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Abstract. Soil organic matter (SOM) dynamics in
ecosystem-scale biogeochemical models have tradition-
ally been simulated as immeasurable fluxes between
conceptually defined pools. This greatly limits how empir-
ical data can be used to improve model performance and
reduce the uncertainty associated with their predictions of
carbon (C) cycling. Recent advances in our understanding of
the biogeochemical processes that govern SOM formation
and persistence demand a new mathematical model with a
structure built around key mechanisms and biogeochemi-
cally relevant pools. Here, we present one approach that aims
to address this need. Our new model (MEMS v1.0) is de-
veloped from the Microbial Efficiency-Matrix Stabilization
framework, which emphasizes the importance of linking the
chemistry of organic matter inputs with efficiency of micro-
bial processing and ultimately with the soil mineral matrix,
when studying SOM formation and stabilization. Building
on this framework, MEMS v1.0 is also capable of simulating
the concept of C saturation and represents decomposition
processes and mechanisms of physico-chemical stabilization
to define SOM formation into four primary fractions.
After describing the model in detail, we optimize four key
parameters identified through a variance-based sensitivity
analysis. Optimization employed soil fractionation data from
154 sites with diverse environmental conditions, directly
equating mineral-associated organic matter and particulate
organic matter fractions with corresponding model pools.
Finally, model performance was evaluated using total topsoil
(0–20 cm) C data from 8192 forest and grassland sites across

Europe. Despite the relative simplicity of the model, it was
able to accurately capture general trends in soil C stocks
across extensive gradients of temperature, precipitation,
annual C inputs and soil texture. The novel approach that
MEMS v1.0 takes to simulate SOM dynamics has the
potential to improve our forecasts of how soils respond to
management and environmental perturbation. Ensuring these
forecasts are accurate is key to effectively informing policy
that can address the sustainability of ecosystem services and
help mitigate climate change.

1 Introduction

The biogeochemical processes that govern soil organic mat-
ter (SOM) formation and persistence impact more than half
of the terrestrial carbon (C) cycle and thus play a key role in
climate–C feedbacks (Jones and Falloon, 2009; Arora et al.,
2013). In order to predict changes to the C cycle, it is im-
perative that mathematical models describe these processes
accurately. However, most ecosystem-scale biogeochemical
models represent SOM dynamics with first-order transfers
between conceptual pools defined by turnover time, limit-
ing their capacity to incorporate recent advances in scien-
tific understanding of SOM dynamics (Campbell and Paus-
tian, 2015). Due to the use of conceptual pools, empirical
data from SOM fractionation cannot be used directly to con-
strain parameter values that govern fluxes between pools be-
cause diverse SOM compounds can have similar turnover
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times but are differentially influenced by environmental vari-
ables (Schmidt et al., 2011; Lehmann and Kleber, 2015). As
a result, empirical data are commonly abstracted and trans-
formed before being used to parameterize or evaluate the pro-
cesses of SOM formation and persistence that the model is
intended to simulate (Elliott et al., 1996; Zimmermann et al.,
2007). This has resulted in many conventional SOM models
(e.g. RothC, Jenkinson and Rayner, 1977, DNDC, Li et al.,
1992, EPIC, Williams et al., 1984, and CENTURY, Parton
et al., 1987) being structurally similar (i.e. partitioning total
SOM into discrete pools based on turnover times determined
from radiocarbon experiments; see Stout and O’Brien, 1973,
and Jenkinson, 1977) but each taking different approaches to
simplify the complex mechanisms that govern SOM dynam-
ics. Consequently, simulations of SOM can vary greatly be-
tween models, often predicting contrasting responses to the
same driving inputs and environmental change (e.g. Smith et
al., 1997).

Structuring SOM models around functionally defined and
measurable pools that result from known biogeochemical
processes is one way to help minimize these discrepancies.
Two recent insights into SOM dynamics present a path to-
wards addressing this issue. There is now strong evidence
that (1) low molecular weight, chemically labile molecules,
primarily of microbial origin (Liang et al., 2017), persist
longer than chemically recalcitrant C structures when pro-
tected by organo-mineral complexation (Mikutta et al., 2006;
Kögel-Knabner et al., 2008; Kleber et al., 2011); and (2) each
soil type has a finite limit to which it can accrue C in mineral-
associated fractions (i.e. the C-saturation hypothesis) (Six et
al., 2002; Stewart et al., 2007; Gulde et al., 2008; Ahrens et
al., 2015). Structuring an SOM model around these known
and quantifiable biogeochemical pools and processes has the
potential to drastically reduce uncertainty by enhancing op-
portunities for parameterization and validation of models
with empirical data. Furthermore, mechanistic models can
have value in process explanation as well their value in pre-
dictive capabilities; such models can pinpoint the processes
that have the greatest influence on a system even when they
are not traditionally determined empirically.

Conventional SOM models readily acknowledge the im-
portance of microbes in plant litter decomposition and SOM
dynamics, but model improvement was initially constrained
by the concept that stable SOM included “humified” com-
pounds (Paul and van Veen, 1978). This quantified stable
SOM using an operational proxy (high pH alkaline extrac-
tion) rather than relating stabilization to the mechanisms that
are now widely recognized, such as organo-mineral interac-
tions and aggregate formation (Lehmann and Kleber, 2015).
As our contemporary understanding of stable SOM moves
away from humification theory, so too must the way we rep-
resent SOM stabilization pathways in biogeochemical mod-
els. Similarly, many SOM models partition plant residues
into labile and recalcitrant pools with turnover times that re-
flect the assumption of selective preservation (i.e. chemically

recalcitrant litter-C is only used by microorganisms when la-
bile compounds are scarce). While many existing models do
include a flux from labile residues into stable SOM, this is
typically a much smaller absolute amount than the flux from
recalcitrant residues. Evidence indicates that biochemically
recalcitrant structural litter C compounds may not be as im-
portant in the formation of long-term persistent SOM as orig-
inally thought (Marschner et al., 2008; Dungait et al., 2012;
Kallenbach et al., 2016). Instead, they form light particulate
organic matter (POM) (Haddix et al., 2015), a relatively vul-
nerable fraction of SOM with a turnover time of years to
decades (von Lützow et al., 2006, 2007). Consequently, there
have been several calls to represent this new understanding
and re-examine how microbial activity is simulated in SOM
models (Schmidt et al., 2011; Moorhead et al., 2014; Camp-
bell and Paustian, 2015; Wieder et al., 2015).

Current conceptual frameworks more clearly link the role
of microbes to SOM dynamics (e.g. Cotrufo et al., 2013;
Liang et al., 2017) and generally isolate two discrete litter
decomposition pathways for SOM formation (Cotrufo et al.,
2015): a “physical” path through perturbation and cryomix-
ing that moves fragmented litter particles into the mineral
soil forming coarse POM and a “dissolved” path, through
which soluble and suspended C compounds are transported
vertically through water flow and, when mineral surfaces are
available, form mineral associated organic matter (MAOM).
Microbial products and very small litter particles can be
transported by both pathways, forming a heavy POM fraction
with “biofilms” and aggregated litter fragments around larger
mineral particles (i.e. sand; Heckman et al., 2013; Ludwig et
al., 2015; Buks and Kaupenjohann, 2016). Attempts to for-
mulate these empirical observations of litter decomposition
into mathematical frameworks recently culminated with the
development of the LIDEL model (Campbell et al., 2016),
which in turn built upon the relationships of litter decompo-
sition described by Moorhead et al. (2013) and Sinsabaugh
et al. (2013). While the LIDEL model was evaluated against
a detailed lab experiment of litter decomposition (Soong et
al., 2015), it does not simulate SOM pools and dynamics. In
nature, litter decomposition processes and SOM formation
processes are necessarily coupled but are often studied and
modelled separately. However, models that link litter decom-
position to SOM formation are required to represent SOM
dynamics in ecosystem models.

Beside the processes of leaching and fragmentation that
control the two pathways mentioned above, litter decompo-
sition processes that form SOM are governed by the balance
between microbial anabolism and catabolism (Swift et al.,
1979; Liang et al., 2017). A recent paradigm has emerged
that emphasizes the role of microbial life strategies (e.g.
K vs. r, referring to copiotrophic and oligotrophic micro-
bial functional groups) and carbon use efficiency (CUE) in
the formation of SOM from plant inputs (Dorodnikov et
al., 2009; Cotrufo et al., 2013; Lehmann and Kleber, 2015;
Kallenbach et al., 2016). As a result, scientists have explored
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several approaches to represent microbes in SOM models.
Research has indicated that explicitly representing microbes
in an SOM model can provide very different predictions of
SOM dynamics and include important feedbacks such as ac-
climation, priming and pulse responses to wet–dry cycles
(Bradford et al., 2010; Kuzyakov et al., 2010; Lawrence et
al., 2009; Schmidt et al., 2011). This research has shown that,
compared to conventional models, microbially explicit SOM
models have drastically different simulated responses to en-
vironmental change (Allison et al., 2010; Wieder et al., 2015;
Manzoni et al., 2016). However, these responses are gener-
ally validated against data on microsite spatial scales and are
not necessarily generalizable over larger spatial scales (Luo
et al., 2016).

Microbes have been explicitly represented in SOM mod-
els in many ways and for many years, from relatively sim-
ple approaches using a single microbial biomass pool or
fungal :bacterial ratios (e.g. McGill et al., 1981; Wieder et
al., 2013; Waring et al., 2013) to more complex associa-
tions with microbial guilds or community dynamics based on
dominant traits derived through genetic profiling (Miki et al.,
2010; Allison et al., 2012; Wallenstein and Hall, 2012). The
MIcrobial-MIneral Carbon Stabilization (MIMICS) model
(Wieder et al., 2014) consolidated existing research at the
time and uses the size of a microbial biomass pool together
with Michaelis–Menten kinetics to feedback on C decay rates
of SOM pools. While the MIMICS model and others (for
an example see Manzoni et al., 2016) provide a potentially
viable framework for explicitly representing microbes in an
SOM model, it remains unclear whether this is practical
given the lack of input data required to drive and validate
these relationships (Treseder et al., 2012; Sierra et al., 2015).
Furthermore, parsimony and analytical tractability are both
key concerns for ecosystem models designed to operate over
large spatial and temporal scales. While microbially explicit
models may be essential for addressing research questions
on small spatial scales, they may introduce unnecessary, ad-
ditional uncertainty to global simulations (Stockmann et al.,
2013).

While microbial efficiency largely controls SOM forma-
tion rates, and microbial products are major components of
the MAOM and the coarse, heavy POM fractions of SOM
(Christensen, 1992; Heckman et al., 2013) the long-term per-
sistence of SOM is determined by mineral associations that
are subject to saturation. Saturation limits for SOM were
proposed more than a decade ago (Six et al., 2002) and
have been supported by several empirical studies (e.g. Gulde
et al., 2008; Stewart et al., 2008; Feng et al., 2012; Beare
et al., 2014). Briefly, the concept of C saturation suggests
that each soil has an upper limit to the capacity to store C
in mineral-associated (i.e. silt+ clay < 53 µm) fractions due
to biochemical and physical stabilization mechanisms (e.g.
cation bridging, surface complexation and aggregation) that
are limited by a finite area of reactive mineral surfaces. While
saturation kinetics are easy to define conceptually (Stewart

et al., 2007), C saturation as a concept has been adopted by
only a few SOM models (Struc-C, Malamoud et al, 2009;
COMISSION, Ahrens et al., 2015; Millennial, Abramoff et
al., 2017). This is partly because its use in an SOM model
requires a robust estimate of the specific site’s saturation ca-
pacity. SOM saturation has been modelled using (i) empiri-
cal regressions between silt+ clay content and C concentra-
tion of that fraction (Six et al., 2002, as applied in COMIS-
SION), and (ii) empirical relationships between clay content
and the derived Qmax parameter of Langmuir isotherm func-
tions (Mayes et al., 2012, as applied in Millennial). As noted
by Ahrens et al. (2015), the use of C-saturation kinetics in an
ecosystem model would require a map of mineral-associated
C saturation capacity, and since soil C stocks in silt+ clay
fractions can make up the majority of total soil C stocks, a
lot of weight would be put on that single driving variable for
each site. However, it is worth noting that, when applying C-
saturation concepts, only the mineral-associated organic mat-
ter (MAOM) fraction saturates. Other SOM fractions (e.g.
particulate organic matter, POM) theoretically have no satu-
ration limit (Stewart et al., 2008; Castellano et al., 2015).

Attempts to consolidate the concepts of microbial control
on litter decomposition and mineral control on SOM stabi-
lization resulted in the MEMS framework (Cotrufo et al.,
2013). To date, we are aware of only one attempt to represent
MEMS within a mathematical model, the Millennial model
(Abramoff et al., 2017). However, this model does not sim-
ulate litter decomposition explicitly and as a result does not
include the impact of litter input chemistry, which is a funda-
mental component of the MEMS framework and needed to
improve ecosystem modelling, as discussed previously.

In this study we describe and demonstrate the applica-
tion of a new mathematical model (MEMS v1.0) that ap-
plies three major concepts of SOM dynamics: (1) litter input
chemistry-dependent microbial CUE informing SOM forma-
tion (Cotrufo et al., 2013), (2) separate dissolved and phys-
ical pathways to SOM formation (Cotrufo et al., 2015), and
(3) soil C saturation related to litter input chemistry (Castel-
lano et al., 2015). The scope of this inaugural model descrip-
tion is limited to representing these three concepts and is not
intended to include every mechanism relevant to SOM cy-
cling. Our objective is to demonstrate the benefits of struc-
turing an SOM model around key biogeochemical processes
rather than turnover times. Using measured SOM physical
fractions from 154 forest and grassland sites across Europe,
key parameters were optimized to improve model perfor-
mance when simulating POM-C (consisting of both light and
heavy POM) and MAOM-C under equilibrium conditions.
The resulting model was then used to test whether the be-
haviour of simulated SOM dynamics concur with the ex-
pected theoretical relationships. Finally, the model perfor-
mance in predicting soil C stocks at equilibrium was eval-
uated by simulating 8192 forest and grassland sites across
Europe, representing a diverse set of driving variables (i.e.
climate, soil type and vegetation type).
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Figure 1. Conceptual model diagram of MEMS v1.0 (see Table 1 for detailed information regarding each pool). Litter pools of MEMS v1.0
are defined as> 2 mm particles and comprise of hot-water extractable (C1), acid-soluble (C2) and acid-insoluble (C3) fractions. A microbial
pool (C4) and dissolved carbon pool (C6) are also part of the organic horizon and litter decomposition processes (see LIDEL for more
information; Campbell et al., 2016). Soil organic matter (< 2 mm particles below ground) comprises a light particulate organic matter pool
(light POM, C10) formed from the input through fragmentation and physical transfer of the structural litter residues (C2 and C3), a coarse,
heavy POM pool (C5) formed from both litter fragmentation and microbial residues coating sand-sized particles, a dissolved organic matter
(DOM) pool (C8) formed from the decomposition of all other pools and receiving DOM from the organic soil layer, and a mineral-associated
organic matter pool (MAOM C9), which exchanges C through sorption and desorption with the DOM. Arrows indicate the fluxes of carbon
between the different pools. Carbon dioxide is produced from a number of these fluxes, but for simplicity of graphical representation, these
arrows are not linked to the carbon dioxide pool (C7). Deeper soil layers can be represented by the same structure, with or without root inputs
depending on depth but are not implemented in this inaugural version of MEMS v1.0.

2 Materials and methods

2.1 Model description

The MEMS model (herein MEMS v1.0) is designed to be
as parsimonious as possible while simulating the spatial and
temporal scales relevant to management and policy decision-
making. The model is structured (Fig. 1) to simulate plant
litter decomposition explicitly, with decomposition products
defining C inputs to discrete soil pools that can be isolated
with common SOM fractionation techniques (Table 1). Each
state variable in MEMS v1.0 can be quantified directly us-
ing common measurement protocols and therefore calibra-
tion and evaluation data can be generated with a single frac-
tionation scheme (Table S1). Detailed information about the
model structure, the mathematical representation (i.e. dif-
ferential equations) and how each mechanism is described
mathematically can be found in the Supplement. All model
parameters can be found in Table 2.

MEMS v1.0 is an SOM model that operates at the ecosys-
tem scale on a daily time step. Carbon inputs to the model

are resolved for each source (in the case of multiple input
streams, e.g. manure, crop residue, compost) discretely, par-
titioning daily C inputs between solid-phase (C1, C2, C3)
and dissolved (C6) litter pools as a function of litter chem-
istry (nitrogen, N, content and the acid-insoluble fraction, i.e.
lignin) that influences microbial decomposition processes.
This structure is similar to the LIDEL model (Campbell et
al., 2016) and follows the hypothesis that both N availabil-
ity and lignin content influence decomposition by affect-
ing microbial activity (Aber et al., 1990; Manzoni et al.,
2008; Sinsabaugh et al., 2013; Moorhead et al., 2013). Sim-
ilar approaches have been used in many of the updated tra-
ditional SOM models (e.g. lignin : N ratios in CENTURY;
Kirschbaum and Paul, 2002). These input partitioning coef-
ficients can be determined experimentally for each C input
source (Tables 1 and S1). Upon reaching the soil, C com-
pounds are subject to biotic and abiotic processes that trans-
form and transport organic matter through an organic hori-
zon and subsequent mineral soil layers. As described here,
MEMS v1.0 currently only simulates a surface organic hori-
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Table 1. State variables of MEMS v1.0 and fractionation definitions (measurement proxy and protocol) for isolating each pool. C1 to C4,
and C6, refer to the organic layer (above ground,> 2 mm particles), while C5 and C8 to C10 refer to the mineral soil (below ground,< 2 mm
particles). POM is particulate organic matter; DOM is dissolved organic matter; OM is organic matter. All SOM fractions are primary
fractions obtained after dispersion to break up aggregates. For details on a fractionation scheme to quantify each pool of the MEMS model,
please refer Table S1.

State variable Pool description Measurement proxy Method reference

C1 Water soluble litter Hot-water extractable C Tappi (1981)
C2 Acid-soluble litter Hydrolysable fraction Van Soest and Wine (1968); Van Soest et al. (1991)
C3 Acid-insoluble litter Unhydrolysable fraction Van Soest and Wine (1968); Van Soest et al. (1991)
C4 Microbial biomass Direct extraction Various (e.g. Setia et al., 2012)
C5 Coarse, heavy POM > 1.8 g cm−3 and > 53 µm C Christensen (1992)
C6 Litter layer DOM < 0.45 µm extractable C Kolka et al. (2008)
C7 Emitted CO2 Heterotrophic soil respiration See Subke et al. (2006)
C8 Soil layer DOM < 0.45 µm extractable C Kolka et al. (2008)
C9 Mineral-associated OM > 1.8 g cm−3 and < 53 µm C Christensen (1992)
C10 Light POM < 1.8 g cm−3 Christensen (1992)
C11 Leached DOM Suction cups/pans, etc. See Kindler et al. (2011)

zon and a single mineral soil layer and does not yet differen-
tiate between above- and belowground litter input chemistry
to avoid requiring additional input parameters on root lit-
ter chemistry. However, the model architecture is sufficiently
generalizable to apply to multiple soil layers and/or multi-
ple discrete sources of C input. Where possible we use the
parameter names and abbreviations from the LIDEL model
(Campbell et al., 2016).

2.1.1 Microbe mediated transformations and dissolved
organic matter (DOM) production

Many of the biogeochemical processes represented by
MEMS v1.0 are assumed to be microbially mediated (and
therefore result in exoenzyme breakdown and CO2 produc-
tion), but only two lead to C assimilation into a distinct
microbial biomass pool – from the water-soluble and acid-
soluble litter pools (C1 and C2). In the mineral soil (i.e. pools
C5, C8, C9 and C10), microbial anabolism and catabolism
are implicit and considered part of the turnover of each pool.
This ensures parsimony and allows model parameters to rep-
resent the differences in microbial community for each pool,
as opposed to the alternative of explicit microbial pools. The
C transferred from the C1 and C2 litter pools into microbial
biomass is defined by a dynamic CUE parameter controlled
by the N content of the input material and the lignocellulose
index (LCI, defined as the ratio between acid-insoluble and
acid-soluble+ acid-insoluble) of the litter layer (i.e. lower
CUE results when a higher proportion of the litter is acid in-
soluble). Including microbially explicit processes in the litter
layer helps to determine the proportion of C inputs that re-
sult in MAOM and POM formation (see Liang et al., 2017)
and allows for future model versions to account for distinc-
tions between different points of entry for inputs (Sokol et
al., 2018). The lack of C transferred from other pools (e.g.

C3) into microbial biomass implies their decay from co-
metabolism with the more labile C sources (i.e. Klotzbucher
et al., 2011; Moorhead et al., 2013). Once assimilated within
microbial biomass, the anabolism of microbial activity re-
sults in generation of microbial products (i.e. necromass)
that form tightly bound aggregates of biofilms and small lit-
ter fragments around sand-sized soil particles (Huang et al.,
2006; Buks and Kaupenjohann, 2016) and dissolved organic
matter (DOM). These contribute to the heavy POM (C5)
and litter DOM (C6) pools, respectively. While these spe-
cific processes are well supported by relevant literature, re-
taining parsimony and the generalizable structure required by
an ecosystem-scale model MEMS v1.0 represents microbial
metabolism processes more generally (i.e. by linking them
to a dynamic microbial CUE rather than specific community
traits).

Even though not all pools explicitly produce microbial
biomass, all pools do produce DOM. Recent studies have
shown that DOM and small suspended particulates result
from the decomposition and fragmentation of all forms of in-
puts including those characterized as inert, such as pyrolized
material (Soong et al., 2015). Consequently, the model as-
sumes that all microbially mediated decomposition produces
some C in DOM with rates specific to the pool from which
the C originates. Since DOM generation is strongly influ-
enced by the elemental composition of the input material
(Soong et al., 2015), it is intrinsically linked to microbial
CUE, employing the same formulation as LIDEL, which ac-
counts for input N content and LCI of the litter layer (Camp-
bell et al., 2016). At present, root exudation is not explic-
itly represented, but the presence of a soil DOM pool (C8)
will allow for incorporation of root exudation processes in
later versions. More detail regarding the microbially trans-
formed organic matter inputs compared to those directly in-
corporated into the soil can be found in the Supplement.
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Table 2. Description and default values of all parameters used with MEMS v1.0. Where possible, notation has been used to remain consistent
with further details in the supplement. Driving variables are reported in Table 3. Ranges are indicative of those observed in the literature.
Refer to Sect. 2 and Table S2 for details of the optimized parameter ranges.

Parameter Parameter definition Default value
(range)

Units Reference(s)

B1 Maximum growth efficiency of microbial use of water-
soluble litter carbon (C1)

0.6
(0.4–0.7)

g microbial biomass C
per g decayed

Sinsabaugh et al. (2013)

B2 Maximum growth efficiency of microbial use of acid-
soluble structural litter carbon (C2)

0.5
(0.3–0.6)

g microbial biomass C
per g decayed

Sinsabaugh et al. (2013)

B3 Heavy, coarse particulate organic matter (C5) genera-
tion from microbial biomass carbon (C4) decay

0.33
(0.028–0.79)

g microbial products
C per g decayed C

Campbell et al. (2016)

LITfrg Carbon in structural litter inputs (C2 and C3) trans-
ported to soil particulate organic matter (C5 and C10)
each time step

0.006
(1×10−5–2×10−3)

g C per g C decayed –

POMsplit Fraction of fragmented litter inputs that form heavy par-
ticulate organic matter (C5)

0.30
(0.07–0.83)

0–1 scaling Poeplau and Don (2013);
Soong et al. (2016)

DOCfrg Carbon in litter layer DOM (C6) transported to soil
DOM (C8) each time step

0.8
(0.2–0.99)

g DOM-C per
g DOM-C

–

DOClch Maximum specific rate of leaching to represent vertical
transport of carbon in DOM through the soil profile

0.00438
(1×10−5–0.02)

g C per day Trumbore et al. (1992)

EHmax Maximum amount of carbon leached from decayed
acid-soluble litter carbon (C2) to litter layer DOM (C6)

0.15 g DOM-C per
g decayed C

Campbell et al. (2016)

EHmin Minimum amount of carbon leached from decayed
acid-soluble litter carbon (C2) to litter layer DOM (C6)

0.005 g DOM-C per
g decayed C

Campbell et al. (2016)

ESmax Maximum amount of carbon leached from decayed
water-soluble litter carbon (C1) to litter layer DOM
(C6)

0.15 g DOM-C per
g decayed C

Campbell et al. (2016)

ESmin Minimum amount of carbon leached from decayed
water-soluble litter carbon (C1) to litter layer DOM
(C6)

0.005 g DOM-C per
g decayed C

Campbell et al. (2016)

k1 Maximum decay rate of water-soluble litter carbon (C1) 0.37
(0.16–0.70)

day−1 Campbell et al. (2016)

k2 Maximum decay rate of acid-soluble litter carbon (C2) 0.009
(0.0011–0.0200)

day−1 Campbell et al. (2016)

k∗3 Maximum decay rate of acid-insoluble litter carbon
(C3)

0.0002
(2×10−5–1×10−3)

day−1 Moorhead et al. (2013)

k4 Maximum decay rate of microbial biomass carbon (C4) 0.57
(0.11–0.97)

day−1 Campbell et al. (2016)

k5 Maximum decay rate of heavy, coarse particulate soil
organic matter (C5)

0.0005
(6×10−5–1×10−3)

day−1 Campbell et al. (2016);
Del Galdo et al. (2003)

k8 Maximum decay rate of soil DOM (C8) 0.00144 day−1 Kalbitz et al. (2005)
k9 Maximum decay rate of mineral-associated soil organic

matter (C9)
2.2×10−5

(1×10−5– 4×10−5)
day−1 Del Galdo et al. (2003)

k10 Maximum decay rate of light particulate soil organic
matter (C10)

2.96×10−4

(4×10−3–1×10−4)
day−1 Del Galdo et al. (2003)

la2 Carbon leached from decayed microbial biomass car-
bon (C4)

0.19
(0.022–0.42)

g DOM-C per
g decayed C

Campbell et al. (2016)

la3 Carbon leached from acid-insoluble litter carbon and
heavy, coarse particulate organic matter carbon (C3 and
C5)

0.038
(0.014–0.050)

g DOM-C per
g decayed C

Campbell et al. (2016);
Soong et al. (2015)

LCImax Maximum lignocellulosic index that influences DOM
generation from litter decay

0.51 – Campbell et al. (2016);
Soong et al. (2015)

Nmax Maximum N content that influences rates (above this,
there is no limit) of DOM generation and microbial car-
bon assimilation

3 % Sinsabaugh et al. (2013)

Nmid Mid-point of logistic function that describes N limita-
tion

1.75
%

Campbell et al. (2016);
Soong et al. (2015)
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Table 2. Continued.

Parameter Parameter definition Default value
(range)

Units Reference(s)

Topt Optimum temperature at which decay rates are highest 45 ◦C Harmon and Domingo
(2001)

TQ10 Rate at which the decomposition rate increases with a
10 ◦C increase in soil temperature

2 – Harmon and Domingo
(2001)

Tref The reference temperature of estimated maximum de-
cay rates (i.e. parameters kx )

13.5
◦C

Del Galdo et al. (2003)

Tshp Shape of the excessive temperature limitation for tem-
perature modifier on decay rates beyond optimum tem-
perature

15 – Harmon and Domingo
(2001)

Tlag Difference from optimum temperature to the decline
above that threshold applied to the temperature modi-
fier on decay rates

4 ◦C Harmon and Domingo
(2001)

Trange Difference between the maximum and minimum soil
temperature values over a given year (unused when tem-
perature inputs are available)

24 ◦C Toth et al. (2013)

SCicept Intercept coefficient used for the linear regression that
estimates the maximum sorption capacity (parameter
Qmax) of soil

11.08 g C in < 53 µm
fraction kg per soil

Six et al. (2002)

SCslope Slope coefficient used for the linear regression that
estimates the maximum sorption capacity (parameter
Qmax) of soil

0.2613 – Six et al. (2002)

L∗
klm

Binding affinity for carbon in soil DOM (C8) sorption
to mineral surfaces (C9) of the soil layer L

0.25 g C per day Mayes et al. (2012);
Abramoff et al. (2017)

L∗
Qmax

Maximum sorption capacity of mineral-associated soil
organic matter carbon (C9) of soil layer L

– g C per m2 per depth Six et al. (2002)

∗ These parameters are calculated as functions of others. For example, Qmax is a function of sand content, soil bulk density, rock fraction, SCicept and SCslope. More details and the equations
associated can be found in the Supplement.

2.1.2 Perturbation and physical transport

While microbial activity directly influences DOM produc-
tion and therefore its transport with water flow (pool C8),
the physical pathway to SOM formation (i.e. forming pools
C5 and C10; POM) results from perturbation and fragmen-
tation processes (Cotrufo et al., 2015). The exact mecha-
nisms of perturbation are hard to generalize over the glob-
ally diverse conditions that an ecosystem-scale model such
as MEMS v1.0 is designed to operate. Consequently, the lit-
ter fragmentation and perturbation rate (LITfrg) in MEMS
v1.0 is represented as a first-order process where the de-
fault value of LITfrg was informed by empirical estimates
(e.g. Scheu and Wolters, 1991; Paton et al., 1995; Yoo et al.,
2011), but uncertainty can be reduced by relating this rate to
specific site conditions that reflect, in particular, soil macro-
and mesofauna activity. The division of litter fragmentation
between the C5 and C10 pools is derived from fractiona-
tion results that separate the light and heavy POM. The split
between these two fractions appears to vary with land use
(Poeplau and Don, 2013), although the exact relationship is
unclear. Consequently, MEMS v1.0 applies an average over
all land uses. Particulate organic matter is divided between
a heavy and a light pool because recent evidence suggests
the two fractions are differentially influenced by temperature
and management linked to aggregation and land-use change
(de Gryze et al., 2004; Tan et al., 2007; Poeplau et al., 2017).

Furthermore, the heavy, coarse POM pool can play an im-
portant role in soil nutrient cycling (Wander, 2004) and it has
a different turnover time to either the MAOM or light POM
fraction (Crow et al., 2007; Poeplau et al., 2018).

2.1.3 Liquid-phase transport

Vertical transport of DOM can be simulated as a function of
water flow in a process-based soil hydrology model. How-
ever, in this first, stand-alone version, MEMS v1.0 assumes
that DOM is transported rapidly downward through percola-
tion and advection according to a constant water flux. As with
the LITfrg parameter, the rate of vertical C transport (con-
trolled by parameter DOCfrg) would ideally be site-specific
but is currently fixed at a general, default value informed
by relevant literature (Trumbore et al., 1992; Kindler et al.,
2011). More information can be found in the Supplement and
in Table 2.

2.1.4 Sorption and desorption with mineral surfaces

The organo-mineral complexes that define a large portion
of MAOM-C in MEMS v1.0 operate under the principles
of Langmuir isotherms, which have also been used in the
COMISSION and Millennial models (Ahrens et al., 2015,
and Abramoff et al., 2017, respectively). These isotherms
represent a net C transfer between soil DOM (pool C8) and
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MAOM (pool C9) that encapsulates all sorption mechanisms
(e.g. cation bridging, surface complexation). While MEMS
v1.0 uses the same general Langmuir saturation function as
the Millennial model, it estimates maximum sorption capac-
ity (parameter Qmax) differently. Here, we use sand content
to derive the maximum C concentration of the silt+ clay
fraction according to a regression calculated by pooling all
soil data reported by Six et al. (2002). This is then converted
to C density using the site-specific soil bulk density provided
as a driving variable to the model.

In addition to the Qmax parameter, the isotherm satura-
tion function also relies on an estimate of a specific soil’s
binding affinity (parameter Klm). Typically, this is a prod-
uct of a soil’s specific mineralogy, influencing the type of
organo-mineral bonds that are formed and the strength of
those bonds (Kothawala et al., 2009). Furthermore, the type
of C compounds being sorbed are also key to defining an
isotherm’s binding affinity (Kothawala et al., 2008, 2012).
This parameter can be very difficult to generalize without re-
quiring exhaustive information on soil physio-chemical con-
ditions (e.g. clay type, Fe /Al concentration), but the work
of Mayes et al. (2012) presented an empirical relationship
between Klm and native soil pH, with pH acting as a proxy
for mineralogical conditions. As a result, sorption rates to
mineral surfaces are dependent on pH (see Eq. 35 in Supple-
ment). This relationship (derived from isotherms calculated
for 138 soils of varying taxonomies) provides a good starting
point for estimating Klm and is also used by the Millennial
model (Abramoff et al., 2017). It is worth noting that desorp-
tion is implicit in the Langmuir saturation function used by
MEMS v1.0 (unlike the explicit representation in COMIS-
SION, Ahrens et al., 2015), meaning that when the MAOM
pool reaches saturation the net transfer from soil DOM to
MAOM may be negative and C is transferred from MAOM
to DOM. The simulated sorption–desorption processes in
MEMS v1.0 are directly derived from empirical data and are
similar to other SOM models (Wang et al., 2013; Ahrens et
al., 2015; Dwivedi et al., 2017).

2.1.5 Heterotrophic respiration and controls on
microbial activity

Aside from the litter layer DOM (pool C6), each of the state
variables in MEMS v1.0 decay with unique specific maxi-
mum rates, with the resultant C flux being partitioned into
CO2 (aggregated into the C7 sink term) and an accompa-
nying decomposition product flux into other pools, mainly
DOM. Thus, the decay rate constants represent total mass
loss potential, embodying DOM-C generation as well as CO2
emissions, as per a recent decomposition conceptualization
(Soong et al., 2015). The total amount of heterotrophic res-
piration is the sum of CO2 produced from the biotic decay
of all model pools after other fluxes (e.g. DOM generation)
are calculated (more detail can be seen in the Supplement).
While the maximum specific decay rates for most pools are

fixed parameters informed by empirical data (Table 2), sev-
eral studies suggest linking decay rates of recalcitrant com-
pounds to those of more microbially accessible compounds
(Moorhead et al., 2013; Campbell et al., 2016). This follows
similar hypotheses to the priming effect, in which chemically
recalcitrant compounds (e.g. lignin, cutin and suberin) are
processed co-metabolically when microbes act preferentially
on more energetically favourable compounds nearby (Car-
rington et al., 2012; Větrovský et al., 2014). Consequently,
MEMS v1.0 applies this through use of the same functions as
those used by the LIDEL model (Campbell et al., 2016), es-
timating the maximum specific decay rate of pool C3 with a
relationship to parameter k2 (i.e. the maximum specific decay
rate of the acid-soluble litter fraction, pool C2). At present,
CO2 emitted from soil mineralization of DOM is associated
with the values presented in Kalbitz et al. (2005).

2.1.6 Decay rate modifiers

Temperature is used as the main environmental control
on maximum specific decay rates of each pool. The rate-
modifying function used by MEMS v1.0 is adapted from that
of the StandCarb model (Harmon and Domingo, 2001). This
function is consistent with empirical data and enzyme kinet-
ics, implying that microbial decomposition rates peak at an
optimum temperature with reduced rates above and below.
Coefficients that define the function also include theQ10 and
reference temperature for that specific pool. Therefore, the
function can utilize empirical data if available for a site. This
is a relatively simple function that only accounts for temper-
ature. Simulating the influence of other important controls
on decomposition, such as water, oxygen, pH and nutrients,
are beyond the scope of this inaugural version of the MEMS
model but are central to future development efforts.

2.1.7 Model implementation and driving variables

MEMS v1.0 is a series of ordinary differential equations
solved for discrete time steps by numerical integration using
finite differencing techniques from the Runge–Kutta family
of solvers. Implementation is performed through the deSolve
package (Soetart et al., 2010) written for R (all equations and
associated details can be found in Supplement). Parameters
used to solve MEMS v1.0 are described along with their de-
fault values and associated references in Table 2.

Initializing MEMS v1.0 requires external inputs of basic
site characteristics (climatic and edaphic conditions as well
as land management information) and ideally measurements
of daily C input. However, C inputs are rarely available on
daily timescales. Consequently, for this inaugural version of
the MEMS model we employ a simple function to interpolate
daily C inputs from annual net primary productivity (NPP),
partitioning above and below ground and to the simulated
soil layer using land-use specific root : shoot ratios and a sim-
ple root distribution function (Poeplau, 2016). These driv-
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Table 3. List of required driving variables for the MEMS v1.0 model. Baseline values represent mean values as reported in the LUCAS
database (Toth et al., 2013) of 8192 forest and grassland sites across Europe and were used for all qualitative testing and sensitivity analyses.

Land-use specific values

Driving Symbol Units Baseline Broadleaf Mixed Coniferous Reference
variable value Grassland forest forest forest

Site condition variables

Annual net primary productivity annNPP g C m−2 yr−1 681 ORNL DAAC (2009)
Sand content of soil layer Sand % 47.8

Toth et al. (2013)Bulk density of soil layer BD g cm−3 1.21
Rock fraction of soil layer Rock % 7.62 Site-specific values required
Soil pH of layer pH – 5.58
∗ Daily total carbon input CT g C m−2 day−1 1.30 –
∗ Mean daily soil temperature soilT ◦C 8.28 NOAA (2018)

Litter chemistry variables

Hot-water extractable fraction fSOL 0–1 0.45 0.35 0.40 0.38 0.35
Campbell et al. (2016)Acid-insoluble fraction fLIG 0–1 0.20 0.15 0.27 0.30 0.32

Internal nitrogen content LitN % 1.00 1.10 1.32 0.87 0.41

Root distribution variables

Maximum rooting depth Rdepmx cm 300 260 290 340 390 Canadell et al. (1996)
Depth to which 50 % of Rdep50 cm 20 15 25 27.5 30 Jackson et al. (1996)
root mass is distributed
Root to shoot ratio RtoS – 1.00 3.70 0.23 0.21 0.18 Jackson et al. (1996)

∗ When daily measurements are not available annual values can be used to interpolate daily estimates. For more information please refer to the Supplement.

ing variables are external inputs of the initial model version
but may be obtained from coupled climate and plant growth
submodels in future versions when incorporated into a full
ecosystem model. Details of these approaches are given in
the Supplement and all required driving variables are shown
in Table 3. Since the major C pools can each be quantified
using common analytical methods (Table 1), the best way of
initializing the size of these pools in MEMS v1.0 is to use
measured data. However, when measured data are not avail-
able, a typical site simulation employs a spin-up that runs the
model to steady-state conditions based on average climatic
and edaphic conditions, as well as average C inputs.

2.2 Global sensitivity analysis

The default parameter values (i.e. those governing C turnover
and fluxes between pools) used by MEMS v1.0 are informed
by data from relevant literature (Table 2). However, different
studies may suggest different values based on discrete site
conditions, meaning a priori estimates may not necessarily
be generalizable across all sites that the model could sim-
ulate. A variance-based global sensitivity analysis was per-
formed to determine each parameter’s relative contribution to
the change in each state variable (i.e. determining which pa-
rameters have the largest influence on the size of each model
pool). The sensitivity analysis was repeated for different sim-
ulation lengths (1–1000 years) as different fluxes operate on
different temporal scales, thereby meaning that the relative
importance of each parameter changes through time. Initial

pool sizes were set to 0 and the model was initialized to sim-
ulate a steady-state scenario based on average site conditions
derived from ∼ 8000 forest and grassland sites in the Land-
Use/Land Cover Area frame Survey (LUCAS) data set (Toth
et al., 2013; see Table 3). Specifically, this meant starting
a model run with no C in the system and gradually build-
ing up the litter and soil pools until they reached equilibrium
based on driving variables (soil type, C inputs, climate) that
remain fixed over time. To evaluate how much each model
parameter (e.g. decay rates, DOM generation rates; see Ta-
ble 2) affects the amount of C in each pool (i.e. C1–C11;
Fig. 1), parameter values were changed to be higher or lower
from their baseline and pool sizes are tracked over simula-
tion time. Note that all temperature modifier parameters (Tref,
Topt, TQ10 , Tlag and Tshp; Table 2) were excluded in this sen-
sitivity analysis as the resulting Tmod has the same effect on
all decay rates. Maximum and minimum values of all other
parameters (n= 24) were defined as 50 % above and below
the literature-derived (baseline) value (Table 2). Using Latin
Hypercube techniques to sample within the full parameter
space, a global sensitivity varying all parameters was used to
determine total variance for changes to each model pool (i.e.
how much each pool changes in size when all parameters
vary up to 50 %). Then, in turn, each individual parameter
was fixed at its baseline value, while all others varied. This
defines each parameter’s contribution to a pool’s variance,
averaged over variations in all other parameters (Sobol, 2001;
Saltelli et al., 2008) (i.e. how much each pool changes in size
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when all parameters, except one, vary up to 50 %). When nor-
malized over the global sensitivity variance, a contribution
index provides the proportion of variance explained by each
parameter. The analysis was run 10 000 times to define the
total parameter space and the whole procedure was repeated
annually for simulation lengths between 1 and 1000 years.
Put simply, 10 000 different combinations of parameter val-
ues between the minimums and maximums were used to re-
peatedly run the model for 1000 years given average site con-
ditions. The results showing changes in pool size correspond
to the changes in parameter values (e.g. when maximum de-
cay rate of MAOM is increased, pool C9 may decrease in size
but other pools may increase). The impact that a single pa-
rameter has on pool size, compared to that of all parameters,
is described by the contribution index, where the total effect
of all the parameters is equal to the maximum change in pool
size. Note that the results of a global sensitivity analysis of
this kind are non-directional and do not indicate whether a
parameter increases or decreases a pool size, but rather that
it simply changes from the baseline.

2.3 Model response to changes in driving variables

To determine the model’s steady-state response to changes
in each individual driving variable, a local one-at-a-time
(OAT) sensitivity analysis was performed by sequentially
simulating different equilibrium conditions for 1000 years.
The baseline estimates for edaphic inputs, temperature and
C input quantity were informed by the LUCAS data set
(Toth et al., 2013; see Table 3 and below for more details),
with mean values defining the mid-points and ranges de-
fined as the minima and maxima. Litter chemistry driving
variables were adapted from the ranges described by Camp-
bell et al. (2016). Note that, while typically described as
a sensitivity analysis, an OAT approach is not as robust as
variance-based techniques because it cannot determine inter-
actions between input variables. However, OAT results are
easier to interpret as there are no confounding impacts and
observed relationships are solely a result of changing one
variable. Additionally, we assess the model’s qualitative rela-
tionships between driving variables by comparison to a study
by Castellano et al. (2015); combinations of high and low
sand content and high and low soil pH were used to exam-
ine whether model projections agree with the hypothesized
relationships between input litter chemistry and MAOM-C
stocks at steady state. In these scenarios, alfalfa (Medicago
sativa) and ponderosa pine (Pinus ponderosa) were used as
examples of high- and low-quality litter inputs, respectively,
with litter chemistry driving variables adopted from Camp-
bell et al. (2016).

2.4 Parameter optimization

2.4.1 LUCAS data set and soil fractionation data

Parameter optimization for MEMS v1.0 used data from the
LUCAS data set (Toth et al., 2013). This data set contains
basic soil properties including C data for almost 20 000 sites
across Europe, sampled in 2009, representing a wide spatial
range over 25 countries with diverse gradients of soil types,
climates and land uses (Fig. S1). Complimented with geo-
referenced estimates of annual NPP from MODIS satellite
data (ORNL DAAC, 2009) and daily temperature data from
the Climate Prediction Center’s Global Temperature (CPC-
GT) database (NOAA, 2018), this provided all driving vari-
ables required to run MEMS v1.0. The use of modelled and
interpolated NPP as well as climate data is not recommended
over measurement data directly collected from the site(s) be-
ing simulated, but for the analysis herein these measured data
were unavailable.

A representative subsample (Fig. S2) of forest and grass-
land sites from LUCAS was selected for fractionation to
generate data for POM and MAOM pools (see data set on-
line available at the European Soil Data Centre). Specifi-
cally, topsoil (0–20 cm) samples from 78 grassland sites and
76 forested sites were fractionated by size (53 µm) after full
soil dispersion in dilute (0.5 %) sodium hexametaphosphate
with glass beads on a shaker. The fraction passing through
(< 53 µm) was collected as the MAOM, while the fraction
remaining on the sieve was collected as the POM. It is worth
noting that this fractionation did not separate the POM into
a light and a heavy POM, as represented in MEMS v1.0
(i.e. C5 and C10), thus these model fractions were com-
bined for data-model comparisons (see below). After dry-
ing to constant weight in a 60 ◦C oven, each fraction was
analysed for C and N concentration in an elemental anal-
yser (LECO TruSpec CN). Samples from sites with a soil
inorganic C content greater than 0.2 % (as reported in the
LUCAS database) were acidified before elemental analyses
to remove carbonates, so that the % C of each fraction rep-
resented the organic C only. Carbon concentrations of each
fraction and the total soil organic carbon (SOC) were con-
verted to stocks for the top 20 cm soil layer using bulk density
estimates reported with the LUCAS database. A georefer-
enced summary of these 154 sites can be seen in Fig. S2 and
summary information of the fractionation data and compar-
isons between land-use classes is shown in Figs. S3 and S4.

2.4.2 Optimization procedure

Informed by the global sensitivity analysis, four parameters
accounted for ∼ 60 % of the variation in steady-state bulk
(and MAOM/total POM) soil C stocks. These were Nmid,
k5, k9 and k10 (see Table 2 for details) and were used for
optimization to improve model performance. Maximum and
minimum values representing realistic ranges of each param-
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eter were informed by relevant literature and rounded to ap-
propriate boundaries (Tables 2 and S2): Nmid (0.875, 2.625),
k5 (6.0−5, 1.0−3), k9 (1.0−5, 4.0−5), k10 (1.0−4, 1.0−3).
These values set the limits for Latin Hypercube sampling to
define 1024 unique parameter sets that, together, span the full
range of each parameter. The fractionated LUCAS site data
were used to train and test the model, applying a repeated k-
fold cross-validation approach (Kuhn and Johnson, 2013) to
identify best parameter values for the full variation of condi-
tions at all 154 sites. Comparisons were made between mea-
sured soil C stocks and those resulting from steady-state sim-
ulations for each site. Of these sites, 120 (78 %) were used for
training and the remaining 34 (22 %) were used for testing.
Root mean square error (RMSE) was applied as the objec-
tive function. Using the training results, the set of parameters
that reported the lowest RMSE for each fraction was used
to ensure this “best” parameter set also performed well (i.e.
RMSE was within 10 % of that reported for the training sites)
compared to the 34 sites of measured data withheld for test-
ing. This process was repeated 10 times using different sub-
sets of the 154 sites for training and testing (i.e. 10 “folds” in
the cross-validation approach).

To determine the optimized parameter values, a single fold
was chosen at random from those that reported the lowest
RMSE for each subset of training sites (i.e. each fold). Op-
timized values differ depending on which measured fraction
is compared to model predictions (whether comparing pool
C9 to measured MAOM-C, the sum of pools C5 and C10 to
measured total POM-C or the sum of pools C5, C8, C9 and
C10 to measured bulk SOC). The new, optimized parameter
values (Table S2) were derived from a randomly chosen fold
that minimized the RMSE when compared to the MAOM
fraction. This was chosen (instead of those optimized for
POM or bulk SOC) since the MAOM fraction is typically
the largest single soil C pool and using this approach led to
the biggest overall decrease in RMSE when compared to all
available data (Table S2). In future analyses, a more rigorous
approach may be to apply a cost function regarding all avail-
able measured pool data (e.g. including litter pool data when
it is also measured), but for our initial model evaluation we
deemed this random choice sufficient.

2.4.3 Model evaluation for forests and grasslands in
Europe

Having optimized key parameter values, the new global pa-
rameter set for MEMS v1.0 was used to simulate the remain-
ing forest and grassland sites of the LUCAS data set for inde-
pendent evaluation. Driving variables of edaphic conditions
and land-use type were extracted for each site from LUCAS
and combined with daily estimates of C inputs and tempera-
ture (derived from simple interpolations assuming a normal
distribution of MODIS annual NPP data (see Supplement for
details) and CPC-GT daily maximum and minimum air tem-
perature data, respectively). Where these data were unavail-

able, the site was removed from further evaluation. Three
forest land-use classes (as described in LUCAS) were in-
cluded, along with the pure grassland land-use class. This
resulted in a final data set of 8192 sites (3487 grasslands,
1713 coniferous forests, 1590 broadleaved forests and 1402
mixed forests). Mixed forests are defined to contain conif-
erous and broadleaved species that each contribute > 25 %
to the total tree canopy. Summary information for these sites
can be found in Fig. S1. To differentiate between input litter
chemistry, root : shoot ratios and root distribution of the four
land uses, generic driving variables for each were derived
from relevant literature. Details of these inputs are shown in
Table 3.

Each of the 8192 sites was initialized with zero pool sizes
and simulated for 1000 years to achieve steady-state con-
ditions. This assumed the same intra-annual distribution of
daily temperature and C input for each year. Organic car-
bon content reported in LUCAS was converted to SOC stock
using the estimated bulk density reported with the database
and reduced according to the measured rock/gravel content
(Eq. 1), i.e.

SOC= Cconc×Lρ × (1−Lrock) , (1)

where SOC is soil organic carbon stock in Mg C ha−1, Cconc
is the measured C content in percent, Lρ is the bulk den-
sity of soil layer L in g cm−3 and Lrock is the rock con-
tent of soil layer L expressed as a fraction. This total SOC
stock was compared to the MEMS v1.0 model output. In ad-
dition to comparing measured values with those predicted
at steady state (which may not be an accurate assumption
for many sites), a more general comparison was performed
to examine groups of sites under similar site conditions.
Model performance was evaluated for several classes of en-
vironmental conditions, with sites divided into above and
below median values of mean annual temperature (MAT,
8.3 ◦C), mean annual precipitation (MAP, 687 mm), annual
NPP (647 g C m−2 yr−1) and sand content (50 %) for each
land-use type. Several standard metrics for error and bias
were used to evaluate model performance following the flow
chart presented in Smith et al. (1997), including mean abso-
lute error (MAE), mean bias error (MBE), root mean square
error (RMSE), modelling efficiency (EF), and coefficient of
determination (CofD). Additionally, we used 16 environmen-
tal classes to derive an estimate of measurement uncertainty
based around sites of similar conditions (e.g. hot, wet, low
input, sandy soil) for each land use. To include both mea-
surement and simulation error in the same evaluation met-
ric, we applied a modified F test statistic that uses lack-of-fit
sum of squares to account for both experimental and predic-
tion uncertainty (see Sima et al., 2018 for more information).
The variance required to calculate these was derived by us-
ing the full number of environmental classes as described
above (n= 16). Due to the lower number of fractionated
sites in each group, only temperature and sand content were
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Figure 2. Global sensitivity analysis results showing the relative contribution of each parameter to a change in carbon stock of each pool in
MEMS v1.0 (leached carbon to deeper soil layers [pool C11] is omitted for clarity) after simulation to steady state. The two top-left panels
represent the sum of soil pools (C5, C8, C9 and C10) and organic layer pools (C1, C2, C3, C4 and C6). Details of each parameter and the
abbreviations used can be found in Table 2. The sensitivity analysis was repeated annually for simulation times between 1 and 100 years,
every 10 years after that to 400-year simulations and every 100 years after that up to a 1000-year simulation. Results are presented on a log
scale in years. The four parameters that were optimized in our analysis (Table S2) are coloured to highlight their importance in the different
pools (mid-point of logistic curve where nitrogen content of input influences microbial carbon use efficiency, Nmid, is red; maximum decay
rate of heavy particulate organic matter, k5, is orange; maximum decay rate of mineral-associated organic matter, k9, is blue; maximum decay
rate of light particulate organic matter, k10, is green). A fully colourized, high-quality version of these results can be found in Fig. S5.

used as environmental classes (i.e. n= 4) to evaluate perfor-
mance at these 154 sites. One-way ANOVAs were performed
to show where average model results were significantly dif-
ferent from average measured C stocks. An α level of 0.05
was used to determine the significance of the ANOVA and
F tests. Finally, we also use the standard errors for bulk top-
soil C stocks of each environmental class to determine the
significance of RMSE assuming a two-tailed Student’s t dis-
tribution and 95 % confidence interval, as described by Smith
et al. (1997). All data processing and statistical analysis were
performed in R (v3.4; R Core Modelling Team, 2018).

3 Results

3.1 Sensitivity and behaviour of MEMS v1.0

3.1.1 Parameter sensitivity at different timescales

Bulk SOC stocks were sensitive to different sets of param-
eters depending on the duration of the simulation (Figs. 2
and S5). Parameters that define litter fragmentation and per-
turbation rates (LITfrg) or microbial CUE (mainly LCmax,
Nmax andNmid) are responsible for rapid (< 2 years) changes
in C stocks, particularly those in the litter layer and light
POM. As simulation time increases, the influence of these

parameters declines relative to the litter and POM decay rate
parameters, particularly k5 and k10. Fifty years after simula-
tions are initialized, more than 75 % of the sensitivity in to-
tal soil C stock was due to the maximum specific decay rate
of light POM (i.e. parameter k10). After this point, its rel-
ative contribution to total C stock sensitivity diminishes (to
approximately 45 %) as the parameters that define MAOM-
C sorption become more important (i.e. coefficients that de-
termine the regression to calculate MAOM-C saturation ca-
pacity [SCicept and SCslope). Overall, our sensitivity analysis
showed that the expected dynamics with different processes
(e.g. litter fragmentation, microbial processing and sorption)
are operating on the appropriate timescales to structure SOM
dynamics, and their associated parameters are more or less
important depending on the initial pool sizes and model run
and experiment duration. Figure 2 can be interpreted as a de-
piction of how the C pools of MEMS v1.0 are impacted by
different parameters as each pool accumulates over time.

3.1.2 Soil carbon response to changing environmental
conditions

Alone, each driving variable (edaphic conditions, tempera-
ture, and input litter quantity and quality) in MEMS v1.0
has a discrete and non-linear relationship to the proportion

Biogeosciences, 16, 1225–1248, 2019 www.biogeosciences.net/16/1225/2019/



A. D. Robertson et al.: Soil organic matter formation and persistence using the MEMS model 1237

Figure 3. The ratio between mineral-associated organic matter and total particulate organic matter (MAOM : POM) under steady-state input
conditions in MEMS v1.0 as a response to the full, realistic range of driving variables. Note that total POM refers to the sum of pools C5 and
C10. Each input was varied individually, while all others remained fixed at baseline values (indicated by dashed lines) – mean, maximum and
minimum values for litter chemistry driving variables (LitN, fDOC, fLIG and fSOL) were derived from Campbell et al. (2016) and edaphic,
climatic and C input driving variables (soil bulk density, sand content, soil pH, mean annual temperature and annual net primary productivity)
were derived from the LUCAS data set (Toth et al., 2013).

of soil C stored in the MAOM and POM pools under steady-
state conditions (Fig. 3). This analysis alters only one driving
variable at time while holding others constant at an average
value. Bulk C stocks are predicted to be mostly MAOM in
all cases except when C inputs (annNPP) are very high (i.e.
> 1.5 kg C m−2 yr−1; Fig. 3). This results from the fact that
the MAOM pool will saturate at high input rates, whereas
the POM pools do not (Castellano et al., 2015). Sand con-
tent and soil pH influence a site’s MAOM saturation capac-
ity, and therefore a low capacity (i.e. high sand content) with
mineralogy associated with weaker organo-mineral bonding
(i.e. high soil pH) has proportionally more total POM. Lit-
ter input chemistry variables also have different, and sizable,
impacts on whether SOM forms and persists primarily in
MAOM or in POM (as denoted by the MAOM : POM ra-
tio). Note that POM in the MAOM : POM ratio refers to to-
tal POM (i.e. pools C5 and C10 combined). The fraction of
litter input that is hot-water extractable (fSOL) is a key deter-
minant of MAOM formation rates, and when fSOL is high,
MAOM-C stocks at steady state are predicted to be more

than 4 times higher than POM-C stocks (Fig. 3). Conversely,
when input material has a high acid-insoluble (fLIG) content
and a low N content (LitN) the size of the organic horizon in-
creases and, over time, POM-C stocks approach a 1 : 1 ratio
with MAOM-C stocks. Figure 3 shows the impact of chang-
ing one driving variable, while all others remain constant.
When many of these inputs vary at the same time, the rela-
tionships to MAOM : POM can be very different (for exam-
ple, the model predicts twice as much POM-C as MAOM-C
when simulating a sandy soil with coniferous vegetation and
high annNPP).

MAOM-C saturation in the model is largely dependent on
an interaction between the quantity of C inputs, the soil tex-
ture (i.e. sand content) and mineralogy (i.e. for which soil
pH is used as a proxy). Figure 4 shows that our mathemat-
ical formulation of sorption to mineral surfaces generated a
very similar relationship to that proposed by Castellano et
al. (2015). When C inputs are low, litter input chemistry has
the greatest influence on the MAOM-C stock under steady-
state conditions. This is particularly true in soils with the
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Figure 4. Mineral-associated organic matter (MAOM) stock response to different levels of input litter quality and quantity compared for
edaphic conditions which equate to different MAOM sorption relationships in MEMS v1.0. Formatting adopted from Castellano et al. (2015)
to aid comparison between the hypothetical relationship postulated and the actual response simulated by MEMS v1.0 here.

strongest mineral bonding (i.e. low pH) and high sorption
capacity (i.e. low sand %; Fig. 4 top-right panel).

3.2 Improved simulation due to parameter
optimization

Initial parameter values derived from relevant literature pro-
vided good estimates judging from model performance with
measured fractionation data (Table S2). Prior to optimiza-
tion, the difference between measured and modelled bulk
soil C stocks of fractionated LUCAS sites was insignificant
for all four land uses (one-way ANOVA, p > 0.05). How-
ever, accounting for experimental and simulation uncertainty
(variance calculated by four groups: divisions of high and
low mean annual temperature and sand content) MEMS v1.0
only accurately described bulk SOC stocks for the grass-
land land-use class (F statistic< 0.05). After optimization,
an overall model fit with all soil C fractions (MAOM, to-
tal POM and bulk) was improved by increasing the maxi-
mum decay rate of MAOM (parameter k9) and decreasing
the maximum decay rate of light POM (parameter k10), the
maximum decay rate of coarse, heavy POM (parameter k5)
and the inflection point for the logistic curve that defines the
N effect on microbial CUE (parameter Nmid). This resulted
in a lower RMSE for comparisons between measured data
and baseline values (Table S2). Despite the improved model
fit, the error in simulated values for broadleaved forest sites
was still more than the error inherent to the measured data
(at a 95 % threshold and as defined by the modified F test
from Sima et al., 2018). This was primarily caused by two
sites at which measured total POM-C stocks were reported
to be > 95 Mg C ha−1 in the top 20 cm (Fig. 5). When these
sites were removed from statistical comparisons there were

no significant differences between modelled and measured
bulk SOC stocks for any land-use class.

Measured fractionation data from the four major land-use
classes showed a wide range of soil C stocks and a sig-
nificantly different MAOM : POM ratio between grassland
and forests (Figs. 5 and S4). This was predominantly due
to grassland topsoil (0–20 cm) having more MAOM and less
total POM compared to coniferous soils (Fig. S3). On av-
erage, simulations of the fractionated sites agreed well with
measured data, demonstrating no significant differences (p >
0.05) between measured and modelled C stocks of total POM
or bulk soil for all land uses, and for MAOM at broadleaved,
mixed and coniferous forest sites (Fig. 5). The only sta-
tistically significant difference was between measured and
modelled MAOM-C stocks for grassland sites (p < 0.01).
However, measurements have a considerably larger range be-
tween minimum and maximum values than model simula-
tions, particularly for total POM, which largely explained the
high overall RMSE when comparing all 154 sites (Table S2).

3.3 Model evaluation for forests and grasslands in
Europe

Despite only including a few of the many factors that influ-
ence SOM dynamics, MEMS v1.0 was able to capture the
expected relationships between site conditions and total min-
eral soil C stocks based on an evaluation of the optimized
model with independent data (Fig. 6). Mean absolute error
over all sites (n= 8192) was low (MBE= 1.1 Mg C ha−1)
and CofD was above 1, indicating that the simulated C stocks
capture the trend of the measured data better than the mean
of the measurements (Table 4). The main lack of fit was ob-
served, as the model consistently underestimated bulk soil
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Figure 5. Measured and modelled soil C stocks (split into mineral-associated organic matter, MAOM; total particulate organic matter, POM;
and total soil organic carbon, SOC) for the forest and grassland land-use classes of the fractionated sites from the LUCAS data set (n= 154).
Note that the MAOM : POM ratio facet is unitless, not shown by the y-axis label. Also note the free y-axis scales and that total POM is a
sum of both light and heavy fractions.

Figure 6. Comparisons between average (±1 standard error) measured (red) and modelled (blue) bulk SOC stocks for 8192 forestry and
grassland sites over a climatic and edaphic gradient across Europe. Each comparison is partitioned into high and low groups of mean annual
precipitation (MAP, top and bottom panels), mean annual temperature (MAT, left and right panels) and soil texture (alternating panels left
to right). ANOVA comparisons of means are performed to show significant differences (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05). Number of
samples for each land use and division is shown at the base of each bar.
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Table 4. Evaluation results of comparisons between measured and modelled topsoil (0–20 cm) C stock for 8192 grassland and forest sites
across Europe (see Fig. 7 for geographic distribution of residuals). Mean absolute error (MAE) and mean bias error (MBE) describe the
overall difference and directional difference between measured and modelled values, respectively. The model is deemed to describe the trend
of the measured data better than the mean of the measurements when the modelling efficiency (EF) is positive, or when the coefficient of
determination (CofD) is above 1. Each is a discrete evaluation metric. Divisions of high and low site conditions (mean annual temperature,
mean annual precipitation, annual C inputs, sand content) were used to derive statistical significance (root mean square error, RMSE, and
F statistic) of differences between measured and modelled values while accounting for measurement variance within these divisions. An
RMSE value below RMSE95 indicates that simulated C stocks fall within the 95 % confidence interval of the measurements. An F statistic
below 0.05 also shows that simulated values are not significantly different to measurements at a 95 % confidence level.

Evaluation metrics using site condition
Evaluation metrics for individual site performance divisions to include variance

Mean± 1 SE
Land use n (Mg C ha−1) MAE MBE EF CofD RMSE RMSE95 F statistic

Observed Predicted (Mg C ha−1) (Mg C ha−1) (Mg C ha−1) (Mg C ha−1)

Pure grass 3487 65.9± 0.5 66.3± 0.3 24.7 −0.4 −0.047 4.52 13.0 10.3 0.009
Broadleaved 1590 71.2± 1.0 73.8± 0.4 31.0 −2.5 −0.062 5.54 19.0 14.7 0.052
Mixed forest 1402 82.3± 1.1 75.2± 0.3 35.4 7.0 −0.173 8.36 12.9 19.2 0.042
Coniferous 1713 79.0± 1.1 76.3± 0.3 36.1 2.7 −0.057 10.35 13.5 18.7 0.006

∗ All 8192 72.5± 0.4 71.4± 0.2 30.2 1.1 −0.048 6.32 14.9 15.7 0.020

∗ All sites use 64 divisions (high and low site conditions and land-use type.)

C stocks in forest systems with low mean annual temper-
ature (MAT< 8.3 ◦C) and sandy soil textures (sand con-
tent> 50 %) (Fig. S6). When divided by land-use classes,
grassland sites had the lowest residuals and mixed-forest
sites had the highest (Figs. 6 and S6). Using low and high
divisions of MAT, MAP, sand content and C input quan-
tity to account for variance between each of these groups
(n= 16), RMSE indicated that the model predictions of C
stocks fell within the 95 % confidence interval of the mea-
surements for coniferous and mixed-forest sites. Using the
same groups but also accounting for simulated variance, in-
dicated that the accuracy of MEMS v1.0 predictions were
statistically significant for all land uses besides broadleaved
forest sites (F statistic> 0.05; Table 4). A geographic analy-
sis of model performance indicated that the model performed
best across France and northeastern Europe but poorly across
the UK, Ireland and southern Sweden (Fig. 7). Furthermore,
topsoil C stocks of broadleaved sites in southeastern Europe,
particularly Romania, were consistently overestimated by the
model, especially when sites had low MAP (Figs. 6 and 7).

In general, discrepancies between measured and modelled
values were largest for the broadleaved forest land-use class
(Fig. S6). Results from analysis of the fractionated sites sug-
gest that the model cannot achieve the very high POM-C
stocks measured at some sites. Optimized parameter values
aim to produce a good overall model fit but are unlikely to
be able to capture the full range of measured values (for ex-
ample, the lowest bulk topsoil C stock for a broadleaved site
was 7 Mg C ha−1, whereas the highest was 218 Mg C ha−1).
A summary of model performance at these 8192 evaluation
sites is shown in Table 4. While the model’s performance

comparing absolute C stocks appears good, this is done with
the assumption that these topsoil C stocks at forest and grass-
land sites in our analysis are at steady state. This is unlikely
to be true and therefore it is encouraging when general trends
are as expected (as is the case for many of the land uses and
for many of the different environmental divisions; Fig. 6).

4 Discussion

MEMS v1.0 was designed to consolidate recent advances in
our understanding of SOM formation and persistence into
a parsimonious mathematical model that uses a generaliz-
able structure which, after further development, can be im-
plemented in Ecosystem and Earth System model applica-
tions. In this study we aimed to provide proof-of-concept
that a model structure built around known biogeochemical
mechanisms (Fig. 1) and measurable pools could be advan-
tageous for application over varied site conditions. Another
advantage of using this novel structure is that each aspect is
empirically quantifiable, allowing for straightforward model
evaluation of both total and fractionated SOM, addressing a
common concern among conventional SOM models (Camp-
bell and Paustian, 2015).

4.1 Sensitivity and behaviour of MEMS v1.0

The relationships between model driving variables and soil
C stocks at steady state highlight the importance of lit-
ter chemistry on relative proportions of MAOM and total
POM in MEMS v1.0 (Fig. 3). This is generally because both
POM pools accumulate C when input litter has a high acid-
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Figure 7. Model residuals of topsoil (0–20 cm) C stocks (Mg C ha−1) for 8192 sites (3487 grasslands, 1713 coniferous forests, 1590
broadleaved forests and 1402 mixed forests) across Europe, comparing measured values from the LUCAS database (Toth et al., 2013)
to simulated steady-state estimates from the MEMS v1.0 model. All land uses are grouped for averages. Residuals are averaged across all
sites within each NUTS2 region (populations between 800 000 and 3 million) and coloured accordingly. Measured site C stocks were sub-
tracted from modelled values, meaning that the model underestimates SOC stocks in positive (blue) regions and overestimates SOC stocks
in negative (red) regions. Residuals average to within 10 Mg C ha−1 in areas with the lightest yellow colour. The size of the circles within
each region represents the number of sites simulated. Grey regions included no sites.

insoluble fraction and a low N content, resulting from re-
duced microbial accessibility and reduced DOM production
(Scheibe and Gleixner, 2014). This trend is also common in
empirical studies and often associated with land-use change
from herbaceous to woody vegetation (Filley et al., 2008).
Many of the parameters that influence the processes of POM
formation and persistence (e.g. LITfrg, Nmid, LCImax) have
relatively high importance (i.e. sensitivity) to changes in to-
tal SOM within relatively short time frames (i.e. < 10 years;
Fig. 2). This may potentially capture the important real-world
trend that POM is typically more vulnerable to decomposi-
tion with disturbance compared to MAOM (Cambardella and
Elliott, 1992). However, disturbance impacts were not evalu-
ated in the inaugural study.

One main objective of structuring MEMS v1.0 around
empirically defined biogeochemical processes is so that it
can accurately represent the timescales on which different
processes operate, rather than being solely dependent on
turnover times of conceptual pools. This is particularly rel-
evant given our new understanding that the MAOM fraction
has short-term dynamics (Jilling et al., 2018). Consequently,
it is reassuring to see that this knowledge, which is incor-

porated into the MEMS v1.0 design, can be seen in Fig. 2
(and Fig. S5), where the parameters that operate on short
timescales also have an immediate impact on the MAOM
pool given the complexity of controls in the model struc-
ture. The model’s agreement with the hypothesized relation-
ship from Castellano et al. (2015) is also reassuring, and rep-
resents an important proof of concept that associates litter
chemistry and C saturation capacity with MAOM-C stocks
at steady state (Fig. 4).

4.2 Model evaluation of MEMS v1.0

While average agreement between measured and modelled
soil C stocks was very good for MEMS v1.0, the model
failed to capture the wide range in total POM-C stocks that
were observed at the fractionated LUCAS sites (Fig. 5). This
may be because this first version of the model does not in-
clude several of the key controls on POM dynamics, such
as water/oxygen limitations (Keiluweit et al., 2016), aggre-
gation (Gentile et al., 2011), activity of soil fauna (Frouz,
2018) and nutrient availability (Bu et al., 2015; Averill and
Waring, 2018). There are also limitations of our approach
given that very few of the sites will likely be under true

www.biogeosciences.net/16/1225/2019/ Biogeosciences, 16, 1225–1248, 2019



1242 A. D. Robertson et al.: Soil organic matter formation and persistence using the MEMS model

steady-state conditions, leading to further discrepancies be-
tween model predictions and measured values. Furthermore,
the variability in driving variables of litter chemistry, N con-
tent and root:shoot ratios are underestimated when using our
approach of grouping many different land uses into broad
classes.

When examining the comparison between measured and
modelled bulk soil C stocks for the 8192 forest and grass-
land sites, residuals were particularly large for high-latitude
forestry sites in southern Sweden and the UK (Fig. 7). We
hypothesize that this is primarily due to the fact that MEMS
v1.0 does not simulate soil moisture controls on decompo-
sition, and temperature effects are applied through a simple
function. In reality, these sorts of forest soils are known to
have very high total POM-C stocks, resulting from decades
of consistent inputs and cold, wet climates, resulting in low
decomposition rates (Berg, 2000). Differences between mea-
sured and modelled soil C stocks are also likely due to uncer-
tainties with driving variables and specifically the MODIS
estimates of NPP. The 2009 NPP data from MODIS were
used to estimate the C inputs to soils in our simulations, and
these data may not be representative of the average historical
C inputs for those sites, which would impact the observed
amounts of soil C.

4.3 Improving the parameters of MEMS v1.0

The current iteration of the MEMS model is not intended to
be able to simulate all scenarios and environmental condi-
tions, but this study indicates it can be reasonably accurate in
simulating forest and grassland sites in Europe under steady-
state conditions (Fig. 6; Table 4). That said, several of the
parameters in MEMS v1.0 are either poorly constrained or
loosely defined in the current model. The LITfrg parameter,
for example, defines a fixed litter fragmentation and pertur-
bation rate that transfers C from the structural litter pools (C2
and C3) below ground (to C5 and C10). The global sensitiv-
ity analysis of MEMS v1.0 indicates that LITfrg is particu-
larly important for several model pools and total SOC early
in a simulation (Figs. 2 and S5). There are several areas of
research that may help make this process more mechanis-
tic in MEMS and allow for feedbacks with site conditions
(e.g. Scheu and Wolters, 1991; Yoo et al., 2011). One op-
tion for generalizing the vertical transport of structural litter
into the soil may be to apply a diffusion approach that can be
valid on the ecosystem scale, as described in the SOMPROF
model (Braakhekke et al., 2011). More empirical data that
link site conditions to perturbation processes (e.g. cryoturba-
tion, bioturbation, churning clays) would help with this area
of MEMS model development.

As with vertical distribution of physical SOM, the trans-
port of DOM vertically between layers lacks a mechanis-
tic foundation in MEMS v1.0. A noteworthy approach that
attempts to simulate this transport while also representing
bioturbation through diffusion and sorption-desorption pro-

cesses is presented in the COMISSION model (Ahrens et al.,
2015). While these models apply more mechanistic functions
to represent these key processes, one can debate whether the
increased complexity and computational demands are neces-
sary. This, of course, depends on the model objectives, and in
MEMS v1.0 we have prioritized parsimony and deliberately
minimized the number of algorithms and parameters. While
the model cannot yet address hypotheses about litter frag-
mentation or DOM leaching, the generic structure of MEMS
v1.0 can incorporate these processes in a more explicit man-
ner in future versions.

Additional parameters of MEMS v1.0 that are poorly con-
strained include those associated with the LIDEL model.
These parameters (specifically those related to DOM genera-
tion and microbial assimilation; see Table 2) were estimated
using Bayesian analysis that employed empirical data (Soong
et al., 2015) but resulted in large posterior distributions with
high uncertainty as noted by Campbell et al. (2016). Con-
sequently, more data are required from different litter types
to help constrain these parameter values. In particular, the
amount of DOM leached from decaying microbial biomass
(parameter la2) is particularly important for MAOM forma-
tion when the pool is relatively small (< 25 years in Fig. 2).
MEMS v1.0 currently uses the estimated value from Camp-
bell et al. (2016) for this parameter (0.19 g DOM per g de-
cayed microbial biomass), but it is worth noting that the re-
ported posterior interval width was more than double this
value (0.398 g DOM per g decayed microbial biomass). Sim-
ilarly, the rate of microbial product generation from micro-
bial biomass (parameter B3) was seen to be even more vari-
able (Campbell et al., 2016). Empirically, the rate at which
microbial products are generated from microbial turnover is
highly variable depending on the microbial community and
the site conditions (Xu et al., 2014). While improving these
parameters was outside the scope of this study, the path to-
wards improved model performance can be addressed with
new empirical data that better inform the model parameters.

4.4 Opportunities for further development in MEMS
v1.0

In its current capacity, MEMS v1.0 is far from being able
to simulate full ecosystems and is limited in scope regard-
ing the land-use scenarios it can simulate accurately. Specif-
ically, the initial model does not simulate the hydrological or
nitrogen cycles and currently operates on a single soil layer.
However, MEMS v1.0 has been built to have a modular ar-
chitecture, with careful consideration given to how additional
processes can be addressed through future model develop-
ment.

The relationship between C and N in soils is fundamental
to SOM dynamics (McGill and Cole, 1981), and therefore
simulating the N cycle is at the forefront of plans to develop
in the MEMS model. Since the MEMS model structure is
based on soil fractions that can be physically isolated, each
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current soil C pool in MEMS v1.0 (i.e. pools C5, C8, C9 and
C10) can also have a direct equivalent for N, and be consis-
tent with the fractionation scheme for the C dynamics (Ta-
ble S1). However, additional pools of nitrate and ammonium
(and associated mechanisms to describe N fixation, nitrifi-
cation and denitrification) are needed to accurately describe
plant–soil nutrient feedbacks. This highlights a major objec-
tive of future MEMS model development, i.e. to ensure the
model can be easily coupled with existing modules that de-
scribe other aspects of the ecosystem (e.g. plant growth rou-
tines).

Another key feature of MEMS v1.0 is its ability to test spe-
cific hypotheses directly against empirical data, such as the
effects of soil priming on soil C stocks, effects of microbial
feedbacks on OM sorption to mineral surfaces, or the effects
of soil fauna on SOM formation. Because each of the exist-
ing model pools can be isolated physically and quantified,
the rates of flux between these pools can also be quantified
with isotopic tracer studies. Not only does this mean param-
eterization and evaluation data can be generated easily, but
also that experiments can be designed with this mathemat-
ical framework in mind, specifically generating the data re-
quired to develop, evaluate and improve the model. While the
current scope of MEMS v1.0 does not address all climate-C
feedbacks, it does provide the basis for a more mechanistic
model that can simulate SOM dynamics on the ecosystem
scale.

5 Conclusions

As a carbon model designed around the processes that gov-
ern SOM formation, MEMS v1.0 provides an analytically
tractable framework that can be used to test specific hypothe-
ses by pairing empirical experiments with model simulations.
While the inaugural version of this new model has limitations
for direct evaluation with real-world measurements, on aver-
age, its performance with simulating steady-state conditions
equates well with topsoil C stocks measured for ∼ 8000 for-
est and grassland sites across Europe. Using a structure that
aligns with our contemporary understanding of soil C dy-
namics, we also show that MEMS v1.0 is capable of accu-
rately proportioning SOM between particulate and mineral-
associated fractions by accounting for litter chemistry of the
input material. By using litter chemistry to inform SOM for-
mation pathways and edaphic conditions to inform the C-
saturation capacity of a soil, MEMS v1.0 also shows consis-
tent trends with experimental findings.

The next steps for MEMS model development will require
detailed routines of N and hydrological cycling, as well as
additional external drivers of SOM dynamics (e.g. land man-
agement practices). To reliably incorporate these aspects in
the MEMS model will require effective collaboration be-
tween modellers and experimentalists to design studies that
can both (i) elucidate the underlying mechanisms that MEMS

is built upon and (ii) generate the parameterization and vali-
dation data required to reduce model uncertainty. Successful
execution of this strategy will help to develop an ecosystem-
scale model that can improve assessments of management
and policy action on sustainability of soils and associated
ecosystem services.

Code and data availability. The LUCAS data set is available on-
line (European Soil Data Centre, 2013) along with details of the
larger project. The additional MAOM and POM fractionation data
for the 154 sites used in this analysis can also be found in the Euro-
pean Soil Data Centre (ESDAC) repository online. Access to model
code is currently restricted to those directly collaborating with the
MEMS development team. This is to ensure all bugs are caught and
treated before release to the public. Detailed information and code
relevant to specific questions can be provided upon request.
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Větrovský, T., Steffen, K. T., and Baldrian, P.: Potential of
cometabolic transformation of polysaccharides and lignin in
lignocellulose by soil Actinobacteria, PLoS One, 9, e89108,
https://doi.org/10.1371/journal.pone.0089108, 2014.

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H.,
Guggenberger, G., Matzner, E., and Marschner, B.: SOM frac-
tionation methods: relevance to functional pools and to stabiliza-
tion mechanisms, Soil Biol. Biochem., 39, 2183–2207, 2007.

Wallenstein, M. D. and Hall, E. K.: A trait-based framework for pre-
dicting when and where microbial adaptation to climate change
will affect ecosystem functioning, Biogeochemistry, 109, 35–47,
2012.

Wander, M.: Soil organic matter fractions and their relevance to
soil function. Soil organic matter in sustainable agriculture, CRC
Press, Boca Raton, FL, 67–102, 2004.

www.biogeosciences.net/16/1225/2019/ Biogeosciences, 16, 1225–1248, 2019

https://doi.org/10.1111/gcb.14482
https://doi.org/10.1371/journal.pone.0089108


1248 A. D. Robertson et al.: Soil organic matter formation and persistence using the MEMS model

Wang, G., Post, W. M., and Mayes, M. A.: Development of
microbial-enzyme-mediated decomposition model parameters
through steady-state and dynamic analyses, Ecol. Appl., 23, 255–
272, 2013.

Waring, B. G., Averill, C., and Hawkes, C. V.: Differences in fungal
and bacterial physiology alter soil carbon and nitrogen cycling:
insights from meta-analysis and theoretical models, Ecol. Lett.,
16, 887–894, 2013.

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K.,
Hararuk, O., He, Y., Hopkins, F., Luo, Y., Smith, M. J., Sulman,
B., Todd-Brown, K., Wang, Y.-P., Xia, J., and Xu, X.: Explic-
itly representing soil microbial processes in Earth system mod-
els, Global Biogeochem. Cy., 29, 1782–1800, 2015.

Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon
projections are improved by modelling microbial processes, Nat.
Clim. Change, 3, 909–912, 2013.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan,
G. B.: Integrating microbial physiology and physio-chemical
principles in soils with the MIcrobial-MIneral Carbon Sta-
bilization (MIMICS) model, Biogeosciences, 11, 3899–3917,
https://doi.org/10.5194/bg-11-3899-2014, 2014.

Williams, J. R., Jones, C. A., and Dyke, P. T.: A modeling approach
to determining the relationship between erosion and soil produc-
tivity, T. ASAE, 27, 129–144, 1984.

Xu, X., Schimel, J. P., Thornton, P. E., Song, X., Yuan, F., and
Goswami, S.: Substrate and environmental controls on micro-
bial assimilation of soil organic carbon: a framework for Earth
system models, Ecol. Lett., 17, 547–555, 2014.

Yoo, K., Ji, J., Aufdenkampe, A., and Klaminder, J.: Rates of
soil mixing and associated carbon fluxes in a forest ver-
sus tilled agricultural field: Implications for modeling the
soil carbon cycle, J. Geophys. Res.-Biogeo., 116, G01014,
https://doi.org/10.1029/2010JG001304, 2011.

Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and
Fuhrer, J.: Measured soil organic matter fractions can be related
to pools in the RothC model, Eur. J. Soil Sci., 58, 658–667, 2007.

Biogeosciences, 16, 1225–1248, 2019 www.biogeosciences.net/16/1225/2019/

https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.1029/2010JG001304

	Abstract
	Introduction
	Materials and methods
	Model description
	Microbe mediated transformations and dissolved organic matter (DOM) production
	Perturbation and physical transport
	Liquid-phase transport
	Sorption and desorption with mineral surfaces
	Heterotrophic respiration and controls on microbial activity
	Decay rate modifiers
	Model implementation and driving variables

	Global sensitivity analysis
	Model response to changes in driving variables
	Parameter optimization
	LUCAS data set and soil fractionation data
	Optimization procedure
	Model evaluation for forests and grasslands in Europe


	Results
	Sensitivity and behaviour of MEMS v1.0
	Parameter sensitivity at different timescales
	Soil carbon response to changing environmental conditions

	Improved simulation due to parameter optimization
	Model evaluation for forests and grasslands in Europe

	Discussion
	Sensitivity and behaviour of MEMS v1.0
	Model evaluation of MEMS v1.0
	Improving the parameters of MEMS v1.0
	Opportunities for further development in MEMS v1.0

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References



