Software and Cyber Solutions Symposium 2018

Blockchain

What, How, and Why

Eliezer Kanal

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

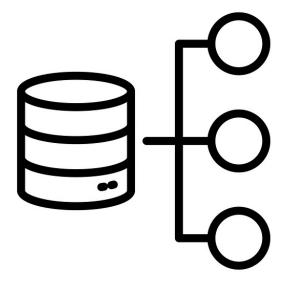
Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

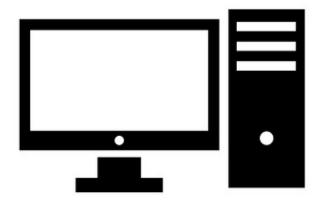
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.


This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual study.

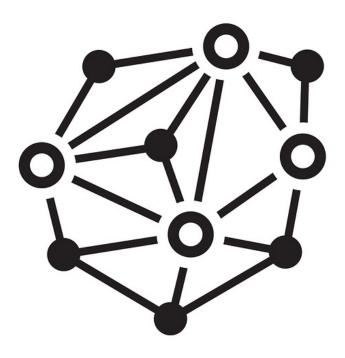
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government purposes, the SEI recommends attendance to ensure proper understanding.


Carnegie Mellon[®] and CERT[®] are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM18-0360

Previous models of computing

Data Storage:


Database

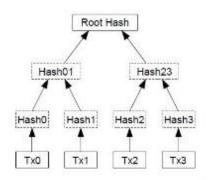
Program Execution:

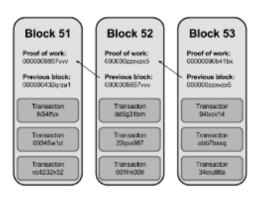
Local

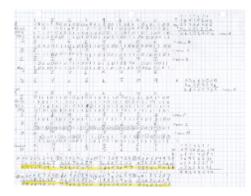
Blockchain

Data Storage:

Blockchain or Network


Program Execution:


Network


Bitcoin: Currency in a Blockchain

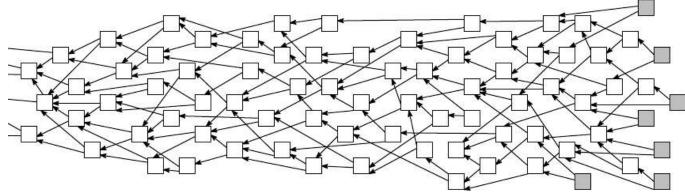
Three fundamental elements:

- 1. Transaction tree (state changes)
- 2. Blockchain (timeline for 1)
- 3. "Mining" protocol

http://www.imponderablethings.com/2013/07/how-bitcoin-works-under-hood.html

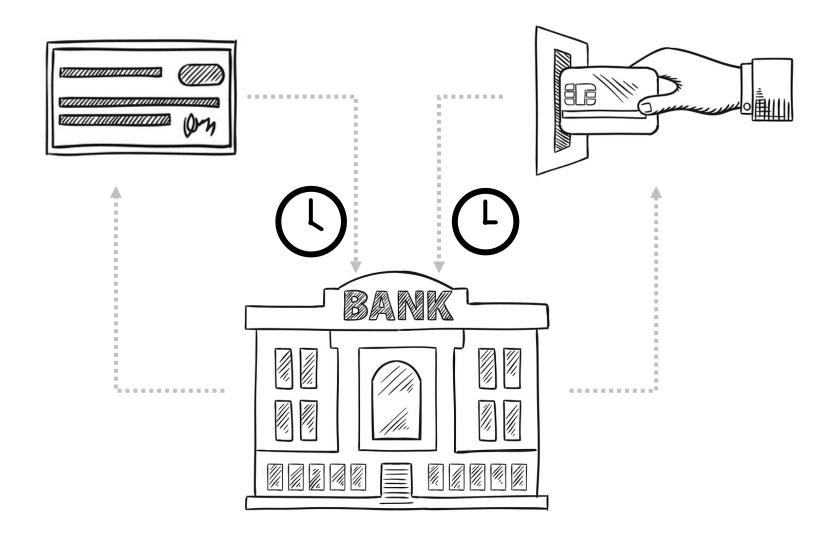
Bitcoin: Transactions

Г	Messages	
Alice → Bob Alice → Charlie Alice → Dave Charlie → Emily :	0.44 BTC 21.3 BTC 0.06 BTC 1.80 BTC	Signature 387152 876401 746122 076865


Bitcoin: Transaction Tree

New transactions come from old ones

Balance = sum up incoming transactions


Auditable!

By Tiagodimas2 (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Bitcoin's challenge:

Timing

Bitcoin's solution:

Mining

Bitcoin: Mining

Input

- Previous block signature
- Bunch of transactions
- Random number

60C89EA...

Signature	Transactions	Random #	Output
482AA	txn 1, 17, 88, 452	1	854A3
482AA	txn 1, 17, 88, 452	2	B4221
482AA	txn 1, 17, 88, 452	3	0249F
:			

Demo

Access demo online at https://anders.com/blockchain/hash.html
Play with the Hash, Block, and Blockchain sections (links in top-right of page)

Block #509169

Summary	
Number Of Transactions	1915
Output Total	10,289.28130284 BTC
Estimated Transaction Volume	1,818.68925455 BTC
Transaction Fees	0.4893378 BTC
Height	509169 (Main Chain)
Timestamp	2018-02-14 15:16:59
Received Time	2018-02-14 15:16:59
Relayed By	58COIN
Difficulty	2,874,674,234,415.94
Bits	392292856
Size	1132.416 kB
Weight	3992.574 kWU
Version	0x20000000
Nonce	1858980081
Block Reward	12.5 BTC

Hashes	
Hash	0000000000000000002c4b94355945eea353bc720c58a73c2b8593f489550cb3
Previous Block	000000000000000001d620a2e3ad126ec5038bf42343c419eb6fcdf7240a471
Next Block(s)	
Merkle Root	3ad680735c45cc62b1ea6b7efeb34f82a2660c5e8280354c45f7ffa03c9137e2

Transactions

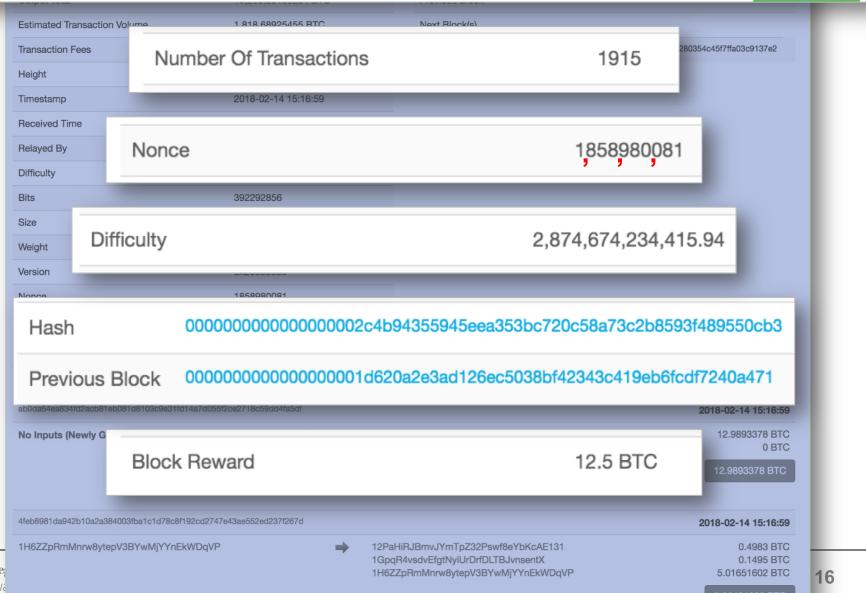
4feb8981da942b10a2a384003fba1c1d78c8f192cd2747e43ae552ed237f267d

2018-02-14 15:16:59

1H6ZZpRmMnrw8ytepV3BYwMjYYnEkWDqVP

 \Rightarrow

12PaHiRJBmvJYmTpZ32Pswf8eYbKcAE131 1GpqR4vsdvEfgtNyiUrDrfDLTBJvnsentX 1H6ZZpRmMnrw8ytepV3BYwMjYYnEkWDqVP 0.4983 BTC 0.1495 BTC 5.01651602 BTC


5.66431602 BTC

Block #509169

1H6ZZpRmMnrw8ytepV3BYwMjYYnEkWDqVP

12PaHiRJBmvJYmTpZ32Pswf8eYbKcAE131 1GpqR4vsdvEfgtNyiUrDrfDLTBJvnsentX 1H6ZZpRmMnrw8ytepV3BYwMjYYnEkWDqVP 0.4983 BTC 0.1495 BTC 5.01651602 BTC

5.66431602 BTC

Blockchains – General Purpose

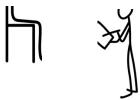
More than just a currency:

- 1. Transfer more than just cash
- General purpose programming

Ethereum

Ethereum is a transaction-based state machine

Similar to Bitcoin, miners mine for "Ether"


Two types of users:

- 1. Externally Owned Accounts (EOA) "real people"
- 2. Contract Accounts code

EOA properties

Ether balance

"Storage" contents

Contract properties Ether balance "Storage" contents Code!

	M	essa	ge	¥
--	---	------	----	---

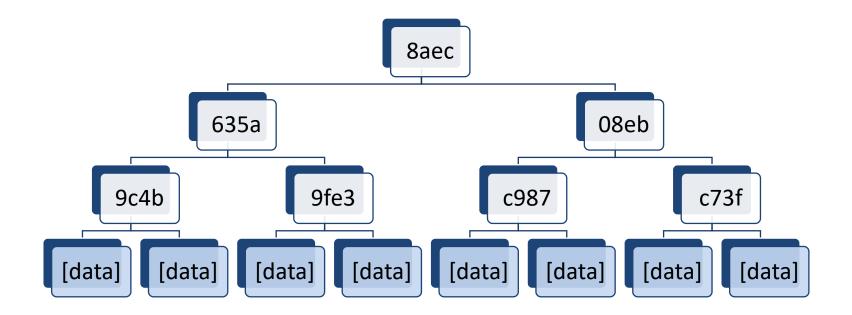
"To" address

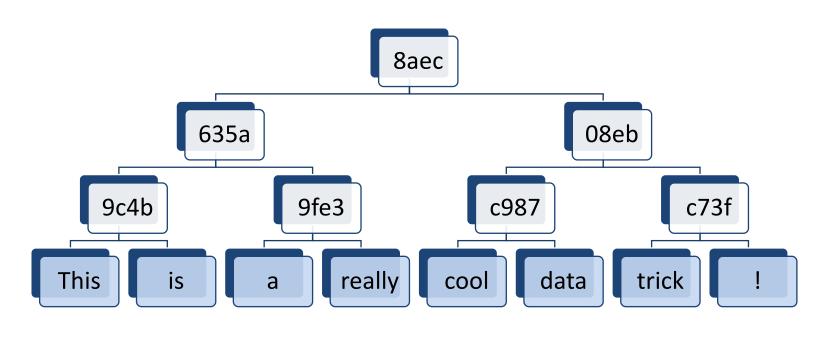
Ether balance

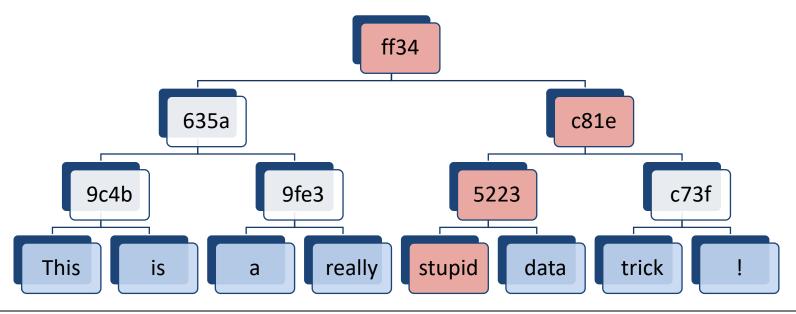
Data

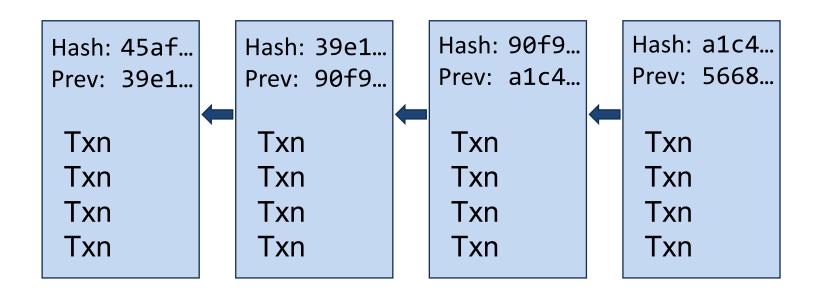
Gas price

Gas limit

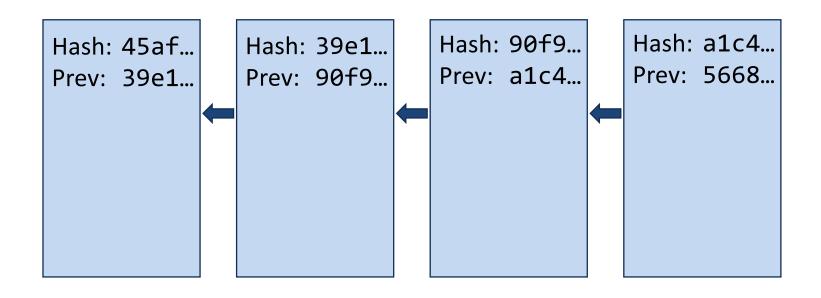



Contract properties Ether balance "Storage" contents Code!


(Aside) Merkle Trie

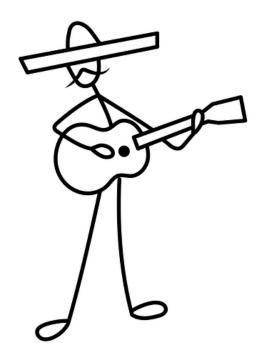

Useful way to enable data verification without the requiring data

- Full node stores all data
- Light node just stores root hash
- Easy to find exactly which element of data changed!



Time

Time

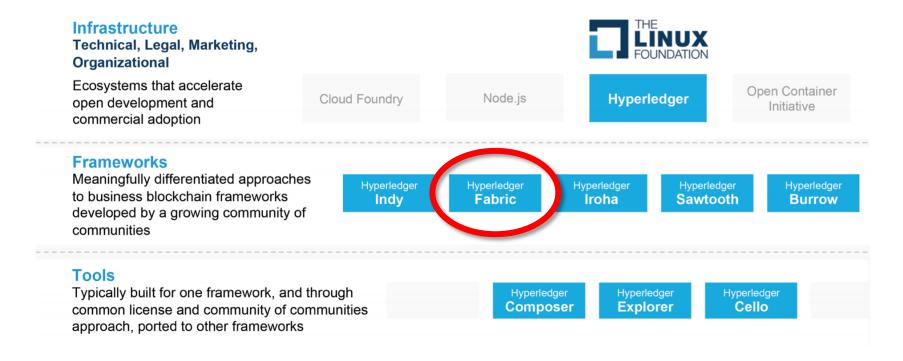

Ethereum – Ether & Gas

Design philosophy: "There's no free lunch"

Allowing arbitrary programs requires careful incentive structure

- Ether is currency (1 Eth ~ \$850 today)
- Gas is fuel for computations and storage; "usage tax"
- Gas converts directly to Ether

Ethereum most useful for low-complexity programs!


Three problems:

- 1. Difficult to set up
- 2. Difficult to use
- 3. No privacy!

Hyperledger

HYPERLEDGER MODULAR UMBRELLA APPROACH

Hyperledger Fabric

Three types of accounts (called "nodes"):

- 1. Client Initiates transactions
- 2. Peer Maintains ledger state, commits transactions
- 3. Orderer Communication service via *channels*

Purpose:

- Separate the multiple role of Miners into distinct entities
- Enable private communication between nodes

Pros:

- Transaction-based state machine
- Easy for anyone to audit history (examine chain)
- Easy to detect & stop data manipulation (Merkle Trees)
- Very difficult to disrupt (simultaneous distributed execution)

Cons:

- Proof-of-work is very inefficient
- State updates are slow (~1 hr Bitcoin, ~1 min Ethereum)
- Only simple computations

Cons-that-aren't-really-cons:


Con	-that-isn't-really-a-con
Can't store all data on-chain, too big	Store data off-chain, use Merkle Trees to verify (git)
Quantum computers will break PKA omg haxxorzzz!1!!	If PKA breaks, blockchain security is the least of our problems
Illegal "stuff" can't be removed from chain if ever added (<u>link</u>)	Policy can help prevent
No good way to link users to real identities	 Not just blockchain problem "Chip"-ed ID cards, key fobs, etc

Pros:

- Transaction-based state machine
- Easy for anyone to audit history (examine chain)
- Easy to detect & stop data manipulation (Merkle Trees)
- Very difficult to disrupt (simultaneous distributed execution)

Cons:

- Proof-of-work is very inefficient
- State updates are slow (~1 hr Bitcoin, ~1 min Ethereum)
- Only simple computations

Consensus alternatives

Algorithm	Properties
Proof of Work	Probabilistic solutionLottery by computational power
Proof of Stake	 Probabilistic solution Lottery by total number of shares "Nothing at stake"
BFT-based POS ("Tendermint")	 Multi-round voting process, removes possibility of forking May stall out if 1/3 voters offline Favors Consistency
Proof-by-bet POS (" <u>Casper</u> ")	 Validators must place deposits on their "preferred" fork Favors Availability

Pros:

- Transaction-based state machine
- Easy for anyone to audit history (examine chain)
- Easy to detect & stop data manipulation (Merkle Trees)
- Very difficult to disrupt (simultaneous distributed execution)
- Identity tied to transactions (PKA)

Cons:

- Proof-of-work is very inefficient (under research)
- State updates are slow (~1 hr Bitcoin, ~1 min Ethereum)
- Only simple computations

Uses, Uses, Wherefore Art Thou Uses?

Auditable, tamper-proof, robust, identifiable, slow, simple...?

- Finance
- Health care
- Voting
- Supply chain management
- Basically any records management system

blockstack

CBINSIGHTS

Blockchain in Government

DoD	Secure data files for Additive Manufacturing (3D printing) of parts
CDC	Attributable, distributed information dissemination
FDA	EMR replacement
GSA	"automate the FASt Lane process for IT Schedule 70 contracts."
DHS	Exploratory (air travel, international trade, anti-money laundering)
Treasury	Asset management
Illinois Blockchain Initiative	"Give me some of that blockchain goodness"

Unofficial and definitely incomplete list

IN WITNESS WHEREOF, the parties do hereby execute this Warranty Deed this 20 day of February, 2018.

Katherine M. Purcell

STATE OF VERMONT COUNTY OF CHITTENDEN, SS.

On this 20 day of February, 2018, personally KATHERINE M. PURCELL, to me known to be the person who executed the foregoing instrument, and she acknowledged this instrument, by her signed, to be her free act and deed.

Before me

Notary Public

Printed Name: Michelle N Fart

Notary commission issued in Chittenden County

Transaction Information

Tools & Utilities

TxHash: 0xa42a4535548a55390519ba936a5f12781d61fdafdf1c02657b12ca19895ecc18

TxReceipt Status: Success

Block Height: 5100827 (118721 block confirmations)

TimeStamp: 20 days 3 hrs ago (Feb-16-2018 01:15:24 PM +UTC)

From: 0x9d207257f410303a779837fa0b55e7cafb15fec6

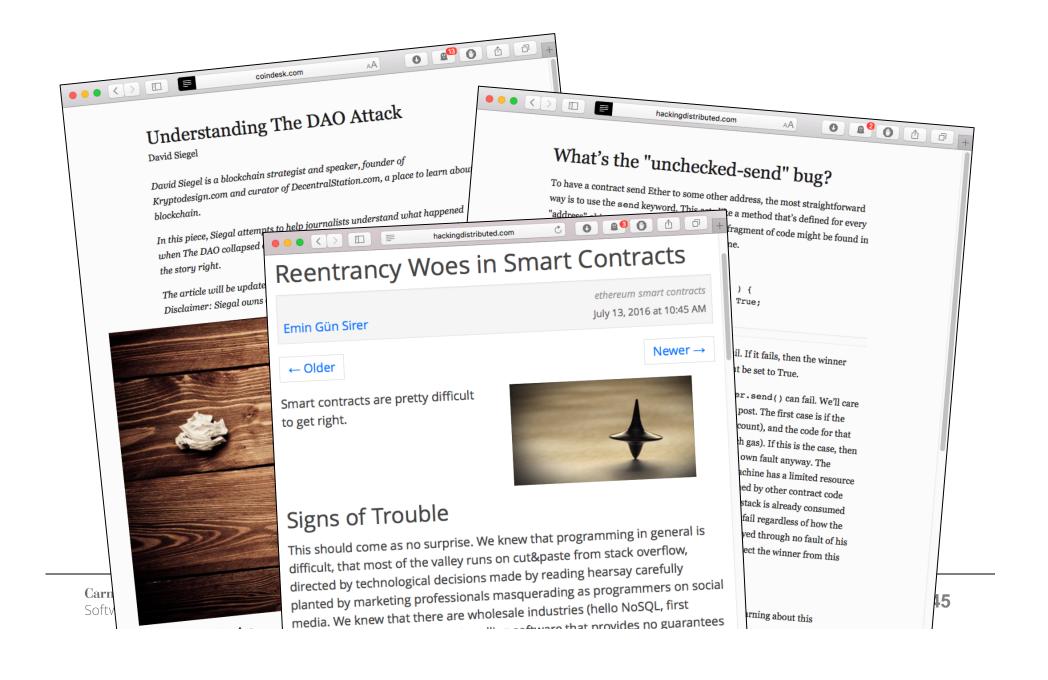
Value: 0 Ether (\$0.00)

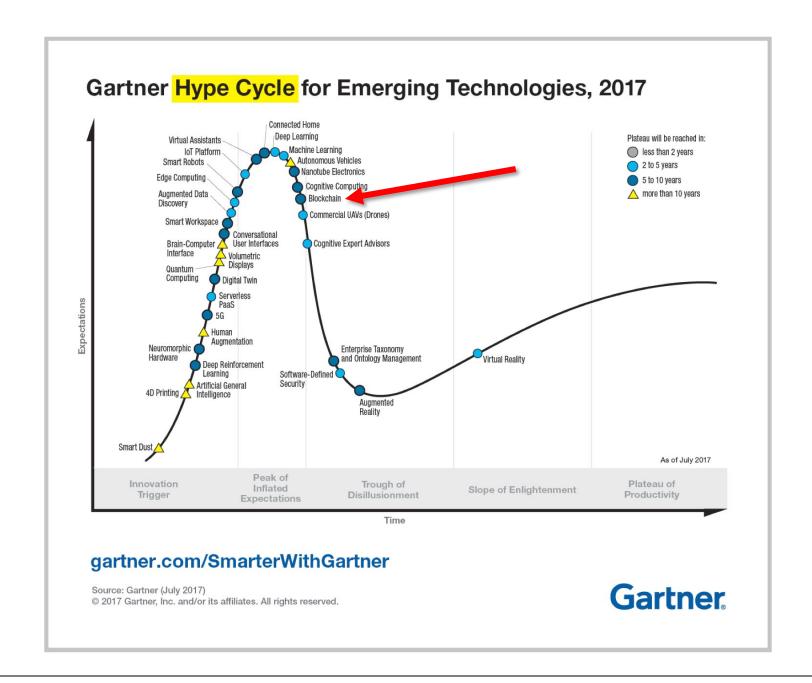
Gas Limit: 2284690

Gas Used By Txn: 472258

Gas Price: 0.000000001 Ether (1 Gwei)

Actual Tx Cost/Fee: 0.000472258 Ether (\$0.35)


Nonce: 65


Input Data:

Convert To Ascii

Private Note: 1 < To access the private Note feature, you must be logged in>

Still in infancy!

Thanks!