
CSE250 DATABASE MANAGEMENT SYSTEM
WINTER SEMESTER 2021

SECTION – 2
GROUP – 3

PROJECT TITLE:

HOSPITAL MANAGEMENT SYSTEM

GROUP MEMBERS:

Sanya Zaveri AU1920064 BS

Khushi Shah AU1920171 BS

Kashvi Gandhi AU1940175 B-Tech

Kairavi Shah AU1940177 B-Tech

1

DESCRIPTION

When it comes to healthcare maintaining everyday records is an absolute necessity. Currently,

with the tenacious situations in the outside world, a management system for maintaining

patient records is very crucial. A database model for Hospital Management can be used to solve

the complications coming from managing all the paperwork of every patient.

Not just the patient records but records such as that of Doctors, Nurses, Blood Banks, etc. are

equally important. Our project on Hospital Management System provides the ability to manage

all the paperwork in one place, reducing the work of staff in arranging and analyzing the

paperwork of the patients.

The implementation of hospital management systems provides the users with different

advantages that improve the service quality and efficiency. The main user of our project would

be the hospital staff or admin who can add, update, delete and retrieve data for each of the

tables.

The following is the list of tables that we have created for the ease of user: Appointment Table,

Patient Table, Doctor Table, Nurse Table, Patient Diagnosis, Room Table, Visitor’s Table,

Emergency Room Log, Blood Bank Records and Billing.

Each of the tables contain real world entities such that the model is easy to understand to new

users.

Along with the basic CRUD features for each of the tables, we have included a few functions and

procedures to make user experience more satisfactory and easy to use. For example, a

procedure has been created which returns the list of number of beds available in each room so

that room allotment becomes easier. Other numerous such procedures and functions have been

created. Along with these triggers, validations and constraints are initiated to maintain the data

accuracy.

The flow of the project is such that a new entry is created in the Patient Table along with

details like Name, Age, Gender, Blood Group, address and details of the Emergency

Contact Person are noted. Upon entry in this table, each patient is assigned a patient id.

Using this patient id and name, entry is made into the appointment table with a doctor

depending on the purpose of the appointment.

In the Appointment Table, details like Date and time of the appointment are also

included. Once doctor id is assigned to the patient, the details of the doctor are also

linked to the patient.

Another table, called the doctor table includes the details of each doctor working in the

hospital can be added. Each doctor has a doctor id, age, contact details, office room

number, specialty and salary.

2

The Nurse Table includes name, age, gender, joining date, salary, shift days and timings

along with what room number they would be providing their services to.

The Patient Diagnosis Table is to be edited by the doctor in order to keep the records of

the issues, remarks and prescriptions given to the patients.

Along with these are the Billing Table and the Visitor’s Table, which as the name suggests

content the final billing data and amount with respect to the patient and visitor’s

information for each patient, respectively.

In order to provide a more realistic approach to our model, we have also added tables

like Emergency Room Log and Blood Bank Records. The Emergency Table also has a

patient id so that other details to the patient can be added. While blood bank records

include the records of blood donated by others to the hospital. Since blood donation is

anonymous names are not added to the table. Just the information like date, blood

group and pints is kept.

Lastly the table called Room_Table is created in order to keep the details of the rooms,

their types (Regular, Premium, ICU, etc.), number of beds in each room and the

availability of room as a boolean value is taken.

Finally, taking into account all the mentioned details, we can make the conclusion that the

hospital management system is the inevitable part of the lifecycle of the modern medical

institution. It automates numerous daily operations and enables smooth interactions of the

users. Developing the hospital system software is a great opportunity to create the distinct,

efficient and fast delivering healthcare model.

SYSTEM REQUIREMENTS:

1. Operating system: Windows 10

IDE: Atom

2. Backend:

Database: MYSQL

3. Frontend:

Language: Python

Framework: Rest Django framework

Styling: Css, html, bootstrap

INITIALIZATION

1. Open https://github.com/kashvi05/Hospital-Management-System.git

2. Fork the repository

3. Open terminal/git bash in your system.

4. Clone the repository locally.

5. Open the cloned repository in any IDE.

3

6. Open Hospital-Management-System\hospitalapi\hospitalapi\settings.py

7. In settings.py file, make the following changes in DATABASES:

'ENGINE': 'django.db.backends.mysql',

'NAME': 'hospital_management_system',

'USER': 'root',

'PASSWORD':'<root-password>'

'HOST':'localhost',

'PORT':'3306',

'OPTIONS':{

'init_command':"SET sql_mode='STRICT_TRANS_TABLES'"

}

8. Open MYSQL

9. Run ‘Hospital.sql’ in MYSQL database.

10. Open terminal

11. cd Hospital-Management-System

12. run python manage.py migrate

13. run python manage.py makemigrations

14. run python manage.py runserver

4

ENTITY – RELATIONSHIP DIAGRAM

5

6

7

TABLE DESIGN (DATA DICTIONARY)
(All the tables are in 3NF)

1. Patient_Table

0. Appointment_Table

8

0. Billing

0. Blood_Bank_Records

0. Nurse_Table

9

0. Patient_Diagnosis

7. Emergency_Room_Log

0. Room_Table

10

0. Doctor_Table

0. Visitor’s_Table

TABLES AND SAMPLE DATA ENTRY

1. Appointment_Table

11

0. Billing

12

0. Blood_Bank_Records

0. Doctor_Table

13

5. Emergency_Room_Log

14

6. Nurse_Table

7. Patient_Diagnosis

15

0.
8. Patient Table

(The table being too long is blurry, thus we have added 2 more images for the same in two halves.)

(First half)

16

(Second half)

0. Room_Table

0. Visitor’s_Table

17

VALIDATIONS AND INTEGRITY CONSTRAINTS

CRUD OPERATIONS AND TABLES ON FRONTEND

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PROCEDURES

1. Number of pints available for a particular type of blood group.

INPUT: bg (Blood group)
OUTPUT: Total number of pints donated of a particular type of blood group (bg).

33

2. All the records of appointment table for a particular dat.

INPUT: d (date)

OUTPUT: A table with records of appointments where the input date is the same as

appointment_date

34

3. A list of appointments for specific doctors.

INPUT: d_id (doctor id)

OUTPUT: A table with records of appointments where the input doctor_id is same as

d_id.

35

4. List of the final amount in the bill for patients after their discharge.

OUTPUT: A table with records of patient’s information (id, name, purpose, contact

number) and the final amount of charges in their bill.

36

37

5. A list for identifying the nurses allotted to all the patients and their allotted room

numbers.

OUTPUT: A table with records of nurse’s id and name, patient’s name and the room no

allotted to them.

38

6. A list for identifying the nurse allocated for each doctor for a particular patient.

INPUT: p_id (patient id)

OUTPUT: A table with records of information of nurse and doctor for the particular

patient.

39

7. A list of diagnosis details of the patients.

OUTPUT: A table with records of patient’s purpose and the diagnosis details.

40

8. A list of rooms according to the entered room and type and availability status.

INPUT: r_t (room type), r_avail (availability status)

OUTPUT: A table with records of appointments where the input date is equal to the

Appointment_Date

41

42

43

FUNCTIONS

1. This function aims on summing up the room charges, doctor fees, test charges and tax
for any patient to get the final amount.

44

45

2. The function returns the number of available beds in a particular room.

46

3. The function returns the value of number of appointments on a particular date.

47

48

4. The function returns the value of number of patients with same blood group.

49

TRIGGERS

1. The trigger gives error for patient contact number that is not equal to 10 digits while
creating or updating a new record in the patient table.

50

51

52

2. The trigger gives error for patient residence number that is not equal to 8 digits while
creating or updating a new record in the patient table.

53

54

3. The trigger gives error for emergency contact number that is not equal to 10 digits
while creating or updating a new record in the patient table.

55

56

57

4. The trigger gives error for patient email id that does not have “@” while creating or
updating a new record in the patient table.

58

59

5. The trigger gives error for patient’s insurance policy number that is not equal to 11
digits while creating or updating a new record in the patient diagnosis table.

60

61

6. The trigger gives error for emergency room that is not equal to 1005 and 1006 while
creating or updating a new record in the emergency_room_log for and emergency patient.

62

63

7. The trigger deleted the record in all the child tables upon deleting the record in parent
table.

64

65

(before deleting)

(after deleting a record where patient_id = 1)

66

(before deletion)

(after deletion)

67

(before deletion)

(after deletion)

68

(before deletion)

69

(after deletion)

(before deletion)

(after deletion)

70

(before deletion)

(after deletion)

71

(before deletion)

(after deletion)

72

(before deletion : no beds were available for room no 1001)

(after deletion : a bed got available and the availibility status changes to true(available))

73

8. The trigger changes to availability status in Room_Table to “false” if all the beds in the
room are occupied and later if a patient is allotted a bed in that room, it gives an error.

74

75

76

