Binary Trees

Introduction

A generic tree with at most two child nodes for each parent node is known as a

binary tree.

A binary tree is made of nodes that constitute a left pointer, a right pointer, and a
data element. The root pointer is the topmost node in the tree. The left and right
pointers recursively point to smaller subtrees on either side. A null pointer
represents a binary tree with no elements, i.e., an empty tree. A formal definition is:
a binary tree is either empty (represented by a null pointer), or is made of a single
node, where the left and right pointers (recursive definition ahead) each point to a

binary tree.

Root Node
—

E E B
~ —

Leaf Node




Types of binary trees:

e Full binary trees: A binary tree in which every node has 0 or 2 children is

termed as a full binary tree.

e Complete binary tree: A complete binary tree has all the levels filled

except for the last level, which has all its nodes as much as to the left.

e Perfect binary tree: A binary tree is termed perfect when all its internal

nodes have two children along with the leaf nodes that are at the same level.




25) 20
) (9 (3 s

e A degenerate tree: In a degenerate tree, each internal node has only one
child.

The tree shown above is degenerate. These trees are very similar to

linked-lists.




e Balanced binary tree: A binary tree in which the difference between the

depth of the two subtrees of every node is at most one is called a balanced

binary tree.

Binary tree representation:
Binary trees can be represented in two ways:

e Sequential representation: This is the most straightforward technique
to store a tree data structure. An array is used to store the tree nodes. The
number of nodes in a tree defines the size of the array. The root node of the

tree is held at the first index in the array.

In general, if a node is stored at the ith location, then its left and right child is

kept at 2i and 2i+1 locations, respectively.




Consider the following binary tree:

The array representation of the above binary tree is as follows:

12 3 4 5 6 7 8 9 10 1

Here, we see that the left and right child of each node is stored at locations

2*(node_position) and 2*(node_position)+1, respectively.

For Example: The location of node 3 in the array is 3. So its left child will be placed

at 2*3 = 6. Its right child will be at the location 2*3 +1 = 7. As we can see in the

array, children of 3, which are 6 and 7, are placed at locations 6 and 7 in the array.

The sequential representation of the tree is not preferred due to the massive

amount of memory consumption by the array.




CobinG
NINJAS

Ba A Ninjo

Linked list representation: In this type of model, a linked list is used to store

the tree nodes. The nodes are connected using the parent-child relationship like a

tree.

The following diagram shows a linked list representation for a tree.

As shown in the above representation, each linked list node has three components:

e Left pointer
e Data part
e Right pointer

The left pointer has a pointer to the left child of the node; the right pointer has a
pointer to the right child of the node whereas the data part contains the actual data
of the node. If there are no children for a given node (leaf node), then the left and
right pointers for that node are set to null . Let's now check the implementation of
binary tree class. Like TreeNode class, here also we will be creating a separate file
with .h extension and then use it wherever necessary. (Here the name of the file

will be: BinaryTreeNode.h)

template <typename T>




class BinaryTreeNode {

public:

T data; // To store data

BinaryTreeNode* left; // for storing the reference to left pointer
BinaryTreeNode* right; // for storing the reference to right pointer

// Constructor
BinaryTreeNode(T data) {

this->data = data; // Initializes data of the node
left = NULL; // initializes left and right pointers to NULL
right = NULL;

}
// Destructor

~BinaryTreeNode() {

delete left; // Deletes the left pointer
delete right; /1 Deletes the right pointer
} /1 As it ends, deletes the node itself

Take input and print recursively

Let's first check on printing the binary tree recursively. Follow the comments in the

code below...

void printTree(BinaryTreeNode<int>* root) {
if (root == NULL) { // Base case
return;
}
cout << root->data <<™:"; // printing the data at root node
if (root->left I=NULL) { // checking if left not NULL, then print it's data also
cout << "L" << root->left->data;

}

if (root->right != NULL) { // checking if right not NULL, then print it's data also
cout << "R" << root->right->data;
}

cout << endl;




printTree(root->left); // Now recursively, call on the left and right subtrees
printTree(root->right);

Now, let's check the input function: (We will be following the level-wise order for
taking input and -1 denotes the NULL pointer or simply, it means that a pointer

over the same place is a NULL pointer.

BinaryTreeNode<int>* takelnput() {
int rootData;
cout << "Enter data" << endl;
cin >>rootData; // taking data as input
if (rootData ==-1) { // if the data is -1, means NULL pointer
return NULL;
}
// Dynamically create the root Node which calls constructor of the same class
BinaryTreeNode<int>* root = new BinaryTreeNode<int>(rootData);
/1 Recursively calling over left subtree
BinaryTreeNode<int>* leftChild = takelnput();
/1 Recursively calling over right subtree
BinaryTreeNode<int>* rightChild = takelnput();
root->left = leftChild; // now allotting left and right childs to the root node
root->right = rightChild;
return root;

Taking input iteratively

We have already discussed a recursive approach for taking input in a binary tree in
a level order fashion. Now, let's discuss the iterative procedure for the same using

queue as we did in Generic trees. Follow the code along with the comments...

BinaryTreeNode<int>* takelnputLevelWise() {




int rootData;

cout << "Enter root data" << endl;

cin >>rootData; // Taking node’s data as input

if (rootData ==-1) { /1 As -1 refers to NULL pointer
return NULL;

}

// Dynamic allocation of root node

BinaryTreeNode<int>* root = new BinaryTreeNode<int>(rootData);

// Using queue to level wise traversal for iterative approach

queue<BinaryTreeNode<int>*> pendingNodes;

pendingNodes.push(root); // root node pushed into the queue

while (pendingNodes.size() I=0){ // process continued until the size of queue # 0
BinaryTreeNode<int>* front = pendingNodes.front();//front of queue is stored

pendingNodes.pop();

cout << "Enter left child of " << front->data << endl|;

int leftChildData;

cin >> leftChildData; /1 Left child of current node is taken input

if (leftChildData !'=-1){ //If the value of left child is not -1 that is, not NULL
BinaryTreeNode<int>* child = new BinaryTreeNode<int>(leftChildData);
front->left = child; // Value assigned to left part and then pushed

pendingNodes.push(child); //to the queue
}
// Similar work is done for right subtree
cout << "Enter right child of " << front->data << endI;
int rightChildData;
cin >> rightChildData;
if (rightChildData !=-1) {

BinaryTreeNode<int>* child = new BinaryTreeNode<int>(rightChildData);

front->right = child;
pendingNodes.push(child);
}
}

return root;

}

Count nodes

Unlike the Generic trees, where we need to traverse the children vector of each

node, in binary trees, we just have at most left and right children for each node.

Here, we just need to recursively call on the right and left subtrees independently

with the condition that the node pointer is not NULL. Kindly follow the comments in

the upcoming code...



CobinG
NINJAS
int numNodes(BinaryTreeNode<int>* root) {
if (root == NULL) { // Condition to check if the node is not NULL

return O; // counted as zero if so

}

return 1 + numNodes(root->left) + numNodes(root->right); // recursive calls
/1 on left and right subtrees with addition of 1(for counting current node)

Binary tree traversal

Following are the ways to traverse a binary tree and their orders of traversal:

Level order traversal: Moving on each level from left to right direction
Preorder traversal : ROOT -> LEFT -> RIGHT

Postorder traversal : LEFT -> RIGHT-> ROOT

Inorder traversal : LEFT -> ROOT -> RIGHT

Some examples of the above-stated traversal methods:

ORORONO

RS
<

Level order traversal: 1,2,3,4,5,6,7
< Preorder traversal: 1,2, 4,5,3,6,7
Post order traversal: 4,5,2,6,7,3, 1
4 Inorder traversal: 4,2,5,1,6,3,7

RS
<

Let's look at the code for inorder traversal, below:

10



CobinG
NINJAS
void inorder(BinaryTreeNode<int>* root) {
if (root == NULL) { // Base case when node’s value is NULL
return;
}
inorder(root->left); //Recursive call over left part as it needs
/1 to be printed first
cout << root->data <<""; // Now printed root’s data

inorder(root->right);  // Finally a recursive call made over right subtree

Now, from this inorder traversal code, try to code preorder and postorder traversal

yourselves. For the answer, refer to the solution tab for the same.

Construct a binary tree from preorder and inorder

traversal
Consider the following example to understand this better.

Input:

Inorder traversal : {4,2,1,7,5, 8, 3, 6}
Preorder traversal : {1, 2,4, 3,5, 7, 8, 6}

Output: Below binary tree...

11



The idea is to start with the root node, which would be the first item in the preorder
sequence and find the boundary of its left and right subtree in the inorder array.
Now all keys before the root node in the inorder array become part of the left
subtree, and all the indices after the root node become part of the right subtree.
We repeat this recursively for all nodes in the tree and construct the tree in the

process.
To illustrate, consider below inorder and preorder sequence-
Inorder:{4,2,1,7,5, 8, 3, 6}

Preorder: {1, 2,4, 3,5, 7, 8, 6}

The root will be the first element in the preorder sequence, i.e. 1. Next, we locate

the index of the root node in the inorder sequence. Since 1 is the root node, all

12



Cobpin
NINJA

G
S
nodes before 1 must be included in the left subtree, i.e., {4, 2}, and all the nodes
after one must be included in the right subtree, i.e. {7, 5, 8, 3, 6}. Now the problem

is reduced to building the left and right subtrees and linking them to the root node.

Left subtree: Right subtree:
Inorder : {4, 2} Inorder : {7, 5, 8, 3, 6}
Preorder : {2, 4} Preorder:{3,5, 7, 8, 6}

Follow the above approach until the complete tree is constructed. Now let us look

at the code for this problem:

BinaryTreeNode<int>* buildTreeHelper(int* in, int* pre, int inS, int inE, int preS, int preE) {
if (inS >inE) { // Base case
return NULL;

}

int rootData = pre[preS]; // Root’s data will be first element of the preorder array
int rootindex = -1; // initialised root's index to -1 and searched for it's value
for (inti=inS;i<=inE;i++){ //ininorder list
if (in[i] == rootData) {
rootindex = i;

break;
}
}
// Initializing the left subtree’s indices for recursive call
int lInS =inS;

int lInE = rootindex - 1;
int IPreS = preS + 1;
int IPreE = lInE - lInS + IPreS;
// Initializing the right subtree’s indices for recursive call
int rPreS = IPreE + 1;
int rPreE = prekE;
int rinS = rootindex + 1;
int rInE =inE;
// Recursive calls follows
BinaryTreeNode<int>* root = new BinaryTreeNode<int>(rootData);

13



CobpinG
NINJAS

root->left = buildTreeHelper(in, pre, lInS, lInE, IPreS, IPreE); // over left subtree
root->right = buildTreeHelper(in, pre, rinS, rinE, rPreS, rPreE); // over right subtree
return root; //finally returned the root
}
BinaryTreeNode<int>* buildTree(int* in, int* pre, int size) { // this is the function called
// from the main() with inorder and preorder traversals in the form of arrays and their
// size which is obviously same for both
return buildTreeHelper(in, pre, 0, size - 1, 0, size - 1); // These arguments are of the
// form (inorder_array, preorder_array, inorder_start, inorder_end, preorder_start,
// preorder_end) in the helper function for the same written above.

}

Now, try to construct the binary tree when inorder and postorder traversals are
given...

The diameter of a binary tree

The diameter of a tree (sometimes called the width) is the number of nodes on the
longest path between two child nodes. The diameter of the binary tree may pass

through the root (not necessary).

For example, the Below figure shows two binary trees having diameters 6 and 5,
respectively (nodes highlighted in blue color). The diameter of the binary tree
shown on the left side passes through the root node while on the right side, it

doesn't.

14



There are three possible paths of the diameter:

1. The diameter could be the sum of the left height and the right height.
2. It could be the left subtree’s diameter.

3. It could be the right subtree’s diameter.
We will pick the one with the maximum value.

Now let's check the code for this...

int height(BinaryTreeNode<int>* root) { // Function to calculate height of tree
if (root == NULL) {

return 0;
}
return 1 + max(height(root->left), height(root->right));
}
int diameter(BinaryTreeNode<int>* root) { // Function for calculating diameter
if (root == NULL) { // Base case
return 0;
}
int option1 = height(root->left) + height(root->right); // Option 1
int option2 = diameter(root->left); // Option 2
int option3 = diameter(root->right); // Option 3

15



return max(option1, max(option2, option3)); //returns the maximum value

}

The time complexity for the above approach:

e Height function traverses each node once; hence time complexity will be
O(n).

e Option2 and Option3 also traverse on each node, but for each node, we are
calculating the height of the tree considering that node as the root node,
which makes time complexity equal to O(n*h). (worst case with skewed trees,
i.e., a type of binary tree in which all the nodes have only either one child or
no child.) Here, h is the height of the tree, which could be O(n?).

This could be reduced if the height and diameter are obtained simultaneously,
which could prevent extra n traversals for each node. To achieve this, move

towards the other sections...
The Diameter of a Binary tree: Better Approach

In the previous approach, for each node, we were finding the height and diameter
independently, which was increasing the time complexity. In this approach, we will
find height and diameter for each node at the same time, i.e., we will store the
height and diameter using a pair class where the first pointer will be storing the
height of that node and the second pointer will be storing the diameter. Here, also

we will be using recursion.

Let's focus on the base case: For a NULL tree, height and diameter both are equal

to 0. Hence, pair class will store both of its values as zero.

Now, moving to Hypothesis: We will get the height and diameter for both left and
right subtrees, which could be directly used.

Finally, the induction step: Using the result of the Hypothesis, we will find the
height and diameter of the current node:

16



Height = max(leftHeight, rightHeight)
Diameter = max(leftHeight + rightHeight, leftDiameter, rightDiameter)

Note: C++ provides an in-built pair class, which prevents us from creating one of

our own. The Syntax for using pair class:

pair<datatype1, datatype2> name_of pair_class;

For example: To create a pair class of int, int with a name p, follow the syntax

below:
pair<int, int> p;
To access this pair class, we will use .first and .second pointers.

Follow the code below along with the comments to get a better grip on it...

pair<int, int> heightDiameter(BinaryTreeNode<int>* root) {
// pair class return-type function

if (root == NULL) { // Base case
pair<int, int> p;
p.first=0;
p.second = 0;
return p;
}

/1 Recursive calls over left and right subtree
pair<int, int> leftAns = heightDiameter(root->left);
pair<int,int> rightAns = heightDiameter(root->right);
// Hypothesis step

// Left diameter, Left height

int Id = leftAns.second;

int |h = leftAns.first;

// Right diameter, Right height

int rd = rightAns.second;

int rh = rightAns.first;

// Induction step

int height = 1 + max(lh, rh); /1 height of current root node
int diameter = max(lh + rh, max(ld, rd)); // diameter of current root node
pair<int, int> p; /1 Pair class for current root node

17



p.first = height;
p.second = diameter;
return p;

}

Now, talking about the time complexity of this method, it can be observed that we
are just traversing each node once while making recursive calls and rest all other
operations are performed in constant time, hence the time complexity of this

program is O(n), where n is the number of nodes.

Practice problems:

https://www.hackerrank.com/challenges/tree-top-view/problem
https://www.codechef.com/problems/BTREEKK
https://www.spoj.com/problems/TREEVERSE/
https://www.hackerearth.com/practice/data-structures/trees/binary-and-n
ary-trees/practice-problems/approximate/largest-cycle-in-a-tree-9113b3ab/

18


https://www.hackerrank.com/challenges/tree-top-view/problem
https://www.codechef.com/problems/BTREEKK
https://www.spoj.com/problems/TREEVERSE/
https://www.hackerearth.com/practice/data-structures/trees/binary-and-nary-trees/practice-problems/approximate/largest-cycle-in-a-tree-9113b3ab/
https://www.hackerearth.com/practice/data-structures/trees/binary-and-nary-trees/practice-problems/approximate/largest-cycle-in-a-tree-9113b3ab/

