goes to 0). The 2p term is a reality check. If
you have more features, you are going to over�t. So each additional
feature must be justi�ed in terms of the increase in log-likelihood. Thus,
good models maximize −AIC (i.e. minimize AIC ).
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AICc for linear models

For linear regression under OLS, we can calculate the log-likelihood
explicitly (we approximately did this in Lecture 2) to obtain:

AIC = n ln
(
RMSE 2

)
+ 2p

So once again, we want this to be small. If we decrease RMSE by adding
a feature, it needs to counteract an increase of 2 by p → p + 1. If it
can't, we're probably over�tting. AIC works well with large sample sizes.
For small sample sizes, we use a corrected version AICc de�ned as:

AICc = AIC +
2p(p + 1)

n − p − 1

Needless to say, this is all approximate since we are assuming OLS and a
whole bunch of other things (beyond scope of course). Note: there are
also BIC and Mallow's Cp which are similar metrics, but we will not cover
them.
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Stepwise Linear & Logistic Regr. Demos

white wine on AICc

white wine oos validation R2 and test

white wine K−fold on AICc (why is this not a great idea?)

telecom all 1st order interactions with oos validation on AICc

telecom all 1st order interactions with oos validation on min logistic
R2
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More About Stepwise Linear Regression

Backward selection begins with all features and then deletes one for
each step until no more can justi�ably be cut out. Backward selection
has a major weakness: it cannot be run on dataframes where the
extended feature set is more than the number of rows (only forward or
forward with mixed works there). Mixed selection begins with either
none or all and then looks for both good additions and good subtractions.

Simple case where stepwise doesn't work? How about three features
where x1 is most correlated but x2 and x3 together are the best model
but there is high collinearity between x2 and x3? What happens?
Forward: the model enters x1 and then x2 but it doesn't see x3 as a
worthy addition. Backward: the model can nuke x2 or x3 since its p-value
or F test is poor.
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Conceptual Review of What We Just Did
Once again,

Y = f (x1, . . . , xp) + E

and we made the parametric assumption that:

Y = β0 + β1x1 + . . .+ βpxp + Ẽ

then we take our �raw� features and create �derived features�

{x1, . . . , xp} ⇒
{
x ′
1
, . . . , x ′p′

}
where p′ > p and maybe much, much greater.

then we allowed for a large linear model:

Y = β0 + β1x
′
1

+ . . . . . . . . . . . . . . . . . . . . .+ βpx
′
p′ + Ẽ

of which we took a subset by �stepping through� and reaching a local
optimum:

Y = β0 + β1x
′
(1) + . . . . . . . . . . . .+ βpx

′
(p′) + Ẽ
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Binning

Our derived predictors

{x1, . . . , xp} ⇒
{
x ′1, . . . , x

′
p′
}

still may not be that ��exible� as �bases� for the f̂ (whiteboard
demo).

What if we derived predictors that split up the space of raw
predictors into tiny regions. In one dimension, we can make some
new derived variables:

1x∈[0,1],1x∈[1,2],1x∈[2,3],1x∈[3,4], . . .1x∈[9,10]

and assign a di�erent β parameter (�t to be the average y) for
each of these 10. This is called �binning� and allows for �exible,
non-parametric �ts. Why? Did you do any binning on the project?
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Does Binning Breakdown?

In multiple dimensions, you can get nice bins by doing interactions
between each dimensions' bins. For example in two dimensions, you
can bin both into B = 10 bins. Crossing the bins makes 100 square
bins. Each square gets its own β parameter (�t to be the average
y).

In the white wine data, we have 11 predictors and B = 10 bins per
continuous predictor, that's B11 = 100 billion �hyper-square� bins.
Problem? (1) n > p and you can't use the linear model, (2) most
bins are empty how do you take the average of nothing?) and (3) a
lot of bins will have similar averages � useless bins.
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Better Bins?

Instead of just binning each predictor into B bins, why not try to
make �custom� or �smart� bins in the regions of f that give the
most increase in �t (i.e. higher R2, lower SSE or RMSE ). So you
�split� the data into bins that are now �hyper-rectangle� shaped.

Demo JMP white wine. Within each hyperrectangle (�split� or
�partition�), you can split again by taking the best split, and you
can keep going. Because the splits are binary (i.e. you split one
space into two spaces), and they are hierarchical (you can trace the
splits back generations), they look like �trees�. JMP. How to
predict? �Drop the observation down �and follow instructions all the
way until the end. Does this make them interpretable? YES.
Simple? Maybe if they are not too complex.
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Decision Trees
These are known as decision trees since you can imagine examine when
you predict, you follow the �decisions� (i.e. the split rules). There is
some terms of anatomy to know:

The top is the �root node�

Nodes that split have �children� and are �inner nodes� or �split
nodes�.

Nodes that do not split are called �leaves� or �terminal nodes�.

�Depth� indicates the maximum number of generations in the tree
(the root has zero depth).

Nodes that have a split must contain a splitting rule e.g. x3 < 14.56
(or equivalently x3 ≥ 14.56) and x3 is called the �split variable� and
14.56 is called the �split value�.

For the purposes of this class, there are two types of decision trees.

Regression (for continous responses)

Classi�cation (for categorical responses)
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Making Splits

There are basically three things to decide in the decision tree algorithm:

How to make the split? What metric to optimize? What splits to
check?

Leaf assignment? What should the ŷ be if the observation �falls�
into a given terminal node?

When to stop splitting? Should we split all the way down so each
�terminal� partition (node) has one data point?

The split rule is determined by...

Look at all possible splits (≈ n × p splits) greedily and take the
minimum total SSE for continuous and total entropy for categorical.
JMP is non-standard; it takes the maximum log worth (which is
something I've never heard of) for continuous and the maximum log
likelihood for categorical. My bet is the performance will be similar as it's
really the same concept: get the best, most homogeneous, split!

14 / 41

Predictive Analytics Lecture 6



Automatic Model Selection: Stepwise Linear Model Subset Decision Trees Random Forests Course Conclusion!

Leaf Assignment & Stopping / Pruning Rule

The leaf assignment is determined by...

The sample average ȳ among observations in the node for continuous
and the most-represented (modal) class in the node for categorical.

The rule that controls whether to stop splitting (and ship the tree) is...

There is no standard stopping / pruning rule. JMP stops when the next
10 splits below does not create a better cross-validated R2. Standard
software usually allows for a minimum leaf size or allows you to keep a
oos validation set.

What would happen if there is no stopping rule? It would �t until there is
one point in each node i.e. ... it would very much over�t E .

More on interpretation: AND rules? Overall e�ect of y on x? No ... not
so clear. Categorical variable splitting? Very nice interpretation.
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Advantages of Decision Trees

Automatically knows which variables to include and which to not
include � if they help performance, include otherwise not. Linear
models include everything or try to ration during a stepwise
procedure.

Easily models curves and non-linearities

Easily models interactions due to the AND intersection from parent
node to child node

Thus it is non-parametric. However... Low-depth trees have both
interpretability and parsimony! (but no inference possible to my
knowledge) In fact, the interpretation in trees likely are more similar
to how we create models. If income is low and down payment is low
... a default is more likely.

You no longer need to worry about binning! The tree will create the
bins for you via splitting.

You no longer need to worry about transformations such as logs
since the split variables will take care of optimal splits.
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Disadvantages of Decision Trees

Non-parametric modeling does not give us inference. Can we ask
how important alcohol is in determining wine quality? It looks
important since it's the root, but we can't get a reassurance that it
will stand up to sampling error formally as a p-value.

Trees have di�culty capturing actually linear or near linear
relationships.

Trees are high variance. This means that with di�erent samples
(di�erent E values), the tree splits can vary wildly the lower in
depth you go.

But most important, tree predictive performance is not great. They
are called �weak learners�. Why? Basically, we have traded
interpretability and simplicity for performance.
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The Tree's History and Improving the Tree

Trees were conceived in 1963 and were made rigorous in the
mid-1980's with the book �Classi�cation and Regression Trees�.
The 1990's saw a few huge advances:

1 Bagging (bootstrap aggregation) in 1994 (Breiman).

2 Boosting (�nding errors and reweighting to �x them) in 1995
(Freund and Shapire).

3 Sampling predictors in 1997 (Amit and Geman).

These were three historical ideas which gave birth to Leo Breiman's
Random Forests idea in 2001.
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Many, Many Trees Together
Each of the above combines many decision trees together (T trees
instead of one tree). Predictions are generated by the average leaf ŷ
(during regression) or the modal class (during classi�cation).
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What is Bagging?
�Bagging� is a portmanteau of �bootstrap� + �aggregation� which are...

Bootstrap (in our case, the �nonparametric bootstrap�)

Sample the observations 1, . . . , n with replacement. You get only about
2/3 of the unique n observations since you double and triple up.

What it means in this context is that each of the T trees are built with a
bootstrap sample. Each tree itself is a �weak learner� but many slightly
di�erent trees together is strong since they reduce variance from
over�tting (beyond scope of course).

Aggregation

What we said before: �aggregate� the ŷ 's from the T trees together via
average (regression) or majority vote (classi�cation).

Bagging beats single trees... but once we bag, no interpretability
anymore! Complete black box due to that function f̂ being so
complicated!!
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Random Forests (RF)

To reduce variance between the trees, we have to bust up the
correlation structure between each tree. The last piece of the
puzzle Breiman cracked in 2001: each tree only sees a sample of
the features. Each tree only sees p∗ < p.

This was we do this, the predictive accuracy then beats bagging
(no one uses just bagging anymore). These many trees taken
together as a unit do not over�t!!!

Random Forests (RF) Algorithm

Build many over�t trees

In each tree use a sample with replacement of the rows

In each tree use a sample of the availabe features
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RF �Tuning Parameters�

Number of trees � we want a lot to reduce variance (default is 500
in R)

Number of splitting features for a individual tree � we want less
than p to decorrelate (default p/3 for regression and

√
p for

classi�cation)

Number of observations in smallest split node � we want to over�t
(default is 5 in regression, 1 in classi�cation)

The amazing thing is ... the defaults work so well, you hardly ever
need to change them!! RF in my opinion is the best predictive
model out-of-the-box.
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Tuning RF � Nested Resampling

Remember this from last class? Here's where it's used... But I do
not recommend doing this!

(from MLR's tutorial website). 23 / 41
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A Nice Perk in RF � OOB Estimation

So RF doesn't over�t, but how do we assess this? we can use oos
validation (plain or with K -fold CV), but we don't have to! Why?
Each tree was built with a bootstrap sample. This means ≈ 2/3 of
the n observations were used to build the tree and therefore ≈ 1/3
of the n observations were not! Aren't those ≈ 1/3 that were not
oos? YES! These ≈ 1/3 are called �out of bag� (OOB). Over the
many T trees, all n observations went out of bag many times giving
us many trees to get oos average for each observation. OOB =
K -fold CV (usually very close... you'll see).

(Note: this strategy can be used for any modeling procedure as an alternative to K -fold CV and MLR in
R gives you this option... I'm still not sure why K -fold CV is the default).

However, RF does over�t in-sample. How? 2/3 of the T trees, it
over�ts and 1/3 of the T trees is OOB for every observation. Thus
it is mostly over�t! Never trust in-sample R2 from an RF! Only
look at OOB!
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Another Nice Perk: p̂'s!

In the classi�cation case, there are T trees which each have a ŷ of
the class in the leaf. We can now go the reverse direction,
aggregate the ŷ 's across all T trees and try to estimate the
probability of the kth class for any observation x

∗

p̂k(x∗) =
1

T

T∑
i=1

1ŷi (x∗)=k .

This sometimes works and sometimes doesn't... but many data
scientists seem to use this procedure in practice.

Note: there is a PhD student right now in this department
exploring when this works and how much you can trust it! Bleeding
edge of stats...
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When does RF win / lose?

Signal is high, noise is low (no one wins when signal is low, noise is
high). I've seen the linear model and RF performing about equal in
high noise cases.

When there truly are lots of interactions among the predictors and
curvilinear relationships with the response.

When there are not �too many� features. p > n is a problem for
everyone. RF can �nd what it believes to be a nice predictor, but
it's really fake and only idiosyncratically related to the response.

When you need interpretation, RF cannot give you what you want!
Note: many people working on this... it was actually part of my
thesis! See package ICEBox in R.

Demo time...
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JMP 1/4
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JMP 2/4
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JMP 3/4
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JMP 4/4

You don't need to do oos validation on Random Forests as the �out
of bag� is as good as oos.

30 / 41

Predictive Analytics Lecture 6



Automatic Model Selection: Stepwise Linear Model Subset Decision Trees Random Forests Course Conclusion!

R 1/2

#load the data

X = read.csv(

"stat_422_722_project_example_set_of_historical_data.csv")

#recode sale_price as a number

X$sale_price = as.numeric(gsub('[$,]','',

as.character(X$sale_price)))

#install and load up the RF package

install.packages("randomForest")

library(randomForest)

#run the RF

rf_mod = randomForest(sale_price ~

coop_condo + num_bedrooms +

num_full_bathrooms + walk_score, X)

rf_mod #print out its output
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R 2/2
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We Made It! Now a Summary and Review...
A quick review of the topics (and the topics that will not be covered on
the �nal next week).

Lecture 1

De�nitions of prediction, model, response, feature / predictor,
observation

Mathematizing English into measurements so we can create models

We talked about mathematical models, statistical models and the
conditional expectation function f .

Types of data: continuous, categorical. We talked about binning to
convert continuous → categorical.

Raw data represenations and deep learning, featurization to p
measurable features

Meehl's work on basic statistical models beating humans

Data collection: sampling and measurement to create a data frame
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Review...

Good machine learning (sampling and featurization) vs. bad
machine learning (mindless data dumps of convenience)

Parametric vs non-parametric worldview when modeling

De�nition of parameters

De�nition of parameter estimates (model �tting)

Residuals and loss functions (SSE ?, SAE)

Measures of �t: R2, SSE , RMSE and their interpretations and their
equivalence

Empirical rule ŷ ± RMSE
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Review...
Lecture 2

Graphical causal models with bubbles and arrows

De�nition of noise in statistical models

Probabilistic Causation

Three sources of noise (1) Irreducible Error (2) Model
Misspeci�cation due to a parametric assumption (3) Model
Estimation Error

The reasonable assumption of E distributed normally

The four OLS assumptions and what this buys you

What a likelihood is and what a log-likelihood is

What maximum likelihood estimation is

What the likelihood ratio is and when to reject (big values that
exceed critical χ2 values)
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Review...

OLS regression: Omnibus / global F -tests

OLS regression: Partial F -test

OLS regression: t-test

OLS regression: how to predict (ŷ calculations)

Proper interpretation of β̂j

Causation and correlation

Lurking / confounding predictors

Spurious (or coincidental) correlations

Natural observation vs. manipulated measurements

Randomized experiments can reveal additive causal e�ects

Why �science is impossible�

Why collinearity may invalidate β̂j interpretation

Why correlations are still useful
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Review...

Data dredging

Multiple testing correction with Bonferroni (hedges against
dredging)

Generalizability of models

Lecture 3

Extrapolation (a violation of generalizability)

How di�erent modeling strategies extrapolate di�erently

Optimal design in linear models (over sample predictors' extreme
values)

Optimal design in highly non-parametric models (more towards even
spacing throughout predictors' ranges)

Odds, logistic link function and its sigmoidal shape, logit function
(log odds)

Fitting β̂j 's in logistic regression

37 / 41

Predictive Analytics Lecture 6



Automatic Model Selection: Stepwise Linear Model Subset Decision Trees Random Forests Course Conclusion!

Review...

How to draw inference in logistic regression (likelihood ratio test)

How to predict conditional probabilities p̂'s in logistic regression

How to use classi�cation rules based on a threshold p̂0

Confusion Matrices, FN, FP, TP, TN, sensitivity, speci�city, FNR,
FPR, FDR, FOR

ROC Curve, ROC table and AUC metric

Lecture 4

Asymmetric costs in classi�cation, weighted misclassi�cation error,
minimizing this metric to �nd best p0

Survival Model � the response and why it's censored

Interpreting β̂j in an exponential survival model

How to draw inference in survival regression (likelihood ratio test)

Predictions in survival models
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Review...

Testing linearity for one covariate in linear regression

Interpreting quadratic e�ects

Interpreting interaction e�ects

Over�tting and optimizing for the idiosyncratic E terms

In-sample vs. oos metrics of �t (complexity-�t tradeo� curves)

Single training-test splits for oos validation

The test set as a lockbox that can be opened once and only once

Tradeo�s for training-test split sizes

Lecture 5

K -fold cross validation (CV)

Advantage of doing K -fold CV

Using three splits to perform model selection
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Review...

Missing data: selection models vs. pattern mixture models

Mechanisms: MCAR, MAR, NMAR

Why listwise deletion is nothing to write home about

Imputation under missingness due to each of the three mechanisms

Creating missingness features (the m's)

Forward stepwise regression using t-test, AICc and R2 in a oos set

Lecture 6

Binning � advantages and disadvantages

Better bins through greedy splitting (decision trees)

Leaf assignment in decision trees

Pruning / stopping the growth of decision trees

Advantages and disadvantages of decision trees
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Review...

Model averaging over multiple trees

Bagging (bootstrap and aggregation)

Sampling predictors

The 3 ideas above together = random forests (RF)

OOB estimates as oos estimates

When RF performs well and when it does not

41 / 41

Predictive Analytics Lecture 6


	Automatic Model Selection: Stepwise Linear Model Subset
	Decision Trees
	Random Forests
	Course Conclusion!

