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ABSTRACT
One promising way to extract information about stellar astrophysics from gravitational wave catalogs

is to compare the catalog to the outputs of stellar population synthesis modeling with varying physical
assumptions. The parameter space of physical assumptions in population synthesis is high-dimensional
and the choice of parameters that best represents the evolution of a binary system may depend in an
as-yet-to-be-determined way on the system’s properties. Here we propose a pipeline to simultaneously
infer zero-age main sequence properties and population synthesis parameter settings controlling mod-
eled binary evolution from individual gravitational wave observations of merging compact binaries.
Our pipeline can efficiently explore the high-dimensional space of population synthesis settings and
progenitor system properties for each system in a catalog of gravitational wave observations. We apply
our pipeline to observations in the third LIGO Virgo Kagra Gravitational Wave Transient Catalog.
We showcase the effectiveness of this pipeline with a detailed study of the progenitor properties and
population synthesis settings that produce mergers like the observed GW150914. Our pipeline permits
a measurement of the variation of population synthesis parameter settings with binary properties, if
any; we present inferences for the recent GWTC-3 transient catalog that suggest that the stable mass
transfer efficiency parameter may vary with primary black hole mass.

1. INTRODUCTION
As the detection rate of gravitation waves (GWs)

from merging double-compact-object (DCO) binaries in-
creases with the sensitivity of the ground-based GW de-
tector network (Aso et al. 2013; LIGO Scientific Collab-
oration et al. 2015; Acernese et al. 2015; Abbott et al.
2018; Buikema et al. 2020; Tse et al. 2019; Acernese et al.
2019; Akutsu et al. 2021), we are beginning to constrain
the astrophysical processes which shape the evolution
of GW progenitor populations. One of the most com-
mon ways to study progenitor populations of GW merg-
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ers is through population synthesis simulations of stellar
populations from a host of formation environments. In
the case of isolated binary star evolution, merging dou-
ble compact objects can form from massive binary stars
through the standard stable mass transfer or common
envelope channels (e.g. Belczynski et al. 2002; Dominik
et al. 2012; Belczynski et al. 2016; Zevin et al. 2020; Bav-
era et al. 2021; Broekgaarden et al. 2021; van Son et al.
2022) as well as through chemically homogenous evolu-
tion (Mandel & de Mink 2016; Marchant et al. 2016; de
Mink & Mandel 2016) or with population III stars (e.g.
Belczynski et al. 2004; Kinugawa et al. 2014; Inayoshi
et al. 2016, 2017; Tanikawa et al. 2021, 2022). Merg-
ing DCO binaries can also originate from a wide variety
of dynamically active environments including triple (or
higher multiple) systems (e.g. Antonini et al. 2017; Sils-
bee & Tremaine 2017; Fragione & Kocsis 2019; Vigna-
Gómez et al. 2021), as well as young stellar clusters
(e.g. Ziosi et al. 2014; Banerjee 2017; Di Carlo et al.
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2020; Chattopadhyay et al. 2022), globular clusters (e.g.
Portegies Zwart & McMillan 2000; O’Leary et al. 2006;
Downing et al. 2010; Samsing et al. 2014; Rodriguez
et al. 2015, 2016; Askar et al. 2017; Rodriguez et al.
2019), nuclear star clusters (Miller & Lauburg 2009; An-
tonini & Rasio 2016), or a mix of all three (e.g. Mapelli
et al. 2022). Finally, more exotic channels like active
galactic nuclei which combine both gravitational and gas
interactions (e.g. McKernan et al. 2018, 2020; Secunda
et al. 2020; Ford & McKernan 2021) or primordial black
holes (e.g. Bird et al. 2016; Ali-Haïmoud et al. 2017) can
produce merging DCOs observable with a ground-based
detector network. For a discussion of the relative rates
of each formation environment and channels within, see
Mandel & Broekgaarden (2022) and references therein.

Traditionally, population synthesis studies simulate
merging DCO populations with a Monte-Carlo ap-
proach. Using theoretically motivated distributions of
initial parameters like age, metallicity, component mass,
orbital separation, and eccentricity, initial populations
are evolved with fixed astrophysical assumptions, or
population synthesis hyperparameter settings, to pro-
duce a synthetic catalog of DCO mergers which can be
compared to parameterized models derived from obser-
vations. This approach relies on several assumptions,
both in the simulations and model parameterizations
fitted to the GW data, which are unlikely to be fully
correct. For example, there is no reason to suppose that
the entire population of DCOs should evolve with the
same fixed hyperparameters; there is no a priori rea-
son the fitted parameterized model should capture the
relevant features of the observed DCO distributions to
correspond to the binary physics of interest; etc. A bet-
ter approach would be to compare progenitor parame-
ters and hyperparameter settings directly to DCO ob-
servations, treating the population synthesis model as a
mapping from progenitor to merger parameters; merger
parameters can then be mapped into observations using
a gravitational waveform family, and parameter infer-
ence proceeds in the usual way, propagating information
back up the mapping chain (e.g. Veitch et al. 2015). A
similar methodology, though with fixed hyperparameter
settings, was advanced in Andrews et al. (2018, 2021),
as we discuss in more detail below.

Attempting to approach such an improved inference
procedure for evolutionary hyperparameters using tra-
ditional en mass Monte Carlo simulations of entire pop-
ulations of DCO mergers is computationally infeasible.
Even with recent developments in using emulators to
speed up the simulation process (e.g. Wong et al. 2021),
training the emulators still requires a significant amount
of computation to cover a wide range of uncertainty in

the hyperparemeter space. As an example, to emulate a
model with 10 parameters, the simplest way to construct
a training set of simulations is to run simulations on a
grid which varies combinations of uncertain physics. For
10 uncertain physical processes, if we consider 2 varia-
tions for each physical process this would still require
1024 simulations. Because population synthesis sim-
ulations require hundreds to thousands of cpu hours,
training an emulator which spans a high dimensional
uncertainty space remains an impossibility at present.
Thus inference of hyperpameter settings must proceed
dynamically, generating trial DCO systems via popula-
tion synthesis recipes to match a particular observation
one- or few-at-a-time while simultaneously adjusting the
hyperparameters. (Eventually it may be even be possi-
ble to use more physically-motivated modeling of binary
physics (e.g. Gallegos-Garcia et al. 2021) in such a pro-
cedure.)

Andrews et al. (2021) (hereafter A21) used DartBoard
(Andrews et al. 2018) to determine the ZAMS parame-
ters which produce GW150914-like BBH merger based
on posterior samples for GW150914 and a fixed set of
hyperparameters which define assumptions for how iso-
lated binary-star interactions proceed using COSMIC, a
binary population synthesis code (Breivik et al. 2020).
The approach is very similar to the one advocated here
except that Andrews et al. (2021) treated the evolu-
tionary hyperparameters for the binary physics as fixed
within each analysis. The key extension in this work,
which will enable population modeling of both progeni-
tor parameters and hyperparemeter settings, including
any possible dependence of hyperparameter settings on
progenitor parameters, is to allow these hyperparame-
ters to vary at the same time as intrinsic properties of
the progenitor system to produce a joint inference over
the intrinsic properties of the progenitor and the nec-
essary hyperparameter settings to produce the observed
merger properties.

In full: we propose a method to “backward” model
each GW event to its progenitor state while allowing the
hyper-parameters to vary across their full range of phys-
ical uncertainty following a two-stage process. First, we
solve a root finding problem to obtain guesses that are
likely to produce the desired system properties in the
joint progenitor–hyperparameter space. We then sam-
ple the posterior in the joint space that is induced by the
DCO merger observations using a Markov chain Monte
Carlo (MCMC) algorithm that is initialized by the roots
found in the previous stage. We demonstrate our algo-
rithm in a realistic setting by producing a posterior over
progenitor properties and COSMIC hyperparameters im-
plied by the observation of GW150914.
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We find that the progenitor properties and even abil-
ity to produce a GW150914-like merger event is strongly
correlated with hyperparameter settings; different as-
sumptions about the black hole masses at merger in
GW150914 imply wildly different formation channels
and ZAMS progenitor masses for this event and some
nearby combinations of ZAMS masses are unable, with
any reasonable hyperparameter settings, to produce a
DCO merger like GW150914. We further exhibit pre-
liminary results of an ongoing analysis over the entire
GWTC-3 catalog (The LIGO Scientific Collaboration
et al. 2021) that suggest that the accretion efficiency in
stable mass transfer may depend non-trivially on the pri-
mary black hole mass in merging systems; our methodol-
ogy allows for a systematic study of such dependencies,
which we will explore more fully in future work.

The rest of the paper is structured as follows: We
detail our method in Sec. 2. In Sec. 3, we show
the results of applying our method to a number of real
events. We discuss the implications of this work and
future direction in Sec. 4.

2. METHOD
We define the progenitor’s zero age main sequence

(ZAMS) properties like mass, orbital period, and eccen-
tricity as progenitor parameters θ′, the parameters that
control different uncertain physical prescriptions such as
wind strength and common envelope efficiency as hyper-
parameters λ, and random variables that affect certain
stochastic process such as whether CO natal kick un-
binds a binary as X. To avoid clutter in the following
derivation, we denote all the parameters related to map-
ping a particular progenitor system into a GW event col-
lectively as evolutionary parameters Θ, which includes
θ′, λ, and X.

Once all the parameters including a particular draw of
all the random variables represented by X are known,
the population synthesis code is a deterministic function
that transforms the properties of the progenitors into the
GW parameters θ:

θ = f (Θ) . (1)

The mapping f from Θ to θ can be many-to-one due
to degeneracies in the different physical processes and
initial parameters of the GW event progenitors. In order
to draw inferences about Θ from GW data, we must
be able to evaluate the likelihood of that data at fixed
progenitor parameters, namely

p (d | Θ) = p (d | θ = f (Θ)) . (2)

The equality holds because the likelihood depends only
on the gravitational waveform generated by parameters

θ onto which the progenitor parameters map. In princi-
ple this likelihood could be computed at arbitrary values
of Θ using the same machinery that is used to estimate
source parameters in GW catalogs (Veitch et al. 2015;
Ashton et al. 2019; Romero-Shaw et al. 2020; The LIGO
Scientific Collaboration et al. 2021) to develop samples
of progenitor parameters, hyperparameters, and random
variables in Θ from a posterior density.

Since the GW likelihood function ultimately depends
only on the GW parameters θ, and GWTC3 already has
samples over these parameters from a posterior density

p (θ | d) ∝ p (d | θ)πGW (θ) , (3)

where πGW is the prior density used for sampling, we can
save the computational cost associated with evaluating
the GW likelihood by rewriting the posterior density of
Θ in terms of the posterior density of θ, namely

p(Θ|d) = p(θ(Θ)|d)π(Θ)

πGW(θ(Θ))
. (4)

We apply a kernel density estimator with a Gaussian
kernel to the posterior samples released in GWTC3 to
estimate p(θ(Θ)|d).

Including hyperparameters and random variables
drastically increases the dimensionality of the problem,
which can make the sampling process much more com-
putationally expensive to converge. To speed up the
convergence, we first solve a root-finding problem to find
points Θ that will generate GW parameters θ close to
the bulk of the posterior density of a GW event. We
then use those points to initialize a set of chains in the
MCMC process.

For each posterior sample point in the GW-observable
space, we can find the corresponding evolutionary pa-
rameters by solving an optimization problem that mini-
mizes the mean square difference between the GW event
parameters and evolutionary parameters as:

L(Θ,θ) = ||f(Θ)− θ||2. (5)

In principle, we should only accept solutions that ex-
actly reproduce the LVK posterior samples in the GW-
observable space. However, it is not feasible to achieve
such a condition in practice, therefore we relax the con-
dition in eq. 5 to a small acceptance threshold. For this
study, we picked a threshold of 10−2. To make sure we
find a reasonably complete set of progenitor parameters
that corresponds to the posterior sample point, we use
1000 different initial guesses in solving the optimization
problem. As long as the solution fulfills the acceptance
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criteria, the root is as valid as all other roots that ful-
fill the same acceptance criteria, regardless to its initial
guess. This means, we have the freedom to choose the
set of initial guesses however we think might benefit the
optimization.

Most of the points in the evolutionary parameter space
do not produce DCO mergers in a Hubble time. For sys-
tems that do not merge, we set the binary masses to be
0 such that the gradient for the same systems is also 0

and leads the root finder to get stuck on its first step.1
Therefore, it is beneficial to choose initial guesses in re-
gion of the evolutionary parameter space that are likely
to produce DCO mergers. To construct a list of initial
guesses, we evolve a set of ZAMS parameters uniformly
sampled from the initial binary parameter space, then
keep the systems that merge within a Hubble time.

Retaining explicit control over random variables al-
lows us to marginalize over their contribution, and thus
allows us to focus on progenitor parameters and hy-
perparameters. However, in practice most population
synthesis codes (including COSMIC which we use in this
study) define their random variables implicitly such that
the random variables are drawn within the program in-
stead of being passed as arguments. This means that
the process of evolving the binary is not fully determin-
istic. Thus, even if the root-finding algorithm performs
perfectly, forward modelling a set of roots does not guar-
antee that the simulated population reproduces exactly
the set of posterior samples due to randomness in the
evolution of each binary. To assure that the recovered
progenitor and hyperparameters robustly correspond to
the posterior in the GW-observable space, we push for-
ward (or “reproject”) the recovered evolutionary param-
eters to the GW-observable space to check whether the
reprojected posterior agrees with the posterior given by
the LVK collaboration.

We use KL divergence to measure the agreement be-
tween the two posterior distributions as:

DKL(P ||Q) =

∫
P (x) log(P (x)/Q(x))dx. (6)

A small KL divergence means the reprojected COSMIC
posterior is similar to the original posterior in the ob-
servable space, and is thus a viable channel for that
specific event. Otherwise, it either means COSMIC can
only explain part of the posterior or cannot explain the
event at all. This is completely expected behavior since

1 On a plateau of constant loss, the root finder performs no better
than a random guess. Because of this, a root finder in a high di-
mensional space will require a significant amount of computation
to get close to a solution.

COSMIC, and isolated binary evolution more generally,
carries its own assumptions and is expected to fail in
reproducing a subset of the event in GWTC3. One ex-
ample of this are GW events with at least one com-
ponent with mass above the pair instability supernova
mass limit (Woosley 2017; ?). The reprojection could
also be subject to stochasticity in the evolution of each
binary To account for this, we reproject the posterior
multiple times with different random seeds and check
whether the KL divergence varies significantly. A vary-
ing KL divergence means a particular GW event is sub-
ject to randomness in the evolution of the progenitor,
and extra caution should be used when interpreting the
result.

3. RESULTS
We apply the method described in section 2 to the

first GW event GW150914. The parameters involved
in the analysis and the range we allow for the inference
are tabulated in table 1. The spin of BHs formed in
isolated binaries depends strongly on the angular mo-
mentum transport in massive stars which is still highly
uncertain (see however Fuller & Ma (2019); Bavera et al.
(2020)), therefore we only consider the two component
masses in the observable space in the both the root-
finding stage and the MCMC stage. For progenitor pa-
rameters, we characterize each guess with five parame-
ters: the two component masses M1,ZAMS and M2,ZAMS,
the orbital period torb, the eccentricity e, the metallicity
Z at ZAMS. Note that the progenitor formation redshift
is not obtained through the root-finding process because
the formation redshift does not intrinsically affect the
evolution of the binary. Instead, we compute the time
it takes for the binary to evolve from formation to the
merger and add this time back to the lookback time
when a GW event is observed and limit the total time
to merger to be less than 13.7Gyr. Using the total look-
back time, we can compute the redshift of the binary at
ZAMS formation following the Planck 2018 cosmologi-
cal model (Planck Collaboration et al. 2020). The main
benefit of post-processing the redshift in this way is that
we do not rely on a particular assumption of star forma-
tion rate (SFR) distribution when we solve for the poste-
rior distribution in redshift. This means we can put the
prior on formation redshift (or in general, metallicity-
redshfit distribution) in by reweighting the posterior
distribution according to a particular SFR model, and
therefore do not have to rerun the inference everytime
we change the SFR model. This is especially helpful
since SFR models are still highly uncertain but strongly
impact the local merger rates of BBHs (Broekgaarden
et al. 2021). For hyperparameters, we choose parame-
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Parameters Description Optimization range
Observables
m1,GW Primary mass of the GW event NA
m2,GW Secondary mass of the GW event NA
Progenitor parameters
m1,ZAMS Primary mass at ZAMS [10, 150] M⊙

m2,ZAMS Secondary mass at ZAMS [10, 150] M⊙

torb Orbital period at ZAMS [5, 5000] days
e Eccentricity at ZAMS [0, 1]

Z Metallicity at ZAMS [10−4, 2× 10−2]

z Redshift at ZAMS NA
hyperparameters
α Common envelope efficiency [0.1, 10]

facc Fraction of accretion during stable mass transfer [0, 1]

qcrit,3 Critical mass ratio on the Hertzsprung Gap [0.1, 10]

σ Root mean square of Maxwellian natal kick distribution [10, 300] km/s

Table 1. A list of parameters we used in this study.

ters that affect binary evolution in COSMIC mostly sig-
nificantly for massive stars, including the common en-
velope efficiency α, the fraction of mass accreted onto
the accretor during stable mass transfer facc, the criti-
cal mass ratio which determines whether Roche-overflow
mass transfer proceeds stably or produces a common en-
velope when the donor star is on the Hertzsprung gap
qcrit,3, and the root-mean-square of the Maxwellian dis-
tribution employed for CO natal kicks, σ.

We show a portion of the joint posterior of the progen-
itor parameters and hyperparameters of GW150914 in
figure 1. Each panel is colored based on the comparison
between progenitor parameters (blue), hyperparameters
(orange), or a mix of the two (green). We find that the
choice for σ does not affect the formation of GW150914-
like BBHs. This is not unexpected since we use the ?
delayed model which reduces the natal kick strength at
BH formation based on the amount of fallback onto the
proto-CO. In the case of GW150914-like BBHs, the BH
progenitors are massive enough that the fallback reduces
the natal kick to zero. Because of this we do not include
σ in Figure 1. Similarly, we do not include the ZAMS or-
bital period and eccentricity, which are correlated with
one another, but not strongly with the other progenitor
parameters or hyperparameters. We find strong cor-
relations between the ZAMS masses, as well as strong
correlations between M2,ZAMS and facc, and facc and α.
We show scatter plots of each of these combinations in
the upper-right inset of the figure.

The correlations between the ZAMS masses are simi-
lar to those found by A21 with the majority of the popu-

lation preferring primary and secondary masses between
60–90M⊙. However, we also find some ZAMS masses
which extend up to 150M⊙ which is the limit imposed
by our assumptions. We explore the formation scenar-
ios which lead to successful GW150914-like mergers and
those which fail to produce GW150914-like mergers be-
low in Figure 2.

The correlations between M2,ZAMS and facc illustrate
the variety of ways which GW150914-like mergers can
be produced. For binaries with M2,ZAMS < 70M⊙, we
find that accretion efficiencies of facc > 0.5 are preferred.
One reason for this is based on the requirement that the
total mass in the binary must remain above the total
mass of GW150914 and strongly non-conservative mass
transfer (i.e. facc < 0.5) reduces the total mass of the
system. A compounding factor is that as mass leaves
the binary due to non-conservative mass transfer, the
evolution of the binary’s orbit is less dramatic and leads
to wider binaries on average and thus fewer mergers in
a Hubble time. For binaries with M2,ZAMS ∼ 80M⊙,
facc is less constrained. This is because of a prefer-
ence for these secondaries to also have primary masses
near 80M⊙ and thus enter a double-core common enve-
lope evolution in which both stars’ envelopes are ejected,
leaving behind two stripped helium cores in a tight or-
bit. In this case, facc does not affect the binary evolution
and is thus unconstrained. This effect can also be seen in
the ZAMS mass and qcrit3 panels for masses near 80M⊙
because double-core common-envelope evolution is trig-
gered in COSMIC when the radii of the two stars touch
due to the rapid expansion of the primary star upon he-
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lium ignition. In this case, the choice for Roche-overflow
mass transfer to proceed stably (as prescribed by facc)
or unstably (as prescribed by α) using qcrit,3 is totally
irrelevant, and thus unconstrained. Finally, for bina-
ries with M2,ZAMS > 80, we find that facc is correlated
to decrease with increasing mass. This is due to lim-
its on the total mass which must be ejected from the
binary to produce BH masses that match GW150914,
the reverse situation to M2,ZAMS < 70M⊙. Binaries
with both component masses near 150M⊙ must either
go through a common envelope evolution (in which case
facc is unconstrained), or very non-conservative mass
transfer (where facc) is low, to produce BBHs with the
proper mass.

Finally, we find that α and facc are largely uncorre-
lated, though there exist independent trends in each hy-
per parameter. This is not totally unexpected since the
physical processes which are described by each hyper-
parameter, i.e. stable Roche-lobe overflow and common
envelope evolution are two independent channels. Gen-
erally, we find that GW150914-like BBHs tend to prefer
larger accretion efficiencies and have common envelope
ejection efficiencies peaking near α = 1. One shortcom-
ing of our method implementation is the application of
a single hyper parameter for facc and α for each binary,
while both the primary and the secondary star could
in principle be defined by their own hyperparameters
that prescribe the outcomes for when each star fills it’s
Roche lobe. We reserve full treatment of this for future
work but note that this improvement could reveal cor-
relations between hyperparameters that are not present
in our current analysis.

Once we obtain a set of binaries which successfully
map the ZAMS parameters and hyperparameters to
BBH merger masses, we re-evolve the set of ZAMS pa-
rameters with the same physical assumptions as A21,
but vary the common envelope efficiency to explore how
keeping a fixed model which only varies one hyper-
parameter contrasts to our results. Figure 2 shows
the distribution of ZAMS masses for three models (first
through third columns), each with a different α but the
same hyper-parameters as A21, as well as the results of
our sampling which allows our hyper-parameters to vary
(fourth column). We find that holding the accretion ef-
ficiency, facc, and common envelope ejection efficiency,
α, to fixed values greatly reduces the ZAMS parameter
space that produces GW150914-like mergers. In con-
trast, by allowing the hyper-parameters to fully span
the model uncertainty, we find that there are distinct
ZAMS parameters which produce GW150914-like merg-
ers.

Because we can explore the full evolutionary param-
eter space, we can also determine that there are ZAMS
parameters which fail to produce GW150914-like merg-
ers regardless of our hyper-parameter choice. For pri-
mary ZAMS masses between ∼ 95 − 135M⊙ and sec-
ondary ZAMS masses between ∼ 50 − 95M⊙, we find
that there is no combination of accretion efficiency
and common envelope ejection efficiency which pro-
duces merging BBHs that have masses consistent with
GW150914’s posteriors. In this region, if BBHs with
masses consistent with GW150914’s masses are pro-
duced through a combination of α and facc, they do
not merge in a Hubble time. Conversely, in the region
of the fourth column of Figure 2 which does produce
GW150914-like mergers, the combination of α, facc, and
the ZAMS masses and orbital separations balance to
produce BHs with the correct masses that merge within
a Hubble time.

It is interesting to re-project the posterior over progen-
itor (θ′) and hyperparameters (λ) using fresh random
variables (X) to the observable space of GW parame-
ters (θ). Agreement between the observed parameters
and the re-projected parameters indicates good explo-
ration of the random variable space and lack of sensitiv-
ity to the details of these random parameters. Figure
3 shows good agreement between the re-projected root-
finding outputs as well as the re-projected MCMC draws
for our analysis of GW150914. Unlike Andrews et al.
(2021), we find there are no regions of observable space
inaccessible to our evolutionary models; this difference
arises because we allow the evolutionary hyperparame-
ters λ to vary.

To illustrate the potential benefit of using our method
on the population level, we perform the same analysis
for all events in GWTC3. Plotted in figure 4 is the
posterior density in the m1,GW − facc space for most
of the events in GWTC3. Each contour represents the
68% credible interval of the posterior density for that
particular event. There is a suggestive trend showing
that facc could increase as the mass of the progenitor
increases. Such a trend implies the stable mass transfer
phase of a less massive binary would be preferentially
non-conservative, with more conservative mass transfer
in more massive binary systems.

Note that some events did not pass the KL divergence
test we proposed in section 2; we do not include these
systems in figure 4. Binaries that form low-mass com-
pact objects have lower amounts of fallback and tend
to have correspondingly larger variance in their random
natal kicks. Larger kicks can unbind the progenitor bi-
nary, or lead to wide binaries that do not merge within
a Hubble time. In these cases, the extra variance during
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Figure 1. The posterior for GW150914 in both the progenitor parameter space and hyper-parameter space. M1 and M2 are
the progenitors’ masses. logZ is log metallicity at ZAMS. z is the redshift at ZAMS. α is the common envelope efficiency. facc
is the fraction of mass accreted during stable mass transfer. qcrit3 is the critical mass ratio on the Hertzsprung Gap, Note that
the redshift is not fitted during the root finding process or the MCMC process. Once we have find the evolutionary parameters,
we add the delay time to the lookback time of the observed posterior sample, then from the total lookback time we can compute
the redshift at ZAMS. We highlight three panels in the corner plots to show the fine structure of the set of posterior samples
in the evolutionary parameter space. We also color the posterior in a particular panel according to the type of parameters
involved in the corner. Blue denotes panels that include only progenitor parameters, green denotes panels that include a mix of
progenitor and hyperparameters, and orange denotes panels that include only hyperparameters.
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Figure 2. Comparison of ZAMS masses for binaries which produce GW150914-like mergers for three variations of α with
fixed set of parameter assumptions matching those of A22 (first three columns) and for binaries which produce GW150914-like
mergers when α, facc, and qc,3 are allowed to vary, (fourth column).
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Figure 3. Reprojecting the posterior in evolutionary pa-
rameter space of GW150914 to observable space. The blue
contour is the reprojected posterior after the root-finding
procedure. The orange contour is the reprojected posterior
after the MCMC procedure. The green contour is the poste-
rior plotted using the original LVK posterior samples.

the reprojection can produce a posterior that may not
agree with the original posterior, hence yielding a higher
KL divergence.

For high-mass binaries, COSMIC struggles to produce
events above the pair instability supernova mass cutoff
m1,GW, so the posterior in the evolutionary parameter
space only corresponds to part of the posterior in the
observable space below this cutoff, and therefore events
beyond the PISN mass gap also have higher KL diver-
gence.

Events with more extreme mass ratios are hard to pro-
duce with COSMIC, and therefore less likely to be accu-
rately recovered by our method (e.g. Zevin et al. 2020).

This could be due to our method assuming a single value
for facc and α as discussed in Section 3.

Merger observations for which COSMIC struggles are
likely to be very informative about formation channels
and binary evolution physics, and are therefore likely
worthy of close study. We anticipate that future work
will follow up these events in detail.

Figure 4 shows that our method could in principle re-
veal the correlation between progenitor parameters and
hyperparameters on a population level. Here we impose
a cut to eliminate event with KL divergence larger than
0.1. This is a heuristic choice to exclude events that are
obviously not compatible with COSMIC. A careful treat-
ment of all events in the catalog and discussion related
to the detailed physical implications of figure 4 is be-
yond the scope of this paper. We defer a detailed study
of the physics related to the population of GW events
to future work.

4. DISCUSSION
We present a new pathway to understand binary evo-

lution with GW events in this paper. Instead of forward
modelling an assumed distribution of initial binaries to
the observed population, we find the corresponding evo-
lutionary parameters event-by-event. In this first work,
we showcase the power of the proposed method with an
application to GW150914. We show the joint posterior
of the event’s progenitor parameters and hyperparam-
eters. Our work is both a more efficient way to study
GW event progenitors, and also allows the possibility
of constraining the astrophysics related to binary evo-
lution, especially by capturing the correlation between
hyperparameters in different systems.

Our results suggest that the accretion efficiency dur-
ing stable mass transfer may depend on the primary
black hole mass. In general, our method returns the
joint posterior distribution of progenitor parameters and
hyperparameters for each event, which enables a data-
driven way to study the distribution of hyperparame-

git@github.com:kazewong/BackPop/blob/7970a37da7cb32d7e67952bc72312fbb5560b31b/src/scripts/figure2_varyAlphaFacc.py
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Figure 4. The posterior density in the m1,GW − facc
space for most of the events in GWTC3. Note that m1,GW
here refers to the reprojected posterior instead of the pos-
terior released by LIGO. Each contour is the 68% credible
interval of the posterior density for a particular event. At
m1,GW ∼ 45M⊙, the pair instability supernova mechanism
prevents COSMIC from producing events that are more mas-
sive than this cutoff. Therefore, events with the majority of
posterior support above this cutoff is not compatible with
COSMIC, hence has a large KL divergence and excluded from
this figure. On the low mass end, neutron star binaries or
neutron star-black hole binaries are subjected to randomness
induced by the natal kick, also resulting in a larger and fluc-
tuating KL divergence, therefore they are also excluded from
the analysis.

ters. That is, once we have a catalog of events, each
has their own posterior in the hyperparameter space,
and we can employ well-known techniques such as hier-
archical Bayesian analysis to fit a population model to
the distribution of hyperparameters; this avoids making
overly-specific assumptions like fixing the hyperparam-
eters for all types of event.

Working event-by-event as we do permits post-
processing application of arbitrarily complicated mod-
els of star formation and metalliticy evolution by re-
weighting the samples we obtain (e.g. van Son et al.
2022). Once we have pulled the GW event posterior
back from the observable space to the evolutionary pa-
rameter space, we can apply the same hierarchical infer-
ence methods currently used to infer the compact binary
population to our progenitor population. In particular,
we can use our progenitor population to infer the forma-
tion rate of compact binary population progenitor sys-
tems over cosmic time without needing to make artifical
and simplistic assumptions about the delay time dis-

tribution or the metallicity-specific star formation rate
(Vitale et al. 2019; Ng et al. 2021; van Son et al. 2022).
Comparing the formation rate of progenitors to the star
formation rate provides an avenue to check our under-
standing of binary evolution and the relative rate of
other formation channels.

While our method allows data-driven exploration of
the hyperparameters space for the first time, there are
a number of improvements can be implemented in fu-
ture studies. In this study we use only COSMIC as our
evolutionary function, which by design cannot explain
all the events in GWTC3. For example, event with ei-
ther of the component mass larger than the PISN gap
such as GW190521 cannot be explained by COSMIC. Al-
ternative channels such as dynamic formation channel
will be needed to explain some subset of the events in
GWTC3 (Zevin et al. 2021). As GW detectors sensi-
tivity increase, we expect to see more and more events
that are unusual in some way. Therefore, having a self-
consistence population synthesis code that contains mul-
tiple formation channels is essential to accommodate the
growing catalog of GW events. In this paper, our main
focus is to illustrate the concept of ”back-propagating”
GW events posterior sample in this work, highlighting
the capability of our method and motivating the commu-
nity to build the next generation population synthesis
code that can work with our method. To avoid clutter-
ing of focus, we discuss the physical implication of the
result presented in this work under our specific assump-
tion (i.e. using COSMIC as our evolutionary function) in
a companion paper.

Due to the implicit definition of random variables in
COSMIC, our evolutionary function is stochastic. This in-
troduces significant inefficiency in our root-finding and
sampling algorithm. The main stochasticity in COSMIC
comes from natal kick, which significantly affect the evo-
lution pathway of low mass events such as BNS events.
The effect of natal kick is suppressed for heavier mass
events due to fallback. This means events with lighter
masses are subject to stochasticity of the function, where
the sampling process for heavier events behaves as if
the evolutionary function we use are deterministic. Due
to computational limitation, we only try 1000 different
initial guesses per posterior sample in the root-finding
process. This means any posterior sample that has a
probability of merging rarer than 1 in 1000 could be
missed. Obviously the problems which comes with the
randomness can be alleviated by performing more tries
per posterior sample, but this is not scalable in prac-
tice. On top of limitation in efficiency, some formation
channels require explicit control of random variables by
construction. For example, in a dynamical formation

git@github.com:kazewong/BackPop/blob/7970a37da7cb32d7e67952bc72312fbb5560b31b/src/scripts/figure4_population.py
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scenario such as binaries that form in a globular clus-
ter, each binary has some probability of undergoing a
multi-body encounter with another member in the clus-
ter. These encounter probability distributions are ei-
ther studied with direct N-body simulations or semi-
analytical methods. In both cases, each member of the
cluster is no longer completely independent of the other
members, but coupled through the encounter probabil-
ity distribution. By studying the encounter probability
distribution, we can infer the properties of the environ-
ment which the binary lives in. This can only be done if
we have explicit control over the random variables that
characterize the encounter probability distribution.

Another technical note is we use finite differencing to
estimate the gradient of the objective function, which
could be a significant source of error near transition
points in the evolutionary parameter space. Also, fi-
nite differencing is increasing inefficiency as we increase
the dimensionality of the problem. To improve the accu-
racy and efficiency in estimating the gradient of objec-
tive function, automatic differentiation is a promising
feature that modeler should consider incorporating in
their population synthesis code in the future.

To summarize, we propose a novel method to recover
the posterior samples in the evolutionary parameter
space for each GW event. We point out hyperparame-
ters in the usual population synthesis simulation context
are not actually parameters related to the population,
but parameters about the evolutionary function. This
means the binary evolution functions can be constrained
on an individual event basis. We ”back propagate” the
posterior in the observable space to the evolutionary pa-
rameter space, thus allowing us to study hyperparam-
eters and its correlation with progenitor parameters in

a data-driven manner. Our method makes less assump-
tions than the traditional forward modelling approach,
which often fix the hyperparameters across the entire
population. Since we are not limited to the fixed hyper-
parameters assumption, we can explore the behavior of
the hyperparameters across the population much more
efficiently. While our work lays down a data analysis
pathway to understand the population of GW events, no
physics can be learned without a comprehensive physi-
cal model. We hope this letter would motivate the com-
munity to build the next generation population synthe-
sis codes that have the following properties: first, they
should have explicit control over the random variables so
marginalizing over random variables can be done more
precisely; second, they should be as automatically differ-
entiable as much as possible so exploring the evolution-
ary parameter space is efficient. Combining this work
and the next generation population synthesis code, we
can explore the full parameter space of binary evolution
models with the next-generation GW detectors network
in the near future.
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