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Abstract Soil organic carbon (SOC) can be defined

by measurable chemical and physical pools, such as

mineral-associated carbon, carbon physically

entrapped in aggregates, dissolved carbon, and frag-

ments of plant detritus. Yet, most soil models use

conceptual rather than measurable SOC pools. What

would the traditional pool-based soil model look like if

it were built today, reflecting the latest understanding

of biological, chemical, and physical transformations

in soils? We propose a conceptual model—the

Millennial model—that defines pools as measurable

entities. First, we discuss relevant pool definitions

conceptually and in terms of the measurements that

can be used to quantify pool size, formation, and

destabilization. Then, we develop a numerical model

following the Millennial model conceptual framework

to evaluate against the Century model, a widely-used

standard for estimating SOC stocks across space and

through time. The Millennial model predicts qualita-

tively similar changes in total SOC in response to

single factor perturbations when compared to Century,

but different responses to multiple factor perturba-

tions. We review important conceptual and behavioral

differences between the Millennial and Century mod-

eling approaches, and the field and lab measurements

needed to constrain parameter values. We propose the

Millennial model as a simple but comprehensive
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framework to model SOC pools and guide measure-

ments for further model development.

Keywords Modeling � Soil carbon �Organic matter �
Microbial activity � Decomposition � Global change

Introduction

Changes to inputs or outputs of soil organic carbon

(SOC) can affect land carbon (C) storage, and can alter

the function of terrestrial ecosystems and their ability

to serve as a source or sink of C (Schimel 1995).

Researchers use mathematical representations to esti-

mate current distributions and future changes in SOC,

incorporating knowledge and assumptions about soil

biogeochemical processes. Current earth system mod-

els apply soil models that assume first-order kinetic

exchanges among conceptual pools defined by empir-

ical turnover times (Todd-Brown et al. 2011, 2013).

These models reflected the cutting edge of C cycle

science in the 1970s and 1980s (e.g., based on Century

and RothC; see review by Manzoni and Porporato

2009). Such models are still of great utility as they

capture many essential dynamics, are mathematically

simple, and run efficiently over large spatial and

temporal scales. However, first-order and empirical

representations lack the mechanisms to predict SOC

response to global change perturbations such as

centennial-scale warming, drought, priming, and

CO2 or N fertilization (Sierra et al. 2012; Grant

2013; Sulman et al. 2014; Todd-Brown et al. 2014;

Zaehle et al. 2014). Further, these models predict

divergent SOC stocks under global change scenarios,

and do not reproduce current global SOC patterns

(Todd-Brown et al. 2013; Wieder et al. 2013). Most

earth system models (ESMs) use a soil model

consisting of one to three SOC pools (Jenkinson and

Coleman 2008; Koven et al. 2013; Luo et al. 2015).

Pools in these models are operationally defined based

on their presumed chemical composition and turnover

times (Parton et al. 1987). Advances in spectroscopy,

microscopy, and isotopic labeling, however, have

provided a better understanding of the chemical and

physical characteristics of SOC (Feng et al. 2016;

Chenu and Plante 2006). These new approaches have

provided additional evidence that diverse SOC com-

pounds can have similar turnover times (Kleber et al.

2011). As a result, chemical composition is recognized

as only one of several factors contributing to the

turnover times of SOC pools (Schmidt et al. 2011).

Other factors protecting SOC from decomposition

include the physical structure of soil and chemical

associations with soil minerals (von Lützow et al.

2007; Cotrufo et al. 2013; Lehmann and Kleber 2015).

Recent studies have called for a new generation of soil

biogeochemical models that better represent the

chemical and physical mechanisms controlling SOC
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turnover (Schmidt et al. 2011; Todd-Brown et al.

2013; Luo et al. 2015; Wieder et al. 2015a, b).

A growing number of soil models consider an

explicit microbial biomass pool that affects the

decomposition rate of SOC (Schimel and Weintraub

2003; Allison et al. 2010; German et al. 2012). These

models often require greater numbers of parameters

and equations, but may have an improved ability to

predict responses to novel environmental conditions,

e.g., global change scenarios (Wieder et al. 2013;

Hararuk et al. 2013). Questions remain about the

feasibility of applying microbial models to global

SOC predictions (Bradford et al. 2016). Nevertheless,

it is timely to rethink how we model key soil processes

in light of new emphasis on the nature of SOC and

decomposition pathways.

If we were to start over and develop a mathematical

model for SOC based on current understanding of soil

C pools, it would reflect the biological, chemical, and

physical knowledge of soils gained in the last decades.

The model would classify organic C into categories

defined by measurable chemical and physical proper-

ties, such as mineral-associated C, C physically

entrapped in aggregates, dissolved C, and fragments

of plant detritus. A model based on measurable pools

would represent explicit processes regulating the

transfers of C between pools, in contrast to models

based on imposed turnover times. For example, if SOC

is occluded within aggregates, the processes that

determine whether C is decomposed to CO2, pre-

served, or transformed include those that regulate

aggregate turnover such as slaking, freeze–thaw, and

tillage. In this approach, the factors that cause

aggregate formation and destruction would be simu-

lated to the extent possible, rather than simply

assigning the C within aggregates as part of a pool

defined by a conceptually- or empirically-derived

first-order decay constant. Thus, starting with mea-

surable pools and transformations of SOCwould allow

us to define the rate-limiting processes for each pool

and to build a model that incorporates an expanded

suite of the most important driving processes in soil—

biological, chemical, and physical.

The Millennial model

Herein we describe a conceptual model that retains the

tractability of Century but is more directly

testable because it is based on measureable soil pools.

We then develop a numerical model (Appendix)

following the Millennial conceptual model, and eval-

uate this model against the Century model to illustrate

potential differences between the two model struc-

tures. Last, we discuss what measurements are needed

to constrain the Millennial model and the empirical

challenges related to those measurements.

Definitions of SOC pools for the Millennial model

The Millennial model has five measurable soil C

pools: particulate organic matter (i.e., free fragments

of plant detritus; POM), low molecular weight C (i.e.,

root exudates and the by-products of exoenzyme

activity; LMWC), aggregate C, mineral-associated

organic matter (MAOM), and microbial biomass

carbon (Fig. 1). In the following section, we define

each pool conceptually and in terms of the measure-

ments that can be used to quantify pool size, forma-

tion, and destabilization.

Particulate organic matter

POM is material that retains identifiable characteris-

tics of its source material. POM is derived primarily

from plant material, but also from dead insects, fungi,

and detritus generated through fragmentation and

decomposition of litter, and from breakup of pre-

existing soil aggregates (Segoli et al. 2013; Cotrufo

et al. 2015). POM can be measured using an opera-

tionally-defined size and/or density separation (Six

et al. 2006; Six and Paustian 2014). POMmay become

associated with soil aggregates, but is broadly defined

by limited association with soil minerals. POM can be

chemically altered by microbial activity, leaching, and

UV exposure (Baker and Allison 2015).

Low molecular weight carbon

LMWC refers to generally mono- or oligomeric,

soluble products of microbial decomposition and plant

inputs such as root exudates and leaf leachate. LMWC

concentrations measured by an elemental analyzer are

typically higher in surface soil horizons, but prefer-

ential flow from biological activity (e.g., rooting and

invertebrate activity), physical forces (e.g., erosion,

cracks, and fractures formed by freeze–thaw), leach-

ing (advection), or management practices (e.g.,
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plowing) may enable vertical transport (Gerke 2006;

Boddy et al. 2007). LMWC can be removed from

solution during transport by becoming adsorbed to soil

minerals or consumed by microbes (Kaiser and

Kalbitz 2012; Jardine et al. 2006). The pore structure

of soils, however, may limit microbial and enzyme

access to LMWC (Young and Crawford 2004; Zhuang

et al. 2008; Smith et al. 2017). Sorption of LMWC can

vary according to its functional groups (Jagadamma

et al. 2012).

Aggregate C

We define soil aggregates as three-dimensional

arrangements of organic matter and minerals where

the forces holding them together are stronger than the

forces attracting them to other aggregates (Martin

et al. 1955). Aggregate structures form when

microbial residues and organic binding agents attract

soil particles, often in the presence of structural

support and chemical residues provided by plant roots

and fungal hyphae (Jastrow et al. 1998; Young and

Crawford 2004). Aggregates range in size from silt-

sized objects\ 20 lm to microaggregates

(53–2000 lm) to large macroaggregates

(2000–8000 lm) (Plante et al. 2006; Virto et al.

2008). These operationally-defined size classes can

exist in a hierarchical network (e.g., microaggregates

within macroaggregates) in the soil, and tend to be

more stable as size decreases and layers of protection

increase (Tisdall and Oades 1982; Dexter 1988). SOC

in aggregates can be protected from decomposition

when the pore network limits diffusion of gases or

nutrients (Sexstone et al. 1985; Horn et al. 1994;

Ranjard and Richaume 2001; Young et al. 2008),

isolates substrates from extracellular enzymes (Mayer
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Fig. 1 Conceptual model diagram of the Millennial (top) and

Century models (bottom). The black boxes are carbon pools, and

the colored boxes are fluxes. Solid arrows indicate the direction

of each flux. The color legend indicates edaphic, biological, and

climatic factors that may modify the rate of a given flux. Dash

lines indicate controls (i.e., microbial biomass regulates the

depolymerization rate)
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1994; Ekschmitt et al. 2005; Allison 2006; Allison and

Jastrow 2006), or limits access of grazing organisms

(Mayer 1994; Ranjard and Richaume 2001). Aggre-

gate formation and disruption occurs as a natural part

of soil formation and carbon cycling, whereby phys-

ical or chemical processes (e.g., drying, wetting,

freeze–thaw, tillage, electrostatic interactions) interact

with biological mechanisms (e.g., microbial exuda-

tion, root and hyphal entanglement) to build and

destabilize aggregates over time (Six et al. 2000;

Denef et al. 2002; Pronk et al. 2012).

Mineral-associated organic matter

MAOM is protected from microbial decomposition

(and transport) through a variety of sorption mecha-

nisms, such as surface complexation, cation bridging,

and hydrophobic interactions (Sollins et al. 1996;

Kaiser et al. 1996; Kleber et al. 2007; Torn et al. 2009).

MAOM typically refers to the heavy mineral soil

fraction isolated by density fractionations or the fine

soil particles measured by size fractionation. Across a

wide variety of soil types and geographical locations,

MAOM accounts for a large proportion (50–85%) of

the total SOC stock in bulk soil (Sollins et al. 2009;

Marin-Spiotta et al. 2009; Heckman et al. 2014; Cai

et al. 2016), and in most soils SOC in MAOM has a

longer mean turnover time than other measurable soil

fractions such as aggregates and POM (Feng et al.

2016; Marin-Spiotta et al. 2009; Jagadamma et al.

2013; Torn et al. 1997).

The formation of MAOM is regulated by adsorp-

tion of compounds such as LMWC and microbially-

derived products to mineral surfaces (Kalbitz and

Kaiser 2008; Lehmann and Kleber 2015). Micro-

bially-derived products may be preferentially

adsorbed onto soil minerals compared to other com-

pounds (Sollins et al. 2009; Rumpel et al. 2010;

Cotrufo et al. 2015). Layering of organic compounds

on soil minerals may also impart protection (Wershaw

1986; Kleber et al. 2007). Factors that influence the

formation and stability of MAOM include OM

chemistry, soil texture, structure, the physico-chemi-

cal properties and abundance of soil minerals, pH, the

ionic strength of soil water, temperature, and moisture

(Jardine and McCarthy 1989; Kothawala et al. 2009;

Mayes et al. 2012; Feng et al. 2015).

Microbial biomass

Microbial biomass herein is defined as the mass of C

contained within soil microbial cells. Microbial

biomass can be estimated using a variety of methods,

such as substrate-induced respiration, chloroform

fumigation, phospholipid fatty acid analysis, and

quantitative PCR (Anderson and Domsch 1978; Vance

et al. 1987; Bååth and Anderson 2003; Junicke et al.

2014). Microbial biomass controls the flow of C in

soils through uptake of C and nutrients for microbial

growth, the release of waste products, and microbial

turnover. Specifically, microbes produce extracellular

enzymes to decompose SOC, and they release CO2

through maintenance and growth respiration (Schmidt

et al. 2011). Necromass can be transferred to LMWC,

aggregate C, and MAOM pools (Cotrufo et al. 2013;

Kallenbach et al. 2016). Given the significantly

different turnover rates of these carbon pools, the

relative fraction of these allocations could determine

how long necromass C will remain in the soil.

Microbial biomass is not a large pool, typi-

cally\ 5% of SOC (Fahey et al. 2005; Fontaine

et al. 2007; Abramoff and Finzi 2016), but microbial

activity has a disproportionate effect on C cycling. As

such, microbial activity largely controls the SOC

response to global change. Global change is proposed

to affect microbial functions in a number of ways.

Particularly, soil warming may (1) increase the

activity of microbial predators, (2) alter the proportion

of C taken up that is allocated to growth [carbon use

efficiency (CUE)], (3) shift microbial community

composition, (4) accelerate protein turnover, and (5)

increase microbial metabolic activity (Steinweg et al.

2008; Frey et al. 2013; DeAngelis et al. 2015). Beyond

soil temperature, other factors that may affect growth

rates and turnover times include the size of microbial

biomass, soil moisture, soil texture, microbial biomass

C:N:P ratio, soil pH, and supply of substrates such as

litter, root turnover, root exudates, and SOC (Grant

2001; Manzoni et al. 2014; Sinsabaugh et al. 2014b;

Tang and Riley 2015).

Major differences between the Millennial

and Century models

The Century model has been a standard for estimating

soil C stocks across space and through time for three

decades (Parton et al. 1987, 1995; Paustian et al. 1992;
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Bonan et al. 2013). For this reason, we compare the

conceptual organization of the Millennial model to

that of the Century model. The Century andMillennial

models both transfer C between several solid-phase C

pools and a LMWC pool, modifying rates of transfer

based on edaphic and climatic factors. The ‘active’

pool in Century represents material with short turn-

over times (6 months–1 year) and is often conceptu-

alized as live microbial biomass and microbial

products, the ‘slow’ pool is defined by having an

intermediate turnover time (10–50 years) and is

thought to be chemically-resistant or physically-pro-

tected, and the ‘passive’ pool, with the longest

turnover time (100–1000 years), is considered chem-

ically or physically-stabilized (e.g., charcoal or bound

to clay particles). The transfer of C between pools is

controlled by constant maximum specific decay rates

that can be set to site-specific values. Turnover rates

are then empirically modified by environmental fac-

tors (e.g., temperature, moisture, pH, aeration) and soil

physical properties (e.g., sand, silt, and clay content).

Implicitly, Century considers SOC to be stabilized by

physico-chemical interactions such as humification

and adsorption to clay particles. The result is a direct

transfer of C from the active or slow pools to the

passive pool. The proportion of C allocated to the

passive pool from the active pool compared to the slow

pool has increased over time, reflecting accumulating

evidence (e.g., Cotrufo et al. 2013, 2015) of the role of

microbes and labile C in forming protected C.

Dissolved organic C (DOC) in Century is formed as

a linear function of sand content and the amount of

water flowing through the organic horizon, but it

cannot be stabilized and eventually leaches out of the

system.

In the Millennial model, the soil pools—POM,

LMWC, aggregate C, MAOM, and microbial bio-

mass—are based on measurable components of SOC,

and transfers between pools are conceptualized as

transfers that would occur in nature. For example, C

transfers between pools do not result in CO2 loss

unless they are mediated by microbial activity. POM

can become associated with aggregate C, or trans-

formed into LMWC by microbial biomass. LMWC

can be taken up by microbial biomass and transformed

to CO2, sorbed to minerals or leached away. LMWC

and microbial necromass are the main sources of C in

MAOM. Rather than a linear transfer from POM to

aggregate C to MAOM, both POM and MAOM can

reversibly bind to aggregate C. Because microbes

mediate or transfer mass between all of the C pools, we

would expect this model to have several significant

differences in dynamics, and the potential to generate

a wider range of feedbacks in responses to climate

perturbations, when compared to a first-order model.

Several recent models have explicitly represented

the microbial decomposition of soil organic matter.

These models all have different approaches to micro-

bial decomposition and soil C protection. For exam-

ple, a model byWang et al. (2013) used theMichaelis–

Menten equation, with enzymes produced by an

explicit pool of microorganisms, to estimate produc-

tion of DOC from both POM and MAOM, while

allowing the latter to dynamically sorb to soil miner-

als. Ahrens et al. (2015) also used a saturating sorption

isotherm, but used microbial biomass instead of

enzyme concentration to simulate decomposition and

predict the vertical age profile of SOM. A third model

by Tang and Riley (2015) used equilibrium approx-

imation kinetics to represent both enzymatic decom-

position and sorption to minerals, while Dwivedi et al.

(2017) used a surface complexation model to estimate

sorption. Other models do not use sorption to minerals

but represent soil C cycling in new ways. For example,

Wieder et al. (2015a, b) introduced microbial func-

tional groups to constrain the decomposition rates of

two litter and soil pools, while Sistla et al. (2014)

included multiple substrate and enzyme functional

groups. Sulman et al. (2014) tracked three substrate

pools (simple, chemically resistant, and dead

microbes) allocated between protected and unpro-

tected fractions. In this model, decay rate was a

saturating function of the microbe:substrate ratio, and

protected SOM was a composite of aggregate C and

MAOM.

None of the models above explicitly simulated soil

aggregates or aggregate C. In contrast, Segoli et al.

(2013) explicitly simulated soil aggregate dynamics,

hierarchically nesting four size classes. Aggregation

was driven by litter decomposition and microbial

production, albeit with first-order kinetics and omit-

ting other soil organic matter pools. To our knowl-

edge, no existing model matches our

conceptualization of the pools both necessary and

minimally sufficient to meet the emerging consensus

on biological, chemical, and physical controls on

SOC, though the key pools and fluxes are well

represented across recent models when considered

56 Biogeochemistry (2018) 137:51–71
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together. The Millennial model expands on these

recently developed models not by including all of their

features, but by focusing on the processes that control

our five C pools, such as microbial decomposition,

mineral sorption, and aggregation.

Model comparison

We developed a numerical model following the

Millennial model conceptual framework to illustrate

potential behaviors of such a model structure. We

describe the five C pools of the Millennial model and

the rate of transfer between them in a series of ordinary

differential equations defined in the Appendix. To

illustrate key conceptual and structural differences

between the Millennial model and the Century model,

we compared predicted SOC stocks using both models

across a gradient of clay content and in response to

global change scenarios. We used the same parameter

values for both models when possible (Table 3), and

adjusted a subset of parameters (Table 3, ‘‘Cali-

brated’’) in the Millennial model to better match the

steady-state SOC stocks predicted by the Century

model. The purpose of this fitting was to perturb both

models from a similar initial condition in order to

focus on the different perturbation responses between

the two models. We ran the Millennial model and

Century for 2000 years after an initial spin-up of

4000 years, using identical soil temperature, moisture,

and plant inputs (Table 1). The soil temperature and

moisture forcing was a global average derived from

the Community ESM (Oleson et al. 2013). The carbon

input is representative of mid-high latitudes. All input

files are available at https://github.com/email-clm/

Millennial, along with the model code. One year of

input forcing was repeated for the number of years of

the model simulation. The initial soil C in each of the

five soil C pools was set to 1 g m-2 prior to spin-up. In

the first set of scenarios, we compared steady-state C

pools in soils with different clay content (10, 20, 30,

40, 50, 60, 70, 80%), reflecting a gradient in the

sorption capacity of soil. Second, we compared the

equilibrium size of soil C pools after 2000 years fol-

lowing temperature, moisture, and substrate pertur-

bations. The initial values for the soil C pools in the

perturbation scenarios were derived from the end of

the 4000-year spin-up scenario at 40% clay. We chose

the following perturbations to represent common

global change scenarios (Melillo et al. 2011; Suseela

et al. 2012; Lajtha et al. 2014a) used for model sen-

sitivity analysis (Sierra et al. 2015; Wang et al. 2016),

5 �C warming (W), double C input (I), 50% of the

original soil moisture content (D), 5 �C warming and

double C input (WI), and 5 �C warming and 50% soil

moisture (WD).

Comparison of Millennial and Century model runs

Sensitivity to clay content

The Millennial and Century models had similar

amounts of C in analogous pools. The majority of C

in the Millennial model at steady state was in the

MAOM pool, similar to Century’s passive pool

(Fig. 2a, b). Aggregate C in the Millennial model

was 14–20% of total SOC, similar to Century’s slow

pool. In the Millennial model, LMWC, microbial

biomass, and POM represented\ 6% of total C,

similar to the active pool in Century. In the simula-

tions, a greater proportion of C inputs were stabilized

as MAOM in the 80% clay compared to the 20% clay

soil, because of the larger sorption capacity of the 80%

clay soil.

Table 1 Input information for Millennial and Century model runs

Control W I D WI WD

Mean annual soil temperature (�C) 11.2 16.2 11.2 11.2 16.2 16.2

Mean annual volumetric SWC (mm3 mm-3) 0.24 0.24 0.24 0.12 0.24 0.12

Litter inputs (g C m-2 year-1) 172 172 344 172 344 172

SWC soil water content, W 5 �C warming, I double C input, D half water, WI warming and double C input, WD warming and half

water

Biogeochemistry (2018) 137:51–71 57
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There were, however, several differences between

the Millennial and Century model outputs. First, the

Millennial model uses nonlinear functions based on

experiments to predict the relationship between the

maximum sorption capacity (Qmax) and clay content,

imposing maximum carbon storage capacity in the

MAOM pool (Mayes et al. 2012; Wang et al. 2013;

Riley et al. 2014; Ahrens et al. 2015; Dwivedi et al.

2017), whereas in Century, the C stored in each pool

changes proportionally with forcings such as clay

content and plant inputs. As a result, SOC approaches

a maximum value as soil clay content increased in the

Millennial model (Fig. 2a) whereas the size of these

pools increased proportionally with clay content in the

Century model (Fig. 2b). Second, the Millennial

model reached an equilibrium C stock more quickly

than did Century (Fig. 3a, b). This reflects the faster

transfer of C inputs to the dominant SOC pool

(MAOM) in theMillennial model than to the dominant

pool (passive C) in Century.

Response to single factor climate and environmental

forcings

The models made different SOC predictions in single

factor climate and environmental forcing simulations

(Figs. 4a, b, 5a, b). Century accumulated more C in

response to doubled input than did the Millennial

model. Georgiou et al. (2017) demonstrated that soil C

accumulation in a first-order model was proportional

to plant inputs, but a microbial model was insensitive

to plant inputs because of the concomitant increase in

microbial growth and respiration that removes some of

the added plant inputs via respiration. This feedback

between plant inputs and biomass growth may explain

why increased C input has a smaller effect on SOC

pools in the Millennial model compared with the

Century model. The Millennial results are consistent

with experiments which demonstrate that increased

plant inputs and SOC responses are not linearly related

(Lajtha et al. 2014a, b). It is notable that some of the

added C remained in the POM pool rather than

becoming incorporated into a physically or chemically

protected pool, making it theoretically more vulner-

able to remineralization.

Warming by 5 �C decreased SOC in both models

(Fig. 4a, b). The temperature sensitivity of decompo-

sition in the Millennial model is greater than in the

Century model and thus it lost more SOC in response

to the warming perturbation (Fig. 4a). The Millennial

model uses the same scalar for temperature sensitivity

as Century, but also uses a temperature-sensitive

microbial CUE (Table 3) that increases the respiratory

loss of SOC with warming.

Both models gained SOC with a 50% decrease in

field moisture content (Fig. 4a, b). The Millennial

model gained more SOC than the Century model

compared to the control treatment (Figs. 4, 5). The

Millennial model may be somewhat more sensitive to

drought because the water scalar affects multiple

microbial processes such as decomposition and

uptake, as well as physical processes such as sorption

and aggregate formation. Neither model is coupled to

a model of plant productivity; thus, feedback effects
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on SOC simulated here only reflect soil processes.

Given the sensitivity of SOC to plant inputs in the

Century model, it is likely that the negative effect of

drought on plant productivity would reduce SOC. In

the Millennial model, this effect may be dampened

because plant inputs are less important to SOC

concentrations than are the internal biophysical pro-

cesses (e.g., microbial growth, enzyme production,

sorption).

Response to dual-factor climate and environmental

forcings

In contrast to the single-factor perturbations, the

interaction of warming with double-litter inputs or

drought resulted in fundamentally different SOC re-

sponses in the two models. When warming was

coupled with double inputs or decreases in soil

moisture, the Millennial model lost SOC relative to

the control simulations, whereas the Century model

gained SOC compared to the control. In Century,

doubled plant inputs and drought strongly increased

SOC, while warming moderately decreased SOC—

thus, the strong effect of plant inputs and soil moisture

resulted in a net SOC increase (Figs. 4, 5). In the

Millennial model, warming had the strongest effect,

ultimately decreasing SOC to a greater extent than the

positive effect on SOC of plant inputs and drought. It

is notable that the two models had the same sign of

change in SOC stock with regards to single-factor

variation in clay content, temperature, soil moisture,

and double inputs. Yet, when simultaneous perturba-

tions were applied, the direction of the SOC trend

diverged. The unique features of the Millennial

model—the use of a temperature-sensitive CUE, and

nonlinear responses to increases in plant inputs—are

likely responsible for the different responses com-

pared to Century. We cannot say which model

simulation was most accurate, and in fact, the answer

is likely dependent on local edaphic conditions. Few

large-scale field manipulations have been able to test

more than one forcing factor (Norby and Luo 2004;

Castro et al. 2010; Hanson et al. 2016). But the

divergence observed here clearly demonstrates the

sensitivity of future predictions of the SOC sink to

different model formulations (e.g., Todd-Brown et al.

2013).

What are the costs of process-rich models?

Including measurable SOC pools in the Millennial

model adds realism to C fluxes and transformations,

while increasing flexibility to respond to climate and

environmental forcing factors. However, this added

realism has costs. For example, replacing the empir-

ical equations in Century with the more mechanistic

ones in the Millennial model increases the number of

model equations and parameters. The additional costs

may be partly offset by defining pools and fluxes that

are potentially measurable, thus providing empirical

constraints to at least some of the additional param-

eters that can be measured (but see section below on

measurement challenges).

Any formulation of the Millennial model including

the one we present above, is more complex than

Century, and requires more knowledge to develop

equations and define parameters. For example, the

microbial pool is explicitly used to estimate POM

decay, LMWC assimilation, respiration, and MAOM

sorption, requiring kinetic parameters instead of the

simpler rate coefficients used in Century. Estimates of

these parameters in our numerical model (Table 3)

were derived from studies completed since Century

was developed, or were calibrated to constrain model

behaviors within reported bounds. Including addi-

tional processes, or developing existing processes to

be more mechanistic, would similarly require more

equations, parameters, and constraints.

No model can capture every biological process, and

the Millennial model omits some important controls.

For example, decomposition is constrained by both

energetic and stoichiometric relationships between

microorganisms and nutrients (Sinsabaugh and Shah

2012), but we have only considered C in theMillennial

model. Including only C can increase model sensitiv-

ity to parameters affecting carbon flow that would

realistically be constrained by other nutrients. More-

over, many model parameters are not constants, but

variables that change in ways that could dampen

model responses. A good example is CUE. Including

temperature-dependent CUE can result in large dif-

ferences in SOC predictions after warming compared

to fixed-CUE models (Wang et al. 2013; Wieder et al.

2013). Yet the relationship between temperature and

CUE used in this and other models is based on few

studies (Devêvre and Horwáth 2000; van Ginkel et al.

2000; Steinweg et al. 2008), and relationships between
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CUE and other attributes of the environment,

resources, and microbial community are areas of

active research (Geyer et al. 2016; Sinsabaugh et al.

2017).

Although the Millennial model is necessarily more

mechanistic than Century in calculating flows between

pools of soil C, it remains empirical with regard to

underlying biochemical and physiological processes.

For example, microbial biomass is a surrogate, in part,

for the actions of extracellular enzymes catalyzing

substrate degradation (Burns et al. 2013). Adding

specific classes of extracellular enzymes to the Mil-

lennial model would provide context to more mech-

anistically evaluate the influence of substrate quality

or nutrient availability on patterns of C flow (Moor-

head et al. 2012; Averill 2014). It would also add

several equations describing dynamics of additional

pools, require many parameters, and the need to

balance enzyme production, turnover, and activity

with comparable substrate and microbial dynamics

(Sinsabaugh et al. 2014a, b).

The desired temporal and spatial scale of model

predictions and scale of model formulation can guide

the necessary level of mechanistic representation.

Adapting models for problems at different scales also

requires consideration of mathematical complexity,

parameter choice, and feedback control. Some pro-

cesses such as microbial growth and enzymatic

depolymerization operate on sub-hourly-to-daily

timescales. While these short-term processes may be

important for long-term trends, it may be computa-

tionally intractable to represent these processes in

models that run over timescales of decades to centuries

(Fig. 6). Further, it may not be necessary to represent

these processes if they can be seasonally averaged or

otherwise collapsed into relationships between

responses and their drivers, creating a simplified

model of response variables related to empirical

observations (Todd-Brown et al. 2011). For example,

Xu et al. (2014) derived an index of cumulative

microbial activity from readily available climate data

that was then used in conjunction with substrate C:N to

estimate the ratio of microbial biomass C to substrate

C for locations where microbial biomass observations

were not available. Wieder et al. (2013) used

Michaelis–Menten kinetics to model decay rate as a

function of microbial biomass, which could be

estimated according to Xu et al. (2014), to generate

soil C pools closer to observations than predictions

from Century-based models (DAYCENT and

CLM4CN; Thornton et al. 2007). These examples

demonstrate how fine-scale microbial models can be

used to generate scalable relationships between easily

observed variables (e.g., soil C:N) and key model

parameters (e.g., microbial biomass) for use in ESMs.

Thus one of the practical advantages of developing

new fine-scale microbial models is the transfer of

knowledge from a modern representation of decom-

position to large spatial and temporal scales via their

application in an ESM. Of course, the transfer must

retain sufficient mechanistic representation such that

the ESM makes reasonable projections under novel

environmental conditions.

Measurability of pools

The Millennial model represents a hypothesis about

what biological, chemical, and physical soil processes

are important to C cycling. Exploring this hypothesis

through simulations can provide guidance for priori-

tizing measurements of soil pools, transfer rates, and

environmental factors. Models currently use a wide

variety of data for fitting and validation, including

microbial biomass measurements from laboratory

incubations (Wang et al. 2013), litter decomposition

and soil C pool measurements (Wieder et al.

2014, 2015a, b), total soil C and protected C (Sulman

et al. 2014), laboratory measurements of aggregate C

(Segoli et al. 2013), and field measurements of

heterotrophic respiration (Abramoff et al. 2017).

Estimates of soil C pools and factors affecting them

such as litter decomposition, heterotrophic respiration,

and clay content can be measured in the field either

directly or by proxy (Bailey et al. 2017; Table 2).

However, the Millennial model also requires new

parameters governing process equations that are

challenging to measure, especially regarding aggre-

gate dynamics and MAOM. These processes have

only been considered in a handful of models due to a

lack of observational data (Albalasmeh and Ghezzehei

2013; Segoli et al. 2013; Wang et al. 2013; Ahrens

et al. 2015; Tang and Riley 2015).

It is relatively straightforward to quantify the

proportion of soil mass or soil C in aggregates, but it

is far more challenging to estimate the rate of

aggregate formation and decay (Table 2). Most stud-

ies measure the turnover of the carbon in aggregates at
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the time of sampling rather than the turnover of the

physical structure of the aggregates themselves (e.g.,

Jastrow et al. 1996; Six et al. 1998; Liao et al. 2006).

Carbon dynamics can be decoupled from the turnover

rates of the physical structures (O’Brien and Jastrow

2013; McCarthy et al. 2008) and there can be a large

range of SOC ages within a single aggregate or group

of aggregates, leading to dramatic overestimation of

aggregate turnover times (Jastrow et al. 1996).

Approaches for estimating aggregate turnover that

are independent of soil C such as labeling with rare

earth elements, controlled laboratory studies, or

Fig. 6 Conceptual diagram of time scales over which particular

soil processes occur, from seconds to centuries. Soil C-climate

feedbacks effects of changes to soil processes on greenhouse gas

concentrations in the atmosphere, MAOM mineral-associated

organic matter, POM particulate organic matter, LMWC low

molecular weight carbon

Table 2 Measurability of factors influencing pools

Soil C pool Widely measured Measurable by proxy Mechanisms that need proxies and/or

other data to define rate constants

Aggregate C Clay content Root exudation Bioturbation

Rainfall Fungal production Plowing

Aggregate/aggregate-C turnover Compaction

Root growth Freeze–thaw

Effect of rainfall on aggregates

Necromass production

MAOM pH Organic content on mineral surface Tillage

Mineralogy Oxidative enzymes

PO3�
4 =SO2�

4 concentration Electrostatic interactions

Ionic strength

Necromass production

POM NPP Secondary production Fragmentation of litter

Litter chemistry

Decomposition of litter

LMWC Soil moisture DOC concentration Sorption potential

Leaching rate

Microbes Soil temperature Microbial biomass Internal allocation

Microbial growth rate Fate of necromass

Respiration Competition

CUE

Enzyme activity
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observation after disturbance in the field tend to find

shorter turnover times, but the results also depend on

the time interval of observation (De Gryze et al. 2006)

or experimental treatment (O’Brien and Jastrow 2013;

Denef et al. 2002; Crawford et al. 2012; Blankinship

et al. 2016) making it difficult to generalize. There-

fore, aggregate C parameters are the most uncertain of

the Millennial model parameters, though the physi-

cally-based definition of aggregates makes them

potentially measurable.

MAOM is difficult to measure consistently because

there is no standard fractionation procedure, either in

terms of pre-treatment of samples or threshold values

for solution density and soil particle size. Different

methods estimate widely diverging turnover times for

MAOM, ranging from 24 ± 7 years using incuba-

tions, 166 ± 44 years using 13C labeling, and

709 ± 121 years using 14C labeling (Feng et al.

2016). Studies that define MAOM using a density

fraction tend to estimate longer turnover times (e.g.,

30–4500 years; Heckman et al. 2014; Hall et al. 2015)

than studies that estimate MAOM using a size fraction

(e.g., 18–665 and 24–1280 years for the silt and clay

size fractions, respectively; O’Brien et al. 2013).

Given the potential value of the Millennial model and

the importance of the turnover times of modeled pools,

we contend that research effort should be directed

toward robust assays and protocols that will provide

consistent estimates of aggregate and MAOM turn-

over time in the field.

Conclusion

We developed a soil modeling framework that reflects

current understanding about the biological, chemical,

and physical mechanisms controlling the formation

and destabilization of soil carbon and is based on the

principle of measurable model pools. This framework

emphasizes how limited access of microbial decom-

posers to soil C imparts stability to SOC, in contrast to

the Century model which defines decomposition rates

empirically as a function of environmental factors. We

created a numerical model based on this framework

and identified areas of consistency with the Century

model, including similar predictions of SOC as a

function of clay content, temperature, soil moisture,

and plant inputs. Because the Century model is the

standard by which other models are judged, we are

encouraged by the observed consistency. However,

the Millennial model exhibited distinct nonlinear

responses due to the choice of functions affecting

SOC in the soil pools, e.g., the Michaelis–Menten

equation for depolymerization, and the sorption

equation for stabilization of LMWC onMAOM.More

importantly, the two models diverged regarding the

direction of SOC stock change (sink vs. source) when

more than one environmental or climate forcing factor

was imposed at the same time. It is uncertain whether

the Millennial or Century formulation is more consis-

tent with observations, but the variation in model

behavior points to the importance of understanding

underlying pool transformations.

While the accuracy of the Millennial model is

untested, it is our intent that the underlying modeling

framework represents the current conceptual under-

standing of soil C, and therefore has the potential to be

developed into a model that skillfully represents a

variety of global change processes, including climate

and land use change. The mechanistic C transforma-

tions enable predictions of SOC under novel environ-

mental conditions, and measurable pools make the

model more testable in theory. In practice, the model

demonstrates the need for field and laboratory mea-

surements of rates of aggregate and mineral-associ-

ated C formation and decay. Nevertheless, we propose

that the Millennial model offers a new, independent

path for improving understanding and predictions of

soil responses to anthropogenic, environmental, and

climatic forcing factors by representing measurable

soil C pools and transfer processes in a transparent and

parsimonious model structure.
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Appendix: Model description

The equations we have chosen below reflect one

possible mathematical expression of the Millennial

conceptual model, but there are many possible

numerical models for different applications. For

example, decomposition of POM is here represented

by a double Monod relationship, limited by both POM

and microbial biomass, but for an application where

competition between chemical species is particularly

important, for example, ECA kinetics could be used

instead (Tang 2015). Similarly, we chose temperature

and moisture scalars to minimize steady-state differ-

ences between Millennial and Century for the purpose

of model comparison, but for dynamic predictions one

could apply Arrhenius temperature sensitivity and one

of several semi-mechanistic moisture functions

(Davidson et al. 2012; Manzoni et al. 2014).

The system of equations below is modeled on the

conceptual figure (Fig. 1), tracking the size of and

transfers between five C pools: POM, LMWC, aggre-

gate C,MAOM, and microbial biomass. The change in

POM (P) stock with time is governed by the balance

between plant C input and aggregate C breakdown,

aggregate C formation, and decomposition,

dP=dt ¼ piFi þ paFa � Fpa � Fpl; ð1Þ

where Fi is aboveground plant litter, root litter and root

exudates, pi is the proportion of C input allocated to

POM (1/3 of inputs to POM and 2/3 of inputs to

LMWC after Oleson et al. 2013), pa is the proportion

of C in aggregate breakdown allocated to POM, Fa is

aggregate C breakdown, Fpa is aggregate carbon

formation from POM, and Fpl is decomposition of

POM into LMWC. Decomposition of POM is gov-

erned by a double Michaelis–Menten equation,

Fpl ¼ Vpl

P

Kpl þ P

B

Kpe þ B
StSw; ð2Þ

where Vpl is the maximum rate of POM decomposi-

tion, Kpl is the half-saturation constant, B is the

microbial biomass carbon, and Kpe is the half-satura-

tion constant of microbial control on POM mineral-

ization. The terms St and Sw refer to the temperature

and moisture scalar, respectively, and are taken from

DAYCENT, the daily time-step version of the Century

model (Parton et al. 1998), to minimize differences in

temperature and moisture effects between the Century

and Millennial models due to choice of scalar,

St ¼
t2 þ ðt3=piÞatanðpiðT � t1ÞÞ

t2 þ ðt3=piÞatanðpit4ðTref � t1ÞÞ

� �
; ð3Þ

Sw ¼ 1

1þ w1 expð�w2RWCÞ ; ð4Þ

where T is the current temperature, Tref is the reference

temperature, t1 is the x-axis location of the inflection

point (�C), t2 is the y-axis location of the inflection

point, t3 is the distance from the maximum point to the

minimum point, and t4 is the slope of the line at the

inflection point. For the water scalar, RWC is the

relative water content calculated as the fraction of field

capacity, and w1 and w2 are empirical parameters. The

temperature scalar is an arctangent function that

predicts a decline in temperature sensitivity with

increasing temperature and the water scalar depends

on RWC, where the maximum effect on biological

activity occurs at field capacity (volumetric water

content = 0.35, RWC = 1.0) (Parton et al. 2010).

The formation of aggregate C (A) from POM

follows Michaelis–Menten dynamics,

Fpa ¼
VpaP

Kpa þ P
1� A

Amax

� �
StSw; ð5Þ

where Vpa is the maximum rate of aggregate forma-

tion, Kpa is the half-saturation constant of aggregate

formation, and Amax is the maximum capacity of C in

soil aggregates. Soil aggregate C breakdown is

partitioned to POM and MAOM,

Fa ¼ kbStSwA; ð6Þ

where kb is the rate of breakdown.

The change in LMWC (L) depends on LMWC

input, the leaching rate, decomposition of POM,

adsorption to minerals, and microbial uptake. In a
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multilayer version of the Millennial model LMWC

would also depend on leaching input, but in this single

layer version we assume that the leaching input is

included in the LMWC input,

dL=dt ¼ Fi 1� pið Þ � Fl þ Fpl � Flm � Flb; ð7Þ

where Fl is the LMWC leaching loss,

Fl ¼ klStSwL ð8Þ

and where kl is the leaching rate, Flm is the adsorption

of LMWC to MAOM, and Flb is the uptake of LMWC

by microbial biomass. Adsorption of LMWC to

minerals is controlled by a Langmuir saturation

function,

Flm ¼ StSwL
KlmQmaxL

1þ ðKlmLÞ
�M

� �
=Qmax; ð9Þ

Klm ¼ 10ð�0:186pH�0:216Þ; ð10Þ

Qmax ¼ BD10ðc1 logð%clayÞþc2Þ; ð11Þ

where Klm is the binding affinity that is

adjustable based on the pH. Qmax is the maximum

sorption capacity (mg C kg-1 dry soil) that is con-

verted to C density (g C m-2) by multiplying soil bulk

density (BD = 1350 kg m-3), assuming a 1 m soil

profile. The parameters c1 and c2 are the coefficients

for computing Qmax from the clay content in percent,

derived from Mayes et al. (2012). The Langmuir

function parameters were derived from measurements

of DOC sorption on over 200 soils in the eastern US.

The measurements demonstrate a nonlinear saturation

with respect to DOC concentrations in soils, and

several recent models have used approaches that also

impose a mechanism for DOC saturation on mineral

surfaces (Wang et al. 2013; Riley et al. 2014; Ahrens

et al. 2015; Dwivedi et al. 2017).

Microbial uptake of LMWC is a function of

microbial biomass and LMWC concentration, tem-

perature, water, and temperature-dependent CUE,

Flb ¼ VlmStSwL
B

Bþ Klb

CUEref � CUET T � Tae�ref

� �� �
;

ð12Þ

Fgr ¼VlmStSwL
B

Bþ Klb

1� CUEref � CUET T � Tae�ref

� �� �� �
;

ð13Þ

where Vlm is the potential uptake rate of LMWC. Fgr is

microbial growth-related respiration, Klb is the half-

saturation constant for microbial activity, CUEref is the

reference CUE, and CUET is the CUE dependence on

temperature. Tae-ref and T are the reference and current

temperature, respectively. Both MAOM and POM can

be incorporated into the aggregate C pool,

dA=dt ¼ Fma þ Fpa � Fa; ð14Þ

Fma ¼
VmaM

Kma þM
1� A

Amax

� �
StSw; ð15Þ

where Fma is the carbon flow from MAOM to

aggregate C, Vma is the maximum rate of aggregate

formation, and Kma is the half-saturation constant of

aggregate formation. MAOM is formed by adsorption

of LMWC andmicrobial necromass, and is affected by

transfer into and out of the aggregate C pool,

dM=dt ¼ Flm þ Fbm � Fma þ Fa 1� pað Þ; ð16Þ

Fbm ¼ kmmStSwB; ð17Þ

where Fbm is the carbon flow from microbial biomass

to MAOM, namely adsorption of necromass, and kmm
is the adsorption rate of microbial biomass. In this

particular iteration of the Millennial model, we

assume that adsorbed microbial biomass is no longer

alive, but by allowing adsorbed microbial biomass to

take up LMWC and perform growth and maintenance,

one could modify the model to accommodate the

assumption that live microbial biomass can sorb to

minerals, or even to other microbes (i.e., biofilms).

Microbial biomass changes as a result of uptake,

adsorption to minerals, and loss via maintenance,

dB=dt ¼ Flb � Fbm � Fmr; ð18Þ

Fmr ¼ kmStSwB; ð19Þ

where Fmr is the maintenance respiration of microbial

biomass, and km is the microbial turnover rate

(Table 3).
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Table 3 Parameters, pools, fluxes and other variables used in the Millennial model

Eq. Variables Definitions Ranges/values and

units

Sources

1, 7 pi Proportion of C input allocated to POM 2/3 (unitless) Oleson et al. (2013)

1, 16 pa Proportion of aggregate-C breakdown

allocated to POM

1/3 (unitless) Oleson et al. (2013)

2 Vpl Maximum rate of POM decomposition to

LMWC

10 (g C m-2 day-1) Calibrated

2 Kpl Half-saturation constant of POM

decomposition to LMWC

150 (g C m-2 day-1) Calibrated

2 Kpe Half saturation constant for microbial

control on POM mineralization

12 (g C m-2) Calibrated

3 Tref Reference temperature for the temperature

scalar

30 (�C) Del Grosso et al. (2005)

3 t1 x-axis location of inflection point 15.4 (�C) Del Grosso et al. (2005)

3 t2 y-axis location of inflection point 11.75 Del Grosso et al. (2005)

3 t3 Distance from the maximum point to the

minimum point (step size)

29.7 Del Grosso et al. (2005)

3 t4 Slope of line at inflection point 0.031 Del Grosso et al. (2005)

4 w1 Water scalar parameter 30 (unitless) Parton et al. (2010)

4 w2 Water scalar parameter 9 (unitless) Parton et al. (2010)

5 Vpa Maximum rate of aggregate formation from

POM

0.002 (gC m-2 day-1) Calibrated

5 Kpa Half-saturation constant of aggregate

formation from POM

50 (g C m-2) Calibrated

5, 15 Amax Maximum capacity of soil aggregate

carbon

500 (g C m-2) Calibrated

6 kb Breakdown rate of soil aggregate carbon 0.0002 (unitless) Calibrated

8 kl Leaching rate of LMWC 0.0015

(g C m-2 day-1)

Calibrated

9, 10 Klm Binding affinity for LMWC sorption 0.25 (g C m-2) Calibrated

10 pH pH 7 (unitless) Mayes et al. (2012)

11 c1 Coefficient for estimating the maximum

sorption capacity

0.297 (unitless) Mayes et al. (2012)

11 c2 Coefficient for estimating the maximum

sorption capacity

3.355 (unitless) Mayes et al. (2012)

11 BD Bulk density 1350 (kg m-3) Mayes et al. (2012)

12, 13 Vlm Potential LMWC turnover rate 0.35 (g C m-2 day-1) Calibrated

12, 13 Klb Half saturation constant for microbial

activity

7.2 (g C m-2) Schimel and Weintraub

(2003)

12, 13 CUEref Reference CUE 0.6 (unitless) Xu et al. (2014)

12, 13 CUET CUE dependence on temperature - 0.012 (degree-1) Xu et al. (2014)

12, 13 Tae-ref Reference temperature for temperature

control on CUE

15 (�C) Xu et al. (2014)

15 Vma Maximum rate of aggregate formation from

MAOM

0.07 (g C m-2 day-1) Calibrated

15 Kma Half-saturation constant for aggregate

formation from MAOM

200 (g C m-2) Calibrated

17 kmm Microbial biomass adsorption rate 0.025 (unitless) Calibrated

19 km Microbial turnover rate 0.036 (day-1) Wieder et al. (2013) and

Xu et al. (2014)
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Z Pflanzenernähr Bodenkd 171:52–60

Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence

for microbial-derived soil organic matter formation and its

ecophysiological controls. Nat Commun 7:13630

Kleber M, Sollins P, Sutton R (2007) A conceptual model of

organo-mineral interactions in soils: self-assembly of

organic molecular fragments into zonal structures on

mineral surfaces. Biogeochemistry 85:9–24

Kleber M, Nico PS, Plante A et al (2011) Old and stable soil

organic matter is not necessarily chemically recalcitrant:

implications for modeling concepts and temperature sen-

sitivity. Glob Change Biol 17:1097–1107

Kothawala DN, Moore TR, Hendershot WH (2009) Soil prop-

erties controlling the adsorption of dissolved organic car-

bon to mineral soils. Soil Sci Soc Am J 73:1831–1842

Koven CD, Riley WJ, Subin ZM et al (2013) The effect of

vertically resolved soil biogeochemistry and alternate soil

C and N models on C dynamics of CLM4. Biogeosciences

10:7109–7131

Lajtha K, Bowden RD, Nadelhoffer K (2014a) Twenty years of

litter and root manipulations in a temperate deciduous

forest: Insights into soil organic matter dynamics and sta-

bility. Soil Sci Soc Am J 78:261–269

Lajtha K, Townsend KL, Kramer MG et al (2014b) Changes to

particulate versus mineral-associated soil carbon after

50 years of litter manipulation in forest and prairie exper-

imental ecosystems. Biogeochemistry 119:341–360

Lehmann J, Kleber M (2015) The contentious nature of soil

organic matter. Nature 528:60–68

Liao JD, Boutton TW, Jastrow JD (2006) Storage and dynamics

of carbon and nitrogen in soil physical fractions following

woody plant invasion of grassland. Soil Biol Biochem

38:3184–3196

Luo Y, Ahlström A, Allison SD et al (2015) Towards more

realistic projections of soil carbon dynamics by earth sys-

tem models. Glob Biogeochem Cycles. https://doi.org/10.

1002/2015gb005239

Manzoni S, Porporato A (2009) Soil carbon and nitrogen min-

eralization: theory and models across scales. Soil Biol

Biochem 41:1355–1379

Manzoni S, Schaeffer SM, Katul G et al (2014) A theoretical

analysis of microbial eco-physiological and diffusion

limitations to carbon cycling in drying soils. Soil Biol

Biochem 73:69–83

Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009)

Soil organic matter dynamics during 80 years of refor-

estation of tropical pastures. Glob Change Biol

15:1584–1597

Martin JP, Martin WP, Page JB et al (1955) Soil aggregation.

Adv Agron 7:1–37

Mayer LM (1994) Relationships between mineral surfaces and

organic carbon concentrations in soils and sediments.

Chem Geol 114:347–363

Mayes MA, Heal KR, Brandt CC et al (2012) Relation between

soil order and sorption of dissolved organic carbon in

temperate subsoils. Soil Sci Soc Am J 76:1027–1037

McCarthy JF, Ilavsky J, Jastrow JD et al (2008) Protection of

organic carbon in soil microaggregates via restructuring of

aggregate porosity and filling of pores with accumulating

organic matter. Geochim Cosmochim Acta 72:4725–4744

Melillo JM, Butler S, Johnson J et al (2011) Soil warming,

carbon–nitrogen interactions, and forest carbon budgets.

Proc Natl Acad Sci USA 108:9508–9512

Moorhead DL, Lashermes G, Sinsabaugh RL (2012) A theo-

retical model of C- and N-acquiring exoenzyme activities,

which balances microbial demands during decomposition.

Soil Biol Biochem 53:133–141

Biogeochemistry (2018) 137:51–71 69

123

https://doi.org/10.1371/journal.pone.0050434
https://doi.org/10.2136/sssaj1989.03615995005300050013x
https://doi.org/10.2136/sssaj1989.03615995005300050013x
https://doi.org/10.1186/s13568-014-0035-x
https://doi.org/10.1186/s13568-014-0035-x
https://doi.org/10.1002/2015gb005239
https://doi.org/10.1002/2015gb005239


Norby RJ, Luo Y (2004) Evaluating ecosystem responses to

rising atmospheric CO2 and global warming in a multi-

factor world. N Phytol 162:281–293

O’Brien SL, Jastrow JD (2013) Physical and chemical protec-

tion in hierarchical soil aggregates regulates soil carbon

and nitrogen recovery in restored perennial grasslands. Soil

Biol Biochem 61:1–13

O’Brien SL, Jastrow JD, McFarlane KJ et al (2013) Decadal

cycling within long-lived carbon pools revealed by dual

isotopic analysis of mineral-associated soil organic matter.

Biogeochemistry 112:111–125

Oleson KW, Lawrence DM, Bonan GB et al (2013) Technical

description of version 4.5 of the Community Land Model

(CLM). NCAR Tech. National Center for Atmospheric

Research, Bounder

Parton WJ, Schimel DS, Cole CV et al (1987) Analysis of fac-

tors controlling soil organic matter levels in great plains

grasslands. Soil Sci Soc Am J 51:1173–1179

Parton WJ, Scurlock JMO, Ojima DS et al (1995) Impact of

climate change on grassland production and soil carbon

worldwide. Glob Change Biol 1:13–22

PartonWJ, HartmanM, OjimaD, Schimel D (1998) DAYCENT

and its land surface submodel: description and testing.

Glob Planet Change 19:35–48

Parton WJ, Hanson PJ, Swanston C et al (2010) ForCent model

development and testing using the Enriched Background

Isotope Study experiment. J Geophys Res. https://doi.org/

10.1029/2009jg001193

Paustian K, Parton WJ, Persson J (1992) Modeling soil organic

matter in organic-amended and nitrogen-fertilized long-

term plots. Soil Sci Soc Am J 56:476–488

Plante AF, Conant RT, Paul EA et al (2006) Acid hydrolysis of

easily dispersed and microaggregate-derived silt- and clay-

sized fractions to isolate resistant soil organic matter. Eur J

Soil Sci 57:456–467

Pronk GJ, Heister K, Ding G-C et al (2012) Development of

biogeochemical interfaces in an artificial soil incubation

experiment; aggregation and formation of organo-mineral

associations. Geoderma 189–190:585–594

Ranjard L, Richaume A (2001) Quantitative and qualitative

microscale distribution of bacteria in soil. Res Microbiol

152:707–716

Riley WJ, Maggi F, Kleber M et al (2014) Long residence times

of rapidly decomposable soil organic matter: application of

a multi-phase, multi-component, and vertically resolved

model (BAMS1) to soil carbon dynamics. Geosci Model

Dev 7:1335–1355
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