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Abstract
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon 
dioxide (CO2) are affected by complex interactions of temperature, moisture, and 
substrate supply, which are further complicated by spatial heterogeneity of the soil 
matrix. This microsite heterogeneity is often invoked to explain non‐normal distribu‐
tions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. 
To advance numerical simulation of these belowground processes, we expanded the 
Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three 
GHGs with respect to the biophysical processes of production, consumption, and 
diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate 
or inhibitor for each process. High‐frequency chamber‐based measurements of all 
three GHGs at the Howland Forest (ME, USA) were used to parameterize the model 
using a multiple constraint approach. The area under a soil chamber is partitioned 
according to a bivariate log‐normal probability distribution function (PDF) of carbon 
and water content across a range of microsites, which leads to a PDF of heterotrophic 
respiration and O2 consumption among microsites. Linking microsite consumption of 
O2 with a diffusion model generates a broad range of microsite concentrations of O2, 
which then determines the PDF of microsites that produce or consume CH4 and N2O, 
such that a range of microsites occurs with both positive and negative signs for net 
CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of 
N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explain‐
ing occasional measurement of simultaneous uptake of both gases. Simultaneous 
simulation of all three GHGs in a parsimonious modeling framework is challenging, 
but it increases confidence that agreement between simulations and measurements 
is based on skillful numerical representation of processes across a heterogeneous 
environment.
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1  | INTRODUC TION

Fluxes of greenhouse gases (GHGs) from soil to the atmosphere are 
likely to play a significant role as biotic feedbacks to climate change 
(Ciais et al., 2014; Davidson & Janssens, 2006). Soils under forest, 
agriculture, and other land‐use classes contribute to nearly a quar‐
ter of global emissions of GHGs, including carbon dioxide (CO2), 
methane (CH4), and nitrous oxide (N2O; IPCC, 2014). Production 
and consumption of these biogenic GHGs are often associated with 
complex processes, involving carbon (C), nitrogen (N), and oxygen 
(O2) substrates and inhibitors, and environmental controllers such as 
temperature, moisture, and transport of solutes and gases (Conrad, 
1996), which remain challenging to simulate in ecosystem and earth 
system models (ESMs).

In this special issue, we present an expansion of a numerical soil 
process model that is a logical progression of several papers pub‐
lished by our group in the pages of this journal. While the importance 
of temperature on soil heterotrophic activity has been recognized 
for over a century (Arrhenius, 1889; Lloyd & Taylor, 1994; Vant't 
Hoff & Lehfeldt, 1899), and optima at intermediate values of soil 
moisture have also been well described (Hursh et al., 2017; Linn & 
Doran, 1984; Moyano, Manzoni, & Chenu, 2013), empirical relation‐
ships with these driving factors have had limited value in revealing 
a mechanistic understanding of soil respiration. Davidson, Belk, and 
Boone (1998) demonstrated that soil temperature and moisture had 
opposite seasonal trends in a moist temperate forest, resulting in 
confounding effects on soil respiration. Drawing on a growing body 
of research on soil respiration in the 1990s and 2000s, Davidson, 
Janssens, and Luo (2006) reviewed the emerging recognized need 
to move beyond mostly temperature functions, such as Q10s, and 
to mechanistically link temperature and moisture drivers to sub‐
strate supply for soil heterotrophic respiration (Rh). Those concepts 
formed the basis of a parsimonious numerical model that used 
Dual Arrhenius and Michaelis–Menten (DAMM) kinetics to link soil 
temperature and moisture to their effects on substrate supply for 
soil respiration (Davidson, Samanta, Caramori, & Savage, 2012). 
In the 20 year special issue of this journal, Davidson, Savage, and 
Finzi (2014) described a vision for how the DAMM model could be 
conceptually linked to related processes of soil carbon dynamics, 
which has since been demonstrated in the modular Millennial Model 
(Abramoff et al., 2018), and how it could be integrated into large eco‐
system models, which was since demonstrated by Sihi et al. (2018). 
Davidson et al. (2014) also proposed that other soil trace gas emis‐
sions could be simulated using the DAMM approach.

Here, we offer a new version of DAMM for the greenhouse 
gases, CO2, CH4, and N2O (hereafter, DAMM‐GHG: Dual Arrhenius 
and Michaelis–Menten‐Greenhouse Gas). We use three simultane‐
ous data streams from chamber measurements of CO2, CH4, and 
N2O fluxes in a New England forest to constrain the DAMM‐GHG 
model, which has a common structure for biophysical processes of 
production, consumption, and diffusion within the soil, including 
the contrasting effects of oxygen (O2) as substrate or inhibitor for 
each process. Another innovation presented here is to represent soil 

microsite heterogeneity of soil carbon and moisture contents with 
probability distribution functions (PDFs) and to simulate the produc‐
tion and consumption of each gas at a microsite scale, rather than 
the traditional modeling approach of using bulk soil means of mea‐
sured carbon and moisture as model drivers.

Thermodynamic theories suggest that CH4 oxidation (aka meth‐
anotrophy) should proceed under aerobic conditions and CH4 pro‐
duction (aka methanogenesis) should be favored under anaerobic (or 
reducing) conditions (Conrad, 2009; Dean et al., 2018). Production 
of N2O via nitrification and denitrification processes is known to 
peak at an optimal intermediate soil moisture content, whereas re‐
ducing soil conditions under high water content are thought to be 
prerequisites for N2O reduction to N2 via classical denitrification 
(Butterbach‐Bahl, Baggs, Dannenmann, Kiese, & Zechmeister‐
Boltenstern, 2013; Davidson, 1991; Firestone & Davidson, 1989). 
While a large body of literature generally supports these patterns, 
there are exceptions that are frequently attributed to spatial hetero‐
geneity within soils and soil microsites.

While the highest rates of net consumption of atmospheric 
N2O (i.e., N2O reduction) is observed in wetlands, N2O reduction in 
well‐drained upland soils has been observed sporadically for many 
years (Chapuis‐Lardy, Wrage, Metay, Chotte, & Bernoux, 2007; 
Schlesinger, 2013; Syakila, Kroeze, & Slomp, 2010). Such observa‐
tions have often been discounted as measurement error or noise. 
The recent advent of fast response field instruments with good sen‐
sitivity and precision has permitted confirmation that upland soils 
can be small sinks of N2O (Eugster et al., 2007; Savage, Phillips, & 
Davidson, 2014), and a modest soil sink for atmospheric N2O is now 
generally accepted as plausible for some sites and times. Increasing 
soil sink strength of N2O during drought events further increases 
perplexity, given that drought events generally facilitate soil aera‐
tion (Goldberg & Gebauer, 2009). Occasional observations of net 
emissions of CH4 from well‐drained upland soils, although contrary 
to expectations, are also common (Brewer, Calderón, Vigil, & Fischer, 
2018; Cattânio, Davidson, Nepstad, Verchot, & Ackerman, 2002; 
Keller & Matson, 1994; Silver, Lugo, & Keller, 1999; Teh, Silver, & 
Conrad, 2005; Verchot, Davidson, Cattânio, & Ackerman, 2000).

Spatial heterogeneity of soil microsites is often invoked to ex‐
plain net atmospheric uptake of N2O and net emissions of CH4 from 
well‐drained upland soils. Soil heterogeneity at microscales can 
cause a wide range of microsite redox potentials and concentrations 
of substrates, which must be accounted for to explain highly skewed 
distributions of soil GHG fluxes (Parkin, 1987, 1993; Savage et al., 
2014; Stoyan, De‐Polli, Böhm, Robertson, & Paul, 2000). Because 
existing ESMs are not able to represent the underlying mechanisms 
that control variation in enzymatic processes at microsite scales 
(Tian et al., 2019; Xu et al., 2016), these models often fail to capture 
the dynamics of soil GHG fluxes, including the so‐called hot spots 
and hot moments (Groffman, 2012; Groffman et al., 2009; Lurndahl, 
2016; Saha et al., 2018) or control points (Bernhardt et al., 2017).

Only recently have modeling activities at ecosystem (or land‐
scape) scales begun to shift from the classical framework based 
on redox strata (or water table position) and mean measured soil 
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moisture to emerging conceptual frameworks that consider het‐
erogeneous environment for production and consumption of 
GHGs (Ebrahimi & Or, 2018; Keiluweit, Gee, Denney, & Fendorf, 
2018; Or, 2019; Wang, Brewer, Shugart, Lerdau, & Allison, 2019; 
Yang et al., 2017). However, to our knowledge, mechanistic simu‐
lation of simultaneous production, consumption, and diffusion of 
multiple gases (CO2, CH4, N2O, and O2) among multiple soil mi‐
crosites has not yet been attempted. Numerical representation of 
microsite production and consumption of multiple GHGs is nec‐
essary to simulate concurrent N2O reduction and CH4 oxidation 
processes in well‐drained upland soils (Savage et al., 2014). The 
overall objective of this work is to demonstrate that the quali‐
tative explanations of microsite heterogeneity can be expressed 
in a mathematically consistent biophysical process model that is 

numerically consistent with simultaneously measured fluxes of all 
three GHGs: CO2, CH4, and N2O.

While originally developed for aerobic Rh, here we expand the 
original core structure of the DAMM model (Davidson et al., 2012, 
2014; Figure S1) to represent methanogenesis, methanotrophy, N2O 
production, and N2O reduction reactions using the same framework 
and physics for simulating the availability of O2 and other substrates 
and for diffusion of gases across soil–atmosphere boundary using 
microsite PDFs (Figure 1; Figure S1). Simultaneously constraining our 
GHG enzyme kinetic model (i.e., DAMM‐GHG) with observations of 
fluxes of multiple GHGs presents large challenges, because tuning 
a model to agree with one data stream may cause a poorer fit to a 
second or third data stream. However, if all data streams can be si‐
multaneously simulated with adequate fidelity and skill, this multiple 

F I G U R E  1   Conceptual framework for 
simultaneous representation of CO2, CH4, 
and N2O fluxes in DAMM‐GHG model. 
Inhib represents inhibition. f(Dgas) and 
f(Dliq) represent soil moisture effect on 
diffusion of gases and soluble substrates, 
respectively
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constraint approach enhances the probability that the parameteriza‐
tion and process representations are realistic and robust. One can 
never be certain that a model gets the “right answer for the right 
reason,” but challenging a single model with multiple data streams 
of related but differing processes, such as CO2, CH4, and N2O fluxes, 
confers additional credence to its structure and parameterization.

2  | MATERIAL S AND METHODS

2.1 | Site description and data collection

We measured GHG fluxes in a mature boreal‐transition forest with 
a hummock–hollow microtopography, Howland Forest research 
site (45.20°N, 68.74°W) from central Maine, United States. Mean 
annual temperature and mean annual precipitation are +5.5°C and 
1,000 mm, respectively. Soils of the Howland Forest upland sites are 
characterized as Skerry fine sandy loam, frigid Aquic Haplorthods. 
More information on the Howland Forest research site can be found 
in Fernandez, Rustad, and Lawrence (1993).

High‐frequency (sampling frequency: 1 Hz) real‐time soil CH4 
and N2O fluxes were measured using an Aerodyne quantum cascade 
laser integrated with soil CO2 flux measurements by LI‐COR IRGA 
assembly. Triplicate chambers were each sampled once every 2 hr. 
Chamber tops were closed for 5 min and automated fluxes were 
calculated by fitting a linear regression on the change in headspace 
GHG concentrations followed by temperature and pressure correc‐
tions. We characterized the uncertainty of measurements by the 
standard deviation estimates for all three GHGs. Soil temperature 
and soil moisture were measured at each chamber location at 10 cm 
depth once every hour using a Type‐T thermocouple and Campbell 
Scientific CS616 water content reflectometer probes, respectively, 
and stored on a Campbell Scientific CR10X data logger (Campbell 
Scientific). We used daily average values of both drivers (soil tem‐
perature and soil moisture) and GHG fluxes for modeling purposes 
to smooth high measurement noise observed at subdaily timescale. 
See Savage and Davidson (2003) for more details on our chamber de‐
sign and automated sampling system. Quality control protocols for 
soil GHG fluxes can be found in Savage, Davidson, and Richardson 
(2008) and Savage et al. (2014).

2.2 | Modeling scheme

Aerobic and anaerobic processes in soil are linked through het‐
erotrophic dependence on fixed C sources for energy, but with 
contrasting effects of O2 as either essential substrate or potential 
inhibitor (Figure 1; Figure S1). To date, most biogeochemical models 
use separate model versions for simulating soil organic matter de‐
composition resulting in CO2 emissions and the processes affecting 
CH4 and N2O emissions, but here we simultaneously simulate bio‐
geochemically linked multiple GHG emissions using the same bio‐
physical framework.

For the present study, we focus primarily on Rh being the domi‐
nant source of CO2 production and fate of O2 consumption, with the 

resulting O2 concentrations then affecting the net fluxes of CH4 and 
N2O by methanogenesis, methanotrophy, nitrification, and denitrifica‐
tion processes. The logic for coupled simulation of CO2, CH4, and N2O 
fluxes in the DAMM‐GHG model, illustrated in Figure 1, is as follows:

1. The measured soil C and soil moisture can be partitioned ac‐
cording to a simulated log‐normal PDF, such as a distribution 
where only a small fraction of microsites has high soil C or 
high soil moisture.

2. Log‐normal PDFs of soil C substrates and soil moisture among 
microsites lead to a simulated PDF of Rh, applying the original 
DAMM model independently to each microsite within the PDF.

3. Simulated microsite CO2 production is aggregated to the chamber 
scale to estimate Rh contributing to the chamber flux measure‐
ment. We then estimate the total soil CO2 flux by adding the con‐
tribution of root‐derived CO2 fluxes to Rh based on previously 
measured ratios at the Howland Forest (Carbone et al., 2016; 
Savage, Davidson, Abramoff, Finzi, & Giasson, 2018; Sihi et al., 
2018). A distinct seasonal pattern of the contribution of root‐de‐
rived CO2 (Ra) to total soil CO2 fluxes (SR) increased from 0.50 in 
early spring to around 0.65 in early autumn, followed by a declin‐
ing trend through winter (Figure S2). Total chamber‐based meas‐
urements of CO2 efflux are used as a constraint for the sum of the 
simulated root and heterotrophic CO2 production rates across the 
simulated PDF of microsites.

4. The simulated and measured soil CO2 efflux is a reasonable proxy 
for O2 demand within the soil. The respiration quotient is not ex‐
actly unity, but is usually close enough to unity in noncalcareous 
soils to allow simulation of O2 consumption within the soil based 
on measurement‐constrained simulated CO2 efflux (Angert et al., 
2015). Knowledge of respiration quotient would be needed for 
the application of our DAMM‐GHG model to calcareous soils. We 
assumed that the simulation of O2 consumption by the original 
version of the DAMM model serves our purpose of estimating the 
O2 demand (or consumption) here (see Figure S1).

5. Microsite PDFs of O2 concentrations are then simulated as a func‐
tion of O2 consumption rates distributed across microsites and gas‐
eous diffusion rates using the same DAMM functions in Figure S1 
driven by air‐filled porosity.

6. Next, the resulting PDF of O2 concentrations is used to simulate 
methanogenesis, methanotrophy, N2O production, and N2O con‐
sumption at the scale of each of the distributed microsites accord‐
ing to similar Michaelis–Menten and diffusion equations (Figure S1), 
where O2 serves as either inhibitor or substrate (Davidson et al., 
2014). The net CH4 and N2O flux summed across simulated PDFs 
of microsites are constrained by observed chamber‐based fluxes of 
CH4 and N2O.

We used soluble C as a proxy for the reducing power needed for meth‐
anogenesis. However, future studies may explicitly represent specific 
substrates for acetoclastic and hydrogenotrophic methanogenic path‐
ways, if parameterization of that type of model structure can be con‐
strained by the availability of data on concentrations of organic acids 
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(acetate, formate) and hydrogen (H2), which was not the case for our 
study. We also assumed that respiration is the dominant pathway of 
CO2 production in soil. Thus, we did not account for the minor contri‐
bution of acetoclastic methanogens to CO2 production and hydrogeno‐
trophic methanogens to CO2 consumption. Likewise, we considered 
soil respiration is the major sink of O2 and ignored the otherwise small 
fraction of O2 consumed by methanotrophs.

We added a nitrification module to account for the N2O produc‐
tion during nitrification using the observed seasonal dynamics of am‐
monium (NH+

4
) in our study area (Fernandez, Lawrence, & Son, 1995). 

The Howland Forest is a strongly nitrogen‐limited system, with pore‐
water nitrate (NO−

3
) concentration always close to detection limits by 

inductively coupled plasma‐mass spectrometry, ICP‐MS (Fernandez 
et al., 1995). N2O production during classical denitrification is mech‐
anistically simulated using seasonally averaged porewater NO−

3
 data 

along with microsite PDFs of soil C and soil moisture. Nitrous oxide 
is reduced to N2 during classical denitrification following the Hole‐
in‐the‐Pipe conceptual model, including possible reduction of atmo‐
spheric N2O that diffuses into the soil (Firestone & Davidson, 1989). 
See Supporting Information (Section S2) for DAMM‐GHG model 
equations.

2.3 | Microsite probability distribution functions of 
soil C and soil moisture

The microsite PDFs of soil C substrate and soil moisture were gen‐
erated from a bivariate truncated log‐normal distribution. The PDF 
for soil C was truncated at 0.001 and 0.15 (g/cm3), respectively. 
The soil C PDF was distributed with mean equaling the observed 
soil C value (see Figure S3 for more information on the PDF of 
soil C). Likewise, the soil moisture PDF was distributed with mean 
equaling the observed soil moisture value, truncations at 70% 
and 200% of the observed mean soil moisture values. The spa‐
tial heterogeneity of soil C and soil moisture were constrained by 
optimizing the parameters (standard deviation and/or coefficient 
of variation) that control the skewness of soil C and soil moisture 
PDFs by enveloping the bounds reported by Stoyan et al. (2000). 
If the upper truncation limit of the soil moisture PDF exceeded 
the soil pore volume, we reset it to 95% of the porosity value. We 
constructed the microsite PDF as the product of two log‐normal 
distributions of soil C and soil moisture. The PDF was evaluated 
at 10 × 10 equally spaced quantiles for soil C and soil moisture, 
respectively.

Here, we focused on spatial heterogeneity across soil micro‐
sites at the mm and sub‐mm scale. Within stand heterogeneity at 
the meter scale, such as variation in bulk density and porosity along 
topographical gradients, is not account for in this study.

2.4 | Parameter optimization and uncertainty  
analysis

We optimized model parameters within a Bayesian Markov chain 
Monte Carlo (MCMC) framework (see Section S1 for more details 

on the optimization algorithm). We implemented the MCMC algo‐
rithm using mcmc and doParallel packages (Revolution Analytics 
& Weston, 2015) in the R (version 3.3.2) statistical programming 
language (R Core Team, 2018). We applied a posterior predictive 
procedure to estimate the uncertainty of the optimized parame‐
ters. We implemented the posterior predictive analyses using the 
R‐INLA package (Lindgren & Rue, 2015; Rue, Martino, & Chopin, 
2009). We divided daily‐average soil GHG flux measurements into 
alternative synoptic‐scale periods of 10 days, where we used one 
half of measured GHG fluxes for model calibration and another 
half for model validation.

2.5 | Sensitivity analysis

We evaluated the sensitivity of model parameters using a global 
variance‐based sensitivity analysis and a collinearity (or param‐
eter identifiability) analysis. We implemented a variance‐based 
sensitivity analysis using the R‐multisensi package, where a gen‐
eralized sensitivity index (ranging between 0 and 1, extracted 
from the first axis of principle component analysis) was used to 
determine the sensitivity of multiple GHG fluxes to each model 
parameter value (Bidot, Lamboni, & Monod, 2018). The global 
sensitivity analysis quantifies the proportion of variability ac‐
counted by each of the parameters on model outputs, where a 
high GSI value indicates that the simulation results are highly sen‐
sitive to that parameter (Lamboni, Makowski, Lehuger, Gabrielle, 
& Monod, 2009).

We implemented the collinearity analysis using the collin 
function of R‐FME package, where the collinearity index (CI) was 
used to determine the linear dependence of model parameters to 
each other (Brun, Reichert, & Künsch, 2001; Soetaert, 2016; 
Soetaert & Petzoldt, 2010). In general, higher values of CI indi‐
cate increased equifinality (or decreased number of identifiable 

parameters) of model parameters. One can compensate 
(

1−1/

CI

)

 

% of the effect of a change in one parameter by modifying the 
values of other parameters. Hence, CI values can range between 
1 (when all terms are orthogonal or all subsets of parameters are 
identifiable) and infinity (when all terms are linearly dependent, 
or no single subset of parameters is identifiable). The CI value of 
15 is considered as a threshold above which approximate linear 
dependence of model parameters increases and poor identifiabil‐
ity can be expected (sensu Omlin, Brun, & Reichert, 2001).

3  | RESULTS

3.1 | Seasonality of soil greenhouse gas fluxes

Soil CO2 fluxes followed the typical seasonal trend of soil tem‐
perature, where both seasonal average and peak CO2 fluxes were 
comparable between 2015 (average [min–max]: 171 [73–297] 
mg CO2‐C m−2 hr−1) and 2016 (average [min–max] measurement pe‐
riod: 168 [52–281] mg CO2‐C m−2 hr−1; Figure 2). This is due, in part, 
to the comparable seasonal soil temperature ranges between 2015 
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(average: 14.4°C, ranged between 8.4 and 18.6°C) and 2016 (aver‐
age: 13.3°C, ranged between 5.6 and 17.9°C) measurement periods 
(Figures 2 and 3). Soil CO2 fluxes exponentially increased with soil 
temperature (R2 = .75; Figure 3a). We also observed a typical bell‐
shaped relationship between CO2 flux and soil moisture (R2 = .16), 
with the optimum for CO2 flux at intermediate water contents 

(Figure 3d). Although the effect of soil moisture on CO2 fluxes was 
always secondary to soil temperature (Figure S5), the fit with soil 
moisture was better when it was more limiting in the dry summer 
of 2016 than the wet summer of 2015 (R2 = .24 and .52 in 2015 and 
2016, respectively; Figure S6d).

In contrast to CO2 fluxes, soil CH4 fluxes mimicked the seasonal 
trend of soil moisture for both years (Figure 2b,g). Soil moisture and 
net CH4 fluxes were positively related (R2 = .70), although the slope of 
the linear regression line was steeper during 2016 than during 2015 
(Figure 3e; Figure S6e). We observed relatively smaller net CH4 oxi‐
dation in the spring followed by higher net CH4 oxidation in summer 
months, and again lower net CH4 oxidation in the autumn. Although 
seasonal average values were generally similar, the range of CH4 flux 
values in 2016 (average: −0.07 µg CH4‐C m−2 hr−1, min–max range: −0.13 
to 0.004 µg CH4‐C m−2 hr−1) was wider than in 2015 (average: −0.05 µg 
CH4‐C m−2 hr−1, min–max range: −0.08 to −0.03 µg CH4‐C m−2 hr−1).

Unlike CO2 and CH4, the seasonal trend of soil N2O fluxes con‐
trasted between 2015 and 2016 (Figures 2c,h and 3f; Figure S6f). 
The 2015 growing season was significantly wetter than the 2016 
growing season. The cumulative precipitation of the summer 
months (June 1 to September 30) of 2015 and 2016 was 439 mm 
and 279 mm, respectively (source: https ://www.ncdc.noaa.gov/
crn/). Consequently, the average soil moisture was generally higher 
(24.8 v/v, min–max range: 14.8–32.6 v/v) during the 2015 growing 
season (measured over June 11 to October 17) than the average 
soil moisture (19.7 v/v, min–max range: 8.9–27 v/v) during the 2016 
growing season (measured over May 3 to November 6; Figures 2d,i 
and 3f; Figure S6f).

F I G U R E  2   Temporal trend of greenhouse gas, GHG (CO2: 
a, f; CH4: b, g; and N2O: c, h) fluxes, soil moisture (d, i), and soil 
temperature (e, j) during 2015 (a–e) and 2016 (f–j) growing seasons. 
Triangles and squares represent observed GHG fluxes in 2015 and 
2016, respectively. Light gray shades in the background represent 
validation windows, which are interspersed throughout the 
observation period. Red triangles and squares represent outliers 
for N2O fluxes. Blue line and shade represent median and 95% CI of 
simulated GHG fluxes, respectively

F I G U R E  3   Relation of observed CO2 (a, d), CH4 (b, e), and N2O 
(c, f) fluxes with soil temperature (a–c) and soil moisture (b–e). 
Triangles and squares represent observed GHG fluxes in 2015 and 
2016, respectively

://www.ncdc.noaa.gov/crn/
://www.ncdc.noaa.gov/crn/
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We observed low rates of net N2O consumption during the 
spring of 2015 when soil moisture was highest, which was fol‐
lowed by mostly near zero net emissions and a few positive emis‐
sions throughout the 2015 summer (Figure 2c,d). In contrast, we 
observed net positive N2O emission during the early spring of 
2016 and net N2O consumption throughout most of the 2016 
growing season, when soil moisture was minimal (Figure 2h,i). 
The temperature effect was weak and inconsistent between 
2 years (Figure 3c; Figure S6c). On average, we observed small 
net N2O emission during the 2015 growing season (average: 

0.06 µg N2O‐N m−2 hr−1, ranged between −0.77 and 1.73 µg 
N2O‐N m−2 hr−1) and net N2O consumption during the 2016 grow‐
ing season (average: −0.18 µg N2O‐N m−2 hr−1, ranged between 
−1.10 and 1.68 µg N2O‐N m−2 hr−1).

3.2 | Performance of the DAMM‐GHG model

Overall, the model reproduced the seasonal dynamics of soil green‐
house gas fluxes (Figures 2 and 4). The model explained 72% of the 
variation in soil CO2 fluxes (Figure 4a). Likewise, the 1:1 relation 

F I G U R E  4   Relation between observed versus simulated greenhouse gas, GHG (CO2: a, d; CH4: b, e; and N2O: c, f) fluxes. Triangles and 
squares in (a–c) represent observed GHG fluxes in 2015 and 2016, respectively. Red triangles and squares in lower left panel (c) represent 
outliers for N2O fluxes. Inset figures in bottom panels (c, f) represent one‐to‐one relation and model residuals for N2O after removing the 
outliers
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between the observed and simulated soil CH4 fluxes was remark‐
able (R2 = .78; Figure 4b). The model marginally overestimated CO2 
fluxes and underestimated CH4 fluxes during early spring of 2016 
(Figure 2f,g).

Soil N2O fluxes were relatively noisier as compared to CO2 
and CH4 fluxes with a few outliers in both years (red triangles 
and squares in Figures 2 and 4, respectively). The model gener‐
ally explained the dynamics of N2O fluxes (R2 = .36 and .52 with 
and without outliers, respectively; Figure 4c). The model did not 
capture the few very low net N2O fluxes observed in the peak 
season of 2016. Most importantly, the model captured the in‐
stances when net atmospheric consumption of CH4 (i.e., net CH4 

oxidation) co‐occurred with net atmospheric consumption of N2O 
(i.e., net N2O reduction) within the same soil chamber and at two 
extremes of the measured soil moisture, during the early wet 
spring of 2015 and during the driest period of the 2016 growing 
season (see Figure 2c,h and red circles in Figure 3f).

In general, there was little bias in the relations between the ob‐
served and simulated GHG fluxes (slope ranged between 0.98 and 
1.10; Figure 4). The 95% CI of the simulated GHGs for all, CO2, CH4, 
and N2O, were narrow and the model parameter values were gener‐
ally well constrained. The interquartile ranges in the posterior dis‐
tributions of all parameters were less than half of their respective 
prior interquartile ranges (Table 1). The prior interquartile ranges 

F I G U R E  5   Microsite probability distribution functions (PDFs) of soil carbon (a), soil moisture (b), CO2 flux (c), O2 concentration (d), CH4 
production (e), CH4 concentration (f), CH4 oxidation (g), CH4 flux (h), N2O production (i), N2O concentration (j), N2O reduction (k), and N2O 
flux (l). Solid, dashed, and dotted lines represent simulated microsite PDFs of individual processes for DOY 180, 2015 (SoilM = 32.6 v/v 
and SoilT = 12.0°C); DOY 192, 2016 (SoilM = 25.4 v/v and SoilT = 13.8°C); and DOY 212, 2016 (SoilM = 18.2 v/v and SoilT = 16.3°C), 
respectively, and correspond to three scenarios presented in the discussion section. DOY, day of year; SoilM, soil moisture; SoilT, soil 
temperature
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represent the approximate upper and lower bounds of the measured 
values from the relevant literature.

The effective depth in the DAMM‐GHG model was optimized 
to a median value of 7 cm (min–max range: 6–11 cm; Table 1), indi‐
cating that most of the important processes affecting the net GHG 
fluxes that we measured with chambers were occurring within the 
topsoil horizons at this site. The number of microsites within the 
0.07 m2 chamber footprint was optimized to a median value of 7,000 
(min–max range: 2,000–9,000; Table 1), indicating that the simu‐
lated microsites were about 3.6 mm in diameter, which could include 
macroaggregates and clusters of fine roots and pockets of organic 
debris.

3.3 | Sensitivity analysis

Soil moisture primarily (and soil temperature secondarily) con‐
trolled the microsite PDFs of production, consumption, and dif‐
fusion processes of CO2, CH4, and N2O. The net flux is the net 

effect of production, consumption, and diffusion of individual 
gases (Figure 5; Figure S10). Of all parameters, the most sensi‐
tive ones were those that control the Vmax terms in the Arrhenius 
equation (Ea and α) for production and consumption of individ‐
ual GHGs, followed by the half‐saturation constants (kMs) and 
O2 inhibition coefficients (kIs) for each process (Figure 6). The 
linear dependence of the DAMM‐GHG model parameters was 
generally low and was usually below the threshold of 15 (with 
a few exceptions) identified for potential equifinality issues 
(Figure 7).

F I G U R E  6   Sensitivity indices of the DAMM‐GHG model 
parameters for CO2 (a), CH4 (b), and N2O (c) modules, respectively

F I G U R E  7   Collinearity indices of the DAMM‐GHG 
model parameters for CO2 (a), CH4 (b), and N2O (c) modules, 
respectively. Each point represents a unique combination of 
parameters allowed to vary while others are held constant. 
Dashed horizontal lines represent threshold value above  
which approximate linear dependence of model parameters 
increases and poor identifiability can be expected  
(Omlin, 1993)
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4  | DISCUSSION

Our goal is a novel integration of measurement and modeling of three 
key greenhouse gases to improve understanding of and modeling ca‐
pacity for interactions of belowground temperature, moisture, and 
substrate supply that control the net soil emissions of CO2, CH4, and 
N2O. To this end, we built upon the DAMM model, which mecha‐
nistically simulates soil Rh using Arrhenius equations, diffusion func‐
tions, and Michaelis–Menten enzyme kinetics (Davidson et al., 2012, 
2014). Our framework of the DAMM‐GHG model is unique in that it 
represents the simultaneous production and consumption of all three 
GHGs within the same soil biophysical framework using microsite 
PDFs. Below we discuss the performance of the DAMM‐GHG model 
and the utility of the microsite PDFs in reproducing the spatial and 
temporal dynamics of observed CO2, CH4, and N2O fluxes within a 
multiple constraint framework.

4.1 | Microsite representation captures  
co‐occurrence of methane oxidation and nitrous 
oxide reduction

Consumption of atmospheric N2O via classical denitrification should 
occur only under reducing conditions. Yet, we have observed net up‐
take of atmospheric CH4 (oxidation) and uptake of atmospheric N2O 
(reduction) simultaneously in well‐drained soils of Howland forest 
under both low and high soil moisture levels. With the advent of 
high frequency and high sensitivity flux measurement technology, 
we can be confident that these modest uptake rates of both CH4 and 
N2O are significantly different from zero and are not measurement 
errors or artifacts (Figures 2 and 4; also see Figure S4). These seem‐
ingly contradictory observations have been qualitatively explained 
by describing diffusional constraints of gas transport as follows: 
both CH4 and N2O can diffuse into well‐drained soils; the CH4 is 
oxidized at microsites where O2 is abundant; while N2O is reduced at 
other microsites where N2O is present and Rh is sufficiently rapid to 
consume O2. Here, we demonstrate that this qualitative explanation 
can be expressed in a mathematically consistent biophysical process 
model that is numerically consistent with simultaneously measured 
fluxes of these gases.

The area under a soil chamber was partitioned according to 
a bivariate log‐normal PDF of soil C and moisture across a range 
of microsites, which leads to a PDF of CO2 production and O2 
consumption among microsites. The resulting broad range of mi‐
crosite O2 concentrations determines the PDF of microsites that 
produce or consume CH4 and N2O according to Michaelis–Menten 
and Arrhenius functions for each process (Figure 1; Figure S1). 
Concentrations of below ambient N2O (hot spots of N2O reduc‐
tion) occur in microsites with simulated high C and high moisture. 
Net consumption and production of CH4 and N2O are simulated 
within a chamber as the average of all soil microsite simulations. 
To demonstrate that it is numerically feasible for microsites of N2O 
reduction and CH4 oxidation to co‐occur under a single chamber, 
we discuss three different scenarios where mean soil moisture 

levels cover the envelope of observed soil moisture in our study 
area (Figure 5).

Of the two growing seasons, we measured highest bulk soil 
moisture (32.6 v/v) on June 29 (DOY 180), 2015. Consequently, 
microsite PDFs of soil moisture ranged from 23.7 v/v to as high 
as 47.7 v/v (solid line in Figure 5b). Microsites with high soil mois‐
ture limited diffusion of gaseous O2 through air‐filled pore space. 
Simultaneously, soils had warmed up enough during the late spring 
of 2015 for soil respiration to exceed 100 mg CO2‐C m−2 hr−1, 
which created significant O2 demand in microsites with high soil 
C. Relatively high soil respiration along with limited O2 diffusion 
resulted in a large fraction of total soil microsites with low O2 con‐
centrations (solid line in Figure 5d). Production of N2O was high 
in microsites with high soil C. However, reducing environments 
favored N2O reduction more than N2O production in microsites 
with low O2 concentrations. Together, the PDFs of soil microsites 
resulted in a modest net negative mean flux of N2O (solid line in 
Figure 5l). Classical theories of biological denitrification processes 
fit with our observations of net negative fluxes of N2O under con‐
ditions of high soil moisture (and soil C) when enzymatic reduc‐
tion of N2O to N2 under reducing environment outcompete N2O 
production rates, especially in nitrogen‐limited systems like our 
field site (Davidson, Keller, Erickson, Verchot, & Veldkamp, 2000; 
Davidson et al., 1993; Firestone & Davidson, 1989). Although N2O 
reduction slightly exceeded N2O production under these condi‐
tions, net uptake rates of atmospheric N2O were low, because dif‐
fusion of atmospheric N2O into the soil, while occurring and thus 
supporting some uptake, was also limited by high water‐filled pore 
space.

The diffusion of atmospheric N2O into the soil increased during 
the drier 2016 summer, thus enabling somewhat larger net uptake of 
atmospheric N2O. The observed soil moisture content of 18.2 v/v on 
July 30 (DOY 212), 2016, approximately represents the first quantile 
of observed soil moisture across 2015 and 2016 growing seasons. 
Rates of N2O production during nitrification and denitrification were 
low in a large majority of microsites due to the oxygen inhibition ef‐
fects as well as the diffusional constraints of soil C, ammonium, and 
nitrate substrates at low soil moisture. However, greater diffusion of 
atmospheric N2O to soil microsites also increased the microsite con‐
centrations of N2O (dotted line in Figure 5j), including a small frac‐
tion of microsites with sufficiently low O2 concentrations to not fully 
inhibit N2O reduction (i.e., the simulated O2 was near the kI for N2O 
reduction (kIN2O- red) in approximately 10% of total microsites, result‐
ing in net negative flux of N2O (dotted line in Figure 5d; Table 1). Our 
observation of a net soil sink of atmospheric N2O during summer 
drying events match with reports from other natural and managed 
ecosystems, ranging from tropical to temperate climates, where net 
uptake of atmospheric N2O has been measured when mean bulk soil 
moisture was drier than would normally be expected for N2O reduc‐
tion (Donoso, Santana, & Sanhueza, 1993; Flechard, Neftel, Jocher, 
Ammann, & Fuhrer, 2005; Goldberg & Gebauer, 2009; Verchot 
et al., 2000; Yamulki, Goulding, Webster, & Harrison, 1995). In this 
case, however, we can demonstrate quantitatively that reducing 
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conditions in only about 10% of the microsites was sufficient to en‐
able net uptake of atmospheric N2O.

In contrast to the above two examples, intermediate soil moisture 
conditions are favorable for production to exceed consumption, re‐
sulting in modest net emissions of N2O from soil to the atmosphere. 
Within this context, observed soil moisture content of 25.4 v/v on 
July 10, 2016 (DOY 192; dashed lines in Figure 5), approximately 
represents the third quantile of observed soil moisture across 2015 
and 2016 growing seasons (Figure 5b). As expected, N2O production 
was greatest at this intermediate soil moisture (Figure 5j), especially 
in microsites with high soil C. Because N2O production was much 
higher than the very low N2O reduction rates (Figure 5k) in a suffi‐
ciently large number of total soil microsites, a net positive mean N2O 
flux resulted (Figure 5l).

Previous studies indicated that N2O production during biological 
nitrification and denitrification often peak at 50%–80% of water‐
filled pore space (Davidson, 1991; Metivier, Pattey, & Grant, 2009), 
when soil moisture may be sufficiently high such that nitrate and 
nitrite are more available than O2 as the alternate elector acceptor in 
many microsites, but the soil O2 content is still high enough to mostly 
inhibit the reduction of N2O to N2. This is the basis of the soil mois‐
ture function of the conceptual hole‐in‐the‐pipe model (Firestone & 
Davidson, 1989). This relationship between soil moisture and N2O 
production is often represented in models as an empirical statistical 
algorithm, such as a polynomial or similar function (e.g., Del Grosso 
et al., 2001; Potter, Matson, Vitousek, & Davidson, 1996). In con‐
trast, the responses to soil moisture in the DAMM‐GHG model pro‐
duce the response pattern across simulated microsites (Figure S7) 
predicted by the conceptual hole‐in‐the‐pipe model as an emer‐
gent property of the role of O2 as substrate (for nitrification, see 
Figure S1) or inhibitor, as represented by different kI values (kIN2O- prod 
and kIN2O- red) used in DAMM mechanistic functions (Table 1).

For CH4, the microsite PDFs of production, consumption, and net 
emission were relatively straightforward. Methane production was 
high in a relatively few numbers of microsites with high soil mois‐
ture (and soil C). In contrast, CH4 oxidation was high in the majority 
of microsites, which had low soil moisture, as the diffusion of both 
substrates (O2 and CH4) increased with decreasing soil moisture. 
Note that CH4 production was several orders of magnitude lower 
than CH4 oxidation across the simulated range of microsite moisture 
contents in our study, mainly due to significant oxygen inhibition. 
Therefore, microsite PDFs of CH4 oxidation primarily dominated the 
net CH4 emission, where net CH4 emission linearly decreased with 
decreasing soil moisture (Figure 5e–h).

Taken together, these results demonstrate that representing 
production, consumption, and diffusion processes as a function of 
soil microsite PDFs can neatly encapsulate the factors affecting 
emissions of CO2, CH4, and N2O in field studies and their underlying 
mechanisms. We also did a comparison of the model performance 
to a conventional framework, where we kept identical soil C and soil 
moisture values, set to the average values observed for the bulk soil, 
across all microsites. Although the performance of the model with‐
out microsite PDF was comparable to the one with microsite PDF 

for CO2, model performance for CH4 and N2O was strongly affected 
by microsite variability (Figures S8 and S9). The model without mi‐
crosite PDF simulated less uptake of CH4 overall, had larger than 
observed peaks and valleys during in wet‐up and dry‐down events, 
and had more biased residuals (Figures S8b,g and S9b,e). For N2O, 
the model with PDF representation of microsite variation also had 
an overall better fit to the observations and less biased residuals 
(Figures S8c,h and S9c,f).

The model–data fusion algorithm we used tends to reduce the 
overall model–data mismatch for the entire measurement window, 
and so it is not surprising that there are periods within that window 
where simulations do not match observations as well, such as the 
CO2 and CH4 fluxes of spring 2016 (Figure 2). This may also be due 
to other factors not included in the DAMM‐GHG model, such as im‐
pacts of spring freeze–thaw cycles on C availability or phenology of 
root exudates. Additionally, the lower fraction of observed variability 
of N2O fluxes accounted for by the model, compared to CO2 and CH4 
fluxes, can be attributed to: (a) the low signal‐to‐noise ratio inherent 
to very low N2O fluxes; and (b) the increased number and complexity 
of interactions of substrates (and inhibitors) for production (e.g., C, 
O2, NH+

4
, and NO−

3
) and consumption (e.g., C, O2, and N2O) of N2O 

during nitrification and denitrification that are represented numeri‐
cally in the model with additional parameters (Figures 2 and 4). We 
further discussed how these potential interacting processes might 
have increased the covariation of parameters related to N2O dynam‐
ics than those related to CO2 and CH4 dynamics (see Section 4.3).

4.2 | Sensitivity analysis

4.2.1 | Sensitivity of predicted greenhouse gas 
fluxes to model parameters

Sensitivity indices indicated that the parameters representing the 
Vmax terms in the Arrhenius equation (α and Ea) for production and 
consumption of each gas were the most influential for all three 
GHGs (Figure 6a–c), which is in line with other reports (Abramoff, 
Davidson, & Finzi, 2017; Zarnetske, Haggerty, Wondzell, Bokil, & 
González‐Pinzón, 2012). Sensitivity of GHG fluxes to the param‐
eters representing Michaelis–Menten equations was secondary to 
those of the α(s) and Ea(s), where the individual ranking was associ‐
ated with the importance of controlling drivers. Following α(s) and 
Ea(s), some of the half‐saturation constants, that is, kM(s), were more 
important than others. For example, relatively higher sensitivity indi‐
ces of the half‐saturation constants of CH4 (kMCH4

) and O2 (kMO2- CH4
) 

for CH4 oxidation as compared to the half‐saturation constants of C 
(kMC- CH4

) and inhibition coefficient of O2 (kICH4
) for CH4 production 

can be explained by the dominant role of CH4 oxidation in control‐
ling net CH4 emissions in our study. The inhibition coefficients of O2 
for N2O reduction (kIN2O- red) and N2O production (kIN2O- prod), along 
with the half‐saturation constant of N2O for N2O reduction (kMN2O

), 
had relatively higher sensitivity indices than those for the half‐satu‐
ration constant of ammonium (kMNH4

) and O2 (kMO2- N2O
) during ni‐

trification and nitrate (kMNO3
) and C kMC- N2O

 during denitrification, 
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respectively. These results indicate the greater importance of reduc‐
ing conditions and the diffusive supply of N2O in controlling net N2O 
emission at our site than either the concentrations of NH+

4
 and O2 

substrates for nitrification or NO−

3
 and C substrates for denitrifica‐

tion. This result may be particular to our site where NO−

3
 is uniformly 

low and the seasonal trend of NH+

4
 is much less dynamic than that 

of soil moisture (Fernandez et al., 1995). We speculate that kMNH4
 

and kMNO3
 might be more commonly important in agricultural soils, 

where large temporal variations in NH+

4
 and NO−

3
 are expected de‐

pending on the timing of fertilization and crop uptake.

4.2.2 | Sensitivity of predicted greenhouse gas 
fluxes to model drivers

Soil moisture primarily (and soil temperature secondarily) controlled 
the skewness of the microsite PDFs of production, consumption, and 
diffusion processes of each gas (Figure S10). Within this context, it 
is important to note that even though the parameters representing 
the Vmax terms in the Arrhenius equation (Ea and α) had higher sensi‐
tivity indices than the Michaelis–Menten parameters that represent 
the influence of soil moisture (Figure 6a–c), most of the temporal 
variations in CH4 and N2O fluxes were nevertheless explained by 
soil moisture rather than temperature. The correlation matrix in 
Figure S5 also indicates that soil moisture, rather than soil tempera‐
ture, controlled the temporal variation of CH4 and N2O fluxes. In 
other words, if the Ea value is changed, the average simulated flux 
for the entire time period increases or decreases significantly, but 
the within‐season variation in CH4 and N2O fluxes is still dominantly 
influenced by variation in soil moisture (Figures S6 and S10).

4.3 | Collinearity analysis

As expected, the CI increases as the number of variable parame‐
ters increases (Figure 7). Given the parsimonious model structure, 
we had few problems of identifiability of the processes for CO2 
and CH4 module, and the most parameter combinations remain 
below the threshold value of 15 (Brun, Kühni, Siegrist, Gujer, & 
Reichert, 2002; Omlin et al., 2001). However, we do have some 
parameter combinations with CI > 15 for the N2O module, due to 
probable ambiguity of whether N2O fluxes are affected more by 
production via nitrification (affected by NH+

4
 substrate), produc‐

tion via denitrification (affected by NO−

3
 substrates), or consump‐

tion of N2O (affected by N2O diffusion). Trade‐offs of processes 
within models can account for inflation of CI values (Keenan, 
Carbone, Reichstein, & Richardson, 2011; Richardson et al., 2010), 
which is likely the case for the N2O module relative to the CO2 and 
CH4 modules. Overall, however, collinearity analysis indicates that 
the chances of having equifinality issues characterized by biologi‐
cally improbable process representations were generally low in 
the DAMM‐GHG model.

We believe that this success is largely due to the multiple con‐
straints imposed by simultaneously modeling data streams of 
three different gases, which enabled us to capture the influence of 

temporally and spatially varying drivers on GHG fluxes (Myrgiotis, 
Williams, Topp, & Rees, 2018). For example, when simulating only 
CH4 flux, a better fit of the model to the data might be achieved by 
adjusting either the Michaelis–Menten parameters or the diffusion 
parameters, but it may be impossible to know which the “correct” 
adjustment is. However, if N2O and CO2 are also being simultane‐
ously simulated, then adjusting the diffusion parameters will affect 
simulations of all three gases, whereas adjusting the Michaelis–
Menten parameters for CH4 oxidation should have little effect on 
the other two gases. Hence, the additional constraints help identify 
which model parameterizations are consistent with all three data 
streams of flux measurements.

4.4 | Microsite probability distribution functions 
permit model parsimony

Simulating a 3‐D array of soil aggregates or pore networks (Arah & 
Vinten, 1995; Ebrahimi & Or, 2014; Yan et al., 2016) is another ap‐
proach for representing spatial heterogeneity of soil matrix in bio‐
geochemical models. However, explicit representation of soil spatial 
variability requires detailed information on soil structure, involv‐
ing high‐throughput instrumentations such as X‐ray CT scan (see 
Carducci, Zinn, Rossoni, Heck, & Oliveira, 2017) and may require 
greater computational power than our PDF approach. Because of 
the limited measurements on the spatial variability of soil aggregates 
(or pores) at a plot scale, let alone at larger scales, and because of 
the increased computational complexity in spatially explicit model 
structures, scaling up of 3‐D soil aggregate (or pore network) models 
to the ecosystem models and ESMs is still challenging.

Statistically representing microsite variation as PDFs in the 
DAMM‐GHG model offers a relatively computationally efficient, yet 
mechanistically consistent, alternative way of simulating soil hetero‐
geneity and maintaining model parsimony, as in the original DAMM 
model (Davidson et al., 2012, 2014; Sihi et al., 2018). We believe that 
our framework could be used to simulate fluxes of GHGs from other 
natural and managed systems as well as be scaled up to ecosystem 
models and ESMs.

4.5 | Opportunities for future improvement of the 
DAMM‐GHG model

We represented all microsite‐scale processes by optimizing an 
equivalent depth for Rh, where most of the biological reactions ap‐
pear to happen in the soil of this study site (posterior range: 6–11 cm) 
and fixed that depth for simulating processes related to production 
and consumption of CH4 and N2O. This simplification allowed us 
to use unitless diffusion constants for gaseous and dissolved sub‐
strates and to avoid needing to know exact diffusion path lengths 
(see Davidson et al., 2012 for details). Exploring heterogeneity of 
diffusivity within and among soil horizons could be an appropriate 
next step.

Including more complex models of gas diffusion that includes 
variable diffusivity between intra‐aggregate and inter‐aggregate 
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pore spaces may be more appropriate for aggregated media 
like soil (Millington & Shearer, 1971; Resurreccion et al., 2010). 
Representing soil microsite PDFs in more than one vertically strat‐
ified soil horizon by differentiating between the organic and vari‐
ous mineral horizons may be needed for application to other sites 
(e.g., wetland with a seasonally variable depth to the water table), 
such that transport of gases between soil horizons and across soil–
air boundary can be estimated using Fick's law. Measured vertical 
concentration profiles of soil gases could serve as additional data 
constraints for soil gas concentration profiles that become emer‐
gent simulated properties of this modeling approach. It would also 
be useful to have a data stream of heterogeneity of O2 or redox 
potentials across microsites, but that would require new genera‐
tions of microprobes.

Additionally, techniques that disentangle gross production and 
gross consumption rates of CH4 and N2O under field conditions could 
increase the predictive power of the dynamics of soil GHGs fluxes. 
For example, Chanton, Powelson, Abichou, and Hater (2008) re‐
ported that measuring stable carbon isotope of emitted CH4 (13CH4) 
is a feasible way to quantify gross CH4 oxidation in situ. Likewise, 
Wen et al. (2016) demonstrated that 15N2O pool dilution method can 
be effective to measure atmospheric N2O uptake in soil under field 
conditions. In situ quantification of microbial activities pertaining 
to gross production and consumption of CH4 and N2O can also be 
pursued following the gas push‐pull method (Urmann, Gonzalez‐Gil, 
Schroth, Hofer, & Zeyer, 2005). Quantifying gross nitrogen transfor‐
mations using stable isotope tracing could help constrain the sources 
of N2O emissions (Morse & Bernhardt, 2013; Müller, Rütting, Kattge, 
Laughlin, & Stevens, 2007; Myrold & Tiedje, 1986).

In addition to nitrification and biological denitrification, other 
bacterial (Jensen & Burris, 1986; Yamazaki, Yoshida, Wada, & 
Matsuo, 1987) and fungal (Hayatsu, Tago, & Saito, 2008; Shoun, 
Kim, Uchiyama, & Sugiyama, 1992) contributions, as well as abiotic 
(Davidson, Chorover, & Dail, 2003; Vieten, 2008) sinks of N2O in 
soil could be explored if warranted. Adding other controlling factors, 
such as pH effects, temporal dynamics of enzyme synthesis, and 
root exudation, could improve model performance for some sites 
(Butterbach‐Bahl et al., 2013; Zheng & Doskey, 2015). In all of these 
cases, however, the potential additional explanatory value of more 
parameters and model complexity must be balanced with the avail‐
ability of data to constrain them and with the advantages of model 
structure parsimony.

5  | CONCLUSIONS

Representing microsite heterogeneity as PDFs related to pre‐
dictive processes offers a new approach for numerical repre‐
sentation of methanogenesis, methane oxidation, nitrification, 
and denitrification and other spatially and temporally variable 
microbial processes in soil. Our ability to accurately measure 
and skillfully model rates of these processes has been hampered 
by highly variable soil microsite conditions, which are difficult 

to measure and simulate, but our use of PDFs to represent that 
variability offers a promising and computationally efficient ap‐
proach. In addition, by measuring and modeling all three green‐
house gases (CO2, CH4, and N2O), we have mechanistically and 
quantitatively explained the apparent paradox of observed si‐
multaneous aerobic respiration that produces CO2, CH4 uptake 
(oxidation), CH4 production, and N2O uptake (reduction) in the 
same soil profile. Skillful representations of multiple ecologi‐
cally relevant processes increase confidence of getting the right 
answers for the right reasons. This relatively parsimonious pro‐
cess modeling framework has the potential to be implemented 
within ecosystem models and ESMs to better capture the dy‐
namics of soil‐based greenhouse gases at landscape, regional, 
and global scales.
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