
Git can facilitate greater reproducibility and increased trans-
parency in science.

Karthik Ram, Ph.D.
Environmental Science, Policy, and Management.
University of California, Berkeley.
Berkeley, CA 94720. USA.
karthik.ram@berkeley.edu

Abstract

Background: Reproducibility is the hallmark of good science. Maintaining a high degree of transparency
in scientific reporting is essential not just for gaining trust and credibility within the scientific community
but also for facilitating the development of new ideas. Sharing data and computer code associated with
publications is becoming increasingly common, motivated partly in response to data deposition requirements
from journals and mandates from funders. Despite this increase in transparency, it is still di�cult to reproduce
or build upon the findings of most scientific publications without access to a more complete workflow.

Findings: Version control systems (VCS), which have long been used to maintain code repositories in the
software industry, are now finding new applications in science. One such open source VCS, Git, provides a
lightweight yet robust framework that is ideal for managing the full suite of research outputs such as datasets,
statistical code, figures, lab notes, and manuscripts. For individual researchers, Git provides a powerful
way to track and compare versions, retrace errors, explore new approaches in a structured manner, while
maintaining a full audit trail. For larger collaborative e�orts, Git and Git hosting services make it possible
for everyone to work asynchronously and merge their contributions at any time, all the while maintaining a
complete authorship trail. In this paper I provide an overview of Git along with use-cases that highlight how
this tool can be leveraged to make science more reproducible and transparent, foster new collaborations, and
support novel uses.
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Findings

Introduction

Reproducible science provides the critical standard by which published results are judged and central findings
are either validated or refuted [1]. Reproducibility also allows others to build upon existing work and use
it to test new ideas and develop methods. Advances over the years have resulted in the development of
complex methodologies that allow us to collect ever increasing amounts of data. While repeating expensive
studies to validate findings is often di�cult, a whole host of other reasons have contributed to the problem of
reproducibility [2]. One such reason has been the lack of detailed access to underlying data and statistical
code used for analysis, which can provide opportunities for others to verify findings [3,4]. In an era rife
with costly retractions, scientists have an increasing burden to be more transparent in order to maintain
their credibility [@VanNoorden2011a]. While post-publication sharing of data and code is on the rise, driven
in part by funder mandates and journal requirements [5], access to such research outputs is still not very
common [6,7]. By sharing detailed and versioned copies of one’s data and code researchers can not only
ensure that reviewers can make well-informed decisions, but also provide opportunities for such artifacts to
be repurposed and brought to bear on new research questions.

Opening up access to the data and software, not just the final publication, is one of goals of the open science
movement. Such sharing can lower barriers and serve as a powerful catalyst to accelerate progress. In the era
of limited funding, there is a need to leverage existing data and code to the fullest extent to solve both applied
and basic problems. This requires that scientists share their research artifacts more openly, with reasonable
licenses that encourage fair use while providing credit to original authors [@Neylon2013]. Besides overcoming
social challenges to these issues, existing technologies can also be leveraged to increase reproducibility.

All scientists use version control in one form or another at various stages of their research projects, from the
data collection all the way to manuscript preparation. This process is often informal and haphazard, where
multiple revisions of papers, code, and datasets are saved as duplicate copies with uninformative file names
(e.g. draft_1.doc, draft_2.doc). As authors receive new data and feedback from peers and collaborators,
maintaining those versions and merging changes can result in an unmanageable proliferation of files. One
solution to these problems would be to use a formal Version Control System (VCS), which have long been
used in the software industry to manage code. A key feature common to all types of VCS is that ability
save versions of files during development along with informative comments which are referred to as commit
messages. Every change and accompanying notes are stored independent of the files, which obviates the need
for duplicate copies. Commits serve as checkpoints where individual files or an entire project can be safely
reverted to when necessary. Most traditional VCS are centralized which means that they require a connection
to a central server which maintains the master copy. Users with appropriate privileges can check out copies,
make changes, and upload them back to the server.

Among the suite of version control systems currently available, Git stands out in particular because it o�ers
features that make it desirable for managing artifacts of scientific research. The most compelling feature of
Git is its decentralized and distributed nature. Every copy of a Git repository can serve either as the server
(a central point for synchronizing changes) or as a client. This ensures that there is no single point of failure.
Authors can work asynchronously without being connected to a central server and synchronize their changes
when possible. This is particularly useful when working from remote field sites where internet connections are
often slow or non-existent. Unlike other VCS, every copy of a Git repository carries a complete history of all
changes, including authorship, that can be viewed and searched by anyone. This feature allows new authors
to build from any stage of a versioned project. Git also has a small footprint and nearly all operations occur
locally.

By using a formal VCS, researchers can not only increase their own productivity but also make it for others
to fully understand, use, and build upon their contributions. In the rest of the paper I describe how Git
can be used to manage common science outputs and move on to describing larger use-cases and benefits of
this workflow. Readers should note that I do not aim to provide a comprehensive review of version control
systems or even Git itself. There are also other comparable alternatives such as Mercurial and Bazaar which
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provide many of the features described below. My goal here is to broadly outline some of advantages of using
one such system and how it can benefit individual researchers, collaborative e�orts, and the wider research
community.

How Git can track various artifacts of a research e�ort

Before delving into common use-cases, I first describe how Git can be used to manage familiar research
outputs such as data, code used for statistical analyses, and documents. Git can be used to manage them not
just separately but also in various combinations for di�erent use cases such as maintaining lab notebooks,
lectures, datasets, and manuscripts.

Manuscripts and notes

Version control can operate on any file type including ones most commonly used in academia such as Microsoft
Word. However, since these file types are binary, Git cannot examine the contents and highlight sections that
have changed between revisions. In such cases, one would have to rely solely on commit messages or scan
through file contents. The full power of Git can best be leveraged when working with plain-text files. These
include data stored in non-proprietary spreadsheet formats (e.g. comma separated files versus xls), scripts
from programming languages, and manuscripts stored in plain text formats (LaTeX and markdown versus
Word documents). With such formats, Git not only tracks versions but can also highlight which sections of a
file have changed.
In Microsoft Word documents the track changes feature is often used to solicit comments and feedback.
Once those comments and changes have either been accepted or rejected, any record of their existence also
disappears forever. When changes are submitted using Git, a permanent record of author contributions
remains in the version history and available in every copy of the repository.

Datasets

Data are ideal for managing with Git. These include data manually entered via spreadsheets, recorded as
part of observational studies, or ones retrieved from sensors (see also section on Managing large data). With
each significant change or additions, commits can record a log those activities (e.g. “Entered data collected

between 12/10/2012 and 12/20/2012”, or “Updated data from temperature loggers for December 2012”). Over
time this process avoids proliferation of files, while the Git history maintains a complete provenance that
can be reviewed at any time. When errors are discovered, earlier versions of a file can be reverted without
a�ecting other assets in the project.

Statistical code and figures

When data are analyzed programmatically using software such as R and Python, code files start out small and
often become more complex over time. Somewhere along the process, inadvertent errors such as misplaced
subscripts and incorrectly applied functions can lead to serious errors down the line. When such errors are
discovered well into a project, comparing versions of statistical scripts can provide a way to quickly trace the
source of the problem and recover from them.

Similarly, figures that are published in a paper often undergo multiple revisions before resulting in a final
version that gets published. Without version control, one would have to deal with multiple copies and use
imperfect information such as file creation dates to determine the sequence in which they were generated.
Without additional information, figuring out why certain versions were created (e.g. in response to comments
from coauthors) also becomes more di�cult. When figures are managed with Git, the commit messages (e.g.
“Updated figure in response to Ethan’s comments regarding use of normalized data.”) provide an unambiguous
way to track various versions.
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Complete manuscripts

When all of the above artifacts are used in a single e�ort, such as writing a manuscript, Git can collectively
manage versions in a powerful way for both individual authors and groups of collaborators. This process
avoids rapid multiplication of unmanageable files with uninformative names (e.g. final_1.doc, final_2.doc,

final_final.doc, final_KR_1.doc etc.) as illustrated by the popular cartoon strip PhD Comics http://www.
phdcomics.com/comics/archive.php?comicid=1531.

Use cases for Git in science

1. Lab notebook

Day to day decisions made over the course of a study are often logged for review and reference in lab notebooks.
Such notebooks contain important information useful to both future readers attempting to replicating a
study, or for thorough reviewers seeking additional clarification. However, lab notebooks are rarely shared
along with publications or made public although there are some exceptions [8]. Git commit logs can serve as
a proxies for lab notebooks if clear yet concise messages are recorded over the course of a project. One of
the fundamental features of Git that make it so useful to science is that every copy of a repository carries a
complete history of changes available for anyone to review. These logs can be be easily searched to retrieve
versions of artifacts like data and code. Third party tools can also be leveraged to mine Git histories from
one or more projects for other types of analyses.

2. Facilitating Collaboration

In collaborative e�orts, authors contribute to one or more stages of the manuscript preparation such as
collecting data, analyzing them, and/or writing up the results. Such information is extremely useful for both
readers and reviewers when assessing relative author contributions to a body of work. With high profile
journals now discouraging the practice of honorary authorship [9], Git commit logs can provide a highly
granular way to track and assess individual author contributions to a project.

When projects are tracked using Git, every single action (such as additions, deletions, and changes) is
attributed to an author. Multiple authors can choose to work on a single branch of a repository (the ‘master ’
branch), or in separate branches and work asynchronously. In other words, authors do not have to wait on
coauthors before contributing. As each author adds their contribution, they can sync those to the master
branch and update their copies at any time. Over time, all of the decisions that go into the production of
a manuscript from entering data and checking for errors, to choosing appropriate statistical models and
creating figures, can be traced back to specific authors.

With the help of a remote Git hosting services, maintaining various copies in sync with each other becomes
e�ortless. While most changes are merged automatically, conflicts will need to be resolved manually which
would also be the case with most other workflows (e.g. using Microsoft Word with track changes). By syncing
changes back and forth with a remote repository, every author can update their local copies as well as push
their changes to the remote version at any time, all the while maintaining a complete audit trail. Mistakes or
unnecessary changes can easily undone by reverting either the entire repository or individual files to earlier
commits. Since commits are attributed to specific authors, error or clarifications can also be appropriately
directed. Perhaps most importantly this workflow ensures that revisions do not have to be emailed back
and forth. While cloud storage providers like Dropbox alleviate some of these annoyances and also provide
versioning, the process is not controlled making it hard to discern what and how many changes have occurred
between two time intervals.

In a recent paper led by Philippe Desjardins-Proulx https://github.com/PhDP/article_preprint/network all
of the authors successfully collaborated using only Git and GitHub (https://github.com/). In this particular
Git workflow, each of us cloned a copy of the main repository and contributed our changes back to the lead
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author. Figures 2 and 3 show the list of collaborators and a network diagram of how and when changes were
contributed back the master branch.

3. Backup and failsafe against data loss

Collecting new data and developing methods for analysis are often expensive endeavors requiring significant
amounts of grant funding. Therefore protecting such valuable products from loss or theft is paramount. A
recent study found that a vast majority of data and code are stored on lab computers or web servers both of
which are prone to failure and often become inaccessible after a certain length of time. One survey found
that only 72% of studies of 1000 surveyed still had data that were accessible [10,11]. Hosting data and code
publicly not only ensures protection against loss but also increases visibility for research e�orts and provides
opportunities for collaboration and early review [12].

While Git provides a powerful features that can leveraged by individual scientists, Git hosting services open
up a whole new set of possibilities. Any local Git repository can be linked to one or more Git remotes, which
are copies hosted on a remote cloud severs. Git remotes serve as hubs for collaboration where authors with
write privileges can contribute anytime while others can download up-to-date versions or submit revisions
with author approval. There are currently several Git hosting services such as SourceForge, Google Code,
GitHub, and BitBucket that provide free Git hosting. Among them, GitHub has surpassed other source code
hosts like Google Code and SourceForge in popularity and hosts over 4.6 million repositories from 2.8 million
users as of December 2012 [13–15]. While these services are usually free for publicly open projects, some
research e�orts, especially those containing embargoed or sensitive data will need to be kept private. There
are multiple ways to deal with such situations. For example, certain files can be excluded from Git’s history,
others maintained as private sub-modules, or entire repositories can be made private and opened to the public
at a future time. Some Git hosts like BitBucket o�er unlimited public and private accounts for academic use.

Managing a research project with Git provides several safe guards against short-term loss. Frequent commits
synced to remote repositories ensure that multiple versioned copies are accessible from anywhere. In projects
involving multiple collaborators, the presence of additional copies makes even more di�cult to lose work. While
Git hosting services protect against short-term data loss, they are not a solution for more permanent archiving
since none of them o�er any such guarantees. For long-term archiving, researchers should submit their
Git-managed projects to academic repositories that are members of CLOCKSS (http://www.clockss.org/).
Output stored on such repositories (e.g. figshare) are archived over a network of redundant nodes and ensure
indefinite availability across geographic and geopolitical regions.

4. Freedom to explore new ideas and methods

Git tracks development of projects along timelines referred to as branches. By default, there is always a
master branch (line with blue dots in figure 1). For most authors, working with this single branch is su�cient.
However, Git provides a powerful branching mechanism that makes it easy for exploring alternate ideas in a
structured and documented way without disrupting the central flow of a project. For example, one might
want to try an improved simulation algorithm, a novel statistical method, or plot figures in a more compelling
way. If these changes don’t work out, one could revert changes back to an earlier commit when working on
a single master branch. Frequent reverts on a master branch can be disruptive, especially when projects
involve multiple collaborators. Branching provides a risk-free way to test new algorithms, explore better data
visualization techniques, or develop new analytical models. When branches yield desired outcomes, they can
easily be merged into the master copy while unsuccessful e�orts can be deleted or left as-is to serve as a
historical record (illustrated in figure 1).

Branches can prove extremely useful when responding to reviewer questions about the rationale for choosing one
method over another since the Git history contains a record of failed, unsuitable, or abandoned attempts. This
is particularly helpful given that the time between submission and response can be fairly long. Additionally,
future users can mine Git histories to avoid repeating approaches that were never fruitful in earlier studies.
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5. Mechanism to solicit feedback and reviews

While it is possible to leverage most of core functionality in Git at the local level, Git hosting services o�er
additional services such as issue trackers, collaboration graphs, and wikis. These can easily be used to assign
tasks, manage milestones, and maintain lab protocols. Issue trackers can be repurposed as a mechanism for
soliciting both feedback and review, especially since the comments can easily be linked to particular lines of
code or blocks of text. Early comments and reviews for this article were also solicited via GitHub Issues
https://github.com/karthikram/smb_git/issues/

6. Increase transparency and verifiability

Methods sections in papers are often succinct to adhere to strict word limits imposed by journal guidelines.
This practice is especially common when describing well-known methods where authors assume a certain
degree of familiarity among informed readers. One unfortunate consequence of this practice is that any
modifications to the standard protocol (typically noted in internal lab notebooks) implemented in a study
may not available to the reviewers and readers. However, seemingly small decisions, such as choosing an
appropriate distribution to use in a statistical method, can have a disproportionately strong influence on the
central finding of a paper. Without access to a detailed history, a reviewer competent in statistical methods
has to trust that authors carefully met necessary assumptions, or engage in a long back and forth discussion
thereby delaying the review process. Sharing a Git repository can alleviate these kinds of ambiguities and
allow authors to point out commits where certain key decisions were made before choosing certain approaches.
Journals could facilitate this process by allowing authors to submit links to their Git repository alongside
manuscripts and sharing them with reviewers.

7. Managing large data

Git is extremely e�cient with managing small data files such as ones routinely collected in experimental and
observational studies. However, when the data are particularly large such as those in bioinformatics studies
(in the order of tens of megabytes to gigabytes), managing them with Git can degrade e�ciency and slow
down the performance of Git operations. With large data files, the best practice would be to exclude them
from the repository and only track changes in metadata. This protocol is especially ideal when large datasets
do not change often over the course of a study. In situations where the data are large and undergo frequent
updates, one could leverage third-party tools such as git-annex http://git-annex.branchable.com/ and still
seamlessly use Git to manage a project.

8. Lowering barriers to reuse

A common barrier that prevents someone from reproducing or building upon an existing method is lack
of su�cient details about a method. Even in cases where methods are adequately described, the use of
expensive proprietary software with restrictive licenses makes it di�cult to use [16]. Sharing code with
licenses that encourage fair use with appropriate attribution removes such artificial barriers and encourages
readers to modify methods to suit their research needs, improve upon them, or find new applications
[@Neylon2013]. With open source software, analysis pipelines can be easily forked or branched from public
Git repositories and modified to answer other questions. Although this process of depositing code somewhere
public with appropriate licenses involves additional work for the authors, the overall benefits outweigh the
costs. Making all research products publicly available not only increases citation rates [17,18] but can also
increase opportunities for collaboration by increasing overall visibility. For example, Niedermeyer & Strohalm
[19] describe their struggle with finding appropriate software for comprehensive mass spectrum annotation,
and eventually found an open source software which they where able to extend. In particular, the authors cite
availability of complete source code along with an open license as the motivation for their choice. Examples
of such collaboration and extensions are likely to become more common with increased availability of fully
versioned projects with permissive licenses.
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A similar argument can be made for data as well. Even publications that deposit data in persistent repositories
rarely share the original raw data. The versions submitted to persistent repositories are often cleaned and
finalized versions of datasets. In cases where no datasets are deposited, the only data accessible are likely
mean values reported in the main text or appendix of a paper. Raw data can be leveraged to answer questions
not originally intended by the authors. For example, research areas that address questions about uncertainty
often require messy raw data to test competing methods. Thus, versioned data provide opportunities to
retrieve copies before they have been modified for use in di�erent contexts and have lost some of their utility.

Conclusions

Wider use of Git has the potential to revolutionize scholarly communication and increase opportunities
for reuse, novel synthesis, and new collaborative e�orts. Since Git is a standard tool that is widely used
and backed by a large developer community, there are numerous resources for learning (o�cial tutorial at
http://git-scm.com/) and seeking help. With disciplined use of Git, individual scientists and labs can ensure
that the entire timeline of events that occur over the development of a research project are securely logged
in a system that provides security against data loss and encourages risk-free exploration of new ideas and
approaches. In an era with shrinking research budgets, scientists are under increasing pressure to produce
more with less. If more granular sharing via Git reduces time spent developing new software, or repeating
expensive data collection e�orts, then everyone stands to benefit. Scientists should note that these e�orts
don’t have to viewed as entirely altruistic. In a recent mandate the National Science Foundation [20] has
expanded its merit guidelines to include a range of academic products such as software and data, in addition
to peer-reviewed publications. With the rise in use of altmetric tools that track and credit such e�orts, then
everyone can benefit [21].

Although I have laid out various arguments for why more scientists should be using Git, one should be careful
not to view Git as a one stop solution to all the problems facing reproducibility in science. Git can be readily
used without any knowledge of command-line tools due to the available of many fully featured Git graphic
user interfaces http://git-scm.com/downloads/guis. However, leveraging its full potential, especially when
working on complex projects where one might encounter unwieldy merge conflicts, comes at a significant
learning cost. There are also comparable alternatives to Git (e.g. Mercurial) which o�er less granularity but
are more user-friendly. While time invested in becoming proficient in Git would be valuable in the long-term,
most scientists do not have the luxury of learning software skills that do not address more immediate
problems. Despite the fact that scientists spent considerable time using and creating their own software to
address domain specific needs, good programming practices are rarely taught [@Wilson2012]. Therefore wider
adoption of useful tools like Git will require greater software development literacy among scientists. On a
more optimistic note, such literacy is slowly becoming common in the new generation of academics, driven
in part by e�orts such as Software Carpentry http://software-carpentry.org/ and newer courses taught in
graduate curricula (e.g. Programming for biologists http://www.programmingforbiologists.org/ taught at
Utah State University).
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List of Figures

Figure 1

A hypothetical Git workflow for a scientific collaboration involving three authors. Each circle represents a
commit and colors denote author specific commits. Two way arrows indicate a sync (a push and pull in Git
terminology). One way arrows indicate an update to one branch from another. Horizontal arrows indicate
development along a particular branch.

Figure 2

A list of contributions to a project on GitHub.

Figure 3

Git makes it easy to track individual contributions through time ensuring appropriate attribution and
accountability. This screenshot shows subset of commits (colored dots) by four authors over a period spanning
November 17th, 2012 - January 26th, 2013.
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