Skip to content
A parallel implementation of Empirical Dynamic Modeling for supercomputers
C++ Python CMake C
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github/workflows
scripts
src
test
.clang-format
.clang-format-ignore
.gitignore
.gitmodules
CMakeLists.txt
LICENSE
README.md

README.md

cuEDM

GPU-accelerated implementation of Empirical Dynamic Modeling

Requirements

  • CMake 3.10+
  • C++ compiler that supports C++11 (Intel C++ Compiler is strongly recommended for building the CPU backend)
  • HDF5 (parallel build if building the multi-node benchmarks)
  • (optional) MPI if building the multi-node benchmarks
  • (optional) ArrayFire 3.6.2+ if building the GPU backend

Installation

  1. Install dependencies:

  2. Clone the source code:

    $ git clone --recursive https://github.com/keichi/cuEDM.git
    
  3. Run cmake:

    $ cd cuEDM
    $ mkdir build
    $ cd build
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    
    • -DCMAKE_BUILD_TYPE can be either Release, RelWithDebInfo, Debug or MinSizeRel.
    • Add -DCMAKE_CXX_COMPILER=/path/to/c++ to select the C++ compiler to use.
    • Add -DCMAKE_CXX_FLAGS="..." to customize the C++ compiler flags.
    • Add -DHDF5_DIR=/path/to/hdf5 if HDF5 is not installed in a standard path.
    • Add -DArrayFire_DIR=/path/to/arrayfire if ArrayFire is not installed in a standard path.
  4. Run make:

    $ make
    
You can’t perform that action at this time.