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Abstract—Terahertz (THz) communication has been regarded
as one promising technology to enhance the transmission capacity
of future internet-of-things (IoT) users due to its ultra-wide
bandwidth. Nonetheless, one major obstacle that prevents the
actual deployment of THz lies in its inherent huge attenuation.
Intelligent reflecting surface (IRS) and multiple-input multiple-
output (MIMO) represent two effective solutions for compensating
the large pathloss in THz systems. In this paper, we consider
an IRS-aided multi-user THz MIMO system with orthogonal
frequency division multiple access, where the sparse radio fre-
quency chain antenna structure is adopted for reducing the power
consumption. The objective is to maximize the weighted sum rate
via jointly optimizing the hybrid analog/digital beamforming at
the base station and reflection matrix at the IRS. Since the analog
beamforming and reflection matrix need to cater all users and
subcarriers, it is difficult to directly solve the formulated prob-
lem, and thus, an alternatively iterative optimization algorithm
is proposed. Specifically, the analog beamforming is designed
by solving a MIMO capacity maximization problem, while the
digital beamforming and reflection matrix optimization are both
tackled using semidefinite relaxation technique. Considering that
obtaining perfect channel state information (CSI) is a challenging
task in IRS-based systems, we further explore the case with the
imperfect CSI for the channels from the IRS to users. Under
this setup, we propose a robust beamforming and reflection
matrix design scheme for the originally formulated non-convex
optimization problem. Finally, simulation results are presented to
demonstrate the effectiveness of the proposed algorithms.

Index Terms—Hybrid beamforming, Intelligent Reflecting Sur-
faces, THz, Multiple-input multiple-output.
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I. Introduction

With the rapid proliferation of internet of things (IoTs) users,
the future IoT networks need to support the huge transmis-
sion capacity [1], [2]. As such, the sub-6 Gigahertz (GHz)
and millimeter-wave (mmWave) may not be able to support
these users communications. That being said, terahertz (THz)
communication (0.1-10 THz) has been regarded as a promising
technology to deal with the above problem due to its ultra-wide
bandwidth [3], [4]. However, there are two major shortcomings
for THz communications, namely severe signal attenuation and
poor diffraction [5].

Multiple-input multiple-output (MIMO) has been recognized
as an effective technology to enhance the THz signal strength
owing to the high beamforming gain. Indeed, it has been shown
that the signal strength grows linearly with the number of an-
tennas at the base station (BS) [6]. Meanwhile, the small wave-
length in THz makes it easy to pack more antennas together,
and form a massive MIMO array. This way, the problem of
severe signal antenuation of THz can be substantially relieved.
Nonetheless, the property of poor diffraction still makes THz
vulnerable to blocking obstacles that break the line-of-sight
(LoS) links. To address this problem, intelligent reflect surface
(IRS) can be deployed to create additional links [7], [8], and
thus, enhance the performance of THz systems. Being equipped
with a large number of reconfigurable passive elements [9]–
[11], IRS can reflect the incident signals to any direction via
adjusting the phase shifts. As a result, when there is no direct
link between the transmitter and receiver, communication can
still be realized via building a reflective link with the help of the
IRS as shown in Fig. 1. Therefore, incorporating MIMO and
IRS into the THz communication can effectively enhance the
signal reception and reduce the probability of signal blockage.

In this paper, we study a multi-user IRS-aided THz MIMO
system, where the BS employs sparse RF chain structure
for lowering the circuit power consumption [12]. Meanwhile,
considering that the wideband THz signals may suffer from
frequency selective fading, orthogonal frequency division mul-
tiple (OFDM) is also adopted. Based on this system model, we
design the hybrid analog/digital beamforming at the BS and
the reflection matrix at the IRS for maximizing the weighted
sum rate under perfect and imperfect channel state information
(CSI).
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A. Related Works

The MIMO THz communication has become a research
hotspot in recent years. Considering the large signal attenuation,
Lin et al. study the indoor short range MIMO THz communi-
cations [13], [14]. The authors propose a hybrid analog/digital
beamforming to maximize the energy efficiency of the system.
Busari et al. consider three hybrid beamforming array struc-
tures, namely fully-connected, subconnected and overlapped
subarray [15]. Then, a single-path THz channel model is used
to investigate the performance of the system under different
array structures. Additionally, due to the ultra-wide bandwidth,
frequency selective hybrid beamforming design in THz system
is necessary. For example, Tan and Dai first analyze the array
gain loss in the wideband THz system and then propose
a time delay network to obtain the near-optimal array gain
[16]. However, the complexity of the considered system is
prohibitively high. Yuan et al. build a 3-D wideband THz
channel model and propose a two-stage hybrid analog/digital
beamforming for maximizing the capacity of the system [17].
After that, the imperfect CSI is also considered and a robust
beamforming design scheme is developed.

In parallel, IRS has attracted great attention in the past two
years owning to its ability to enable cost-effective and energy-
efficient communications. Wu and Zhang provide a basic IRS
communication system model in [9], based upon which the joint
active beamforming at the BS and passive beamforming at the
IRS is designed to minimize the system power consumption.
In addition, Ning et al. propose to apply THz to IRS [18],
and consider the beam training and hybrid analog/digital beam-
forming. They propose two effective hierarchical codebooks
and beamforming design schemes to obtain the near-optimal
performance. To study the performance of IRS in frequency-
selective fading channels, Zhang et al. consider a MIMO-
OFDM system [19], where only one common set of IRS
reflective matrix is designed for all subcarriers. Based on this,
a new alternative optimization algorithm is proposed. Yang et
al. investigate the channel estimation and beamforming design
problem in the IRS-based OFDM system [20], and propose a
practical transmission protocol as well as channel estimation
scheme. On this basis, a strategy of jointly optimizing power
allocation and the reflection matrix is developed for maximizing
the achievable rate.

Although THz and IRS techniques have been investigated
in the literature, e.g., in [9], [13]–[21], most of them do
not consider the hybrid beamforming at the BS for IRS
communication [9], [18]–[21]. In fact, in a THz-based IRS
communication system, the BS should employ a sparse RF
antenna structure for reducing the power consumption and the
multiple subcarriers transmission technology for overcoming
the frequency selection channel fading. As a result, how to
design the hybrid analog/digital beamforming at the BS and
reflection matrix at the IRS catering to all subchannels will be
challenging. In addition, how to obtain the perfect CSI remains
a non-trivial task for IRS-based reflection links. For the direct
link from the BS to users, the CSI can be readily estimated
by conventional channel estimation methods. For the indirect

link from the BS to the IRS, the CSI is also relatively easy to
obtain since the locations of IRS and BS are fixed. However,
the accurate CSIs of reflection links from the IRS to users
are usually difficult to obtain due to the mobility of users.
Nonetheless, [9], [18]–[21] all assume perfect CSI. Although
Zhou et al. investigate the robust beamforming design in an
IRS system [22], the conventional multiple antenna structure
and single carrier scenario are considered.

B. Main Contributions

To the best of our knowledge, this is the first work to consider
hybrid analog/digital beamforming in IRS-aided THz MIMO-
OFDMA under imperfect CSI, and the main contributions of
this paper include:
• We construct an IRS-aided THz MIMO-OFDMA IoT

communication system, where the BS employs sparse RF
chain structure for reducing the circuit power consumption.
On this basis, we investigate the joint optimization of the
hybrid beamforming at the BS and reflection matrix at the
IRS for maximizing the weighted sum rate under perfect
CSI.

• To solve the formulated non-trivial problem, we first
initialize the reflection matrix. Since all subcarriers share
one analog beamforming matrix, we ignore the multi-user
interference and obtain the analog beamforming by solving
the corresponding MIMO capacity optimization problem.
We subsequently reformulate a multi-user weighted sum
rate maximization problem to optimize the digital beam-
forming. With the help of successive convex approxima-
tion (SCA) and semidefinite relaxation (SDR) techniques,
we propose an iterative algorithm to solve the digital
beamforming that mitigates the multi-user interference.
Following this, we formulate the reflection matrix opti-
mization problem under given hybrid analog/digital beam-
forming, and an iterative algorithm is proposed to solve it.
The above procedure is repeated until convergence.

• Next, we assume that the perfect CSIs of reflection links
cannot be obtained, and there exists bounded estimation
error. We apply the same method to solve the analog
beamforming. For the digital beamforming and reflection
matrix, we develop a robust optimization scheme for the
weighted sum rate optimization problem relying on the S-
Procedure and the convex approximation techniques. Fi-
nally, our simulation results demonstrate the effectiveness
of the proposed algorithms.

We organize the rest of this paper as follows. The system
model and weighted sum rate optimization problem are in-
troduced in Section II. An alternatively iterative optimization
algorithm is designed in Section III. The imperfect CSIs
from the IRS to users are considered and the corresponding
optimization algorithm is developed in Section IV. Simulation
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

Notations: We use the following notations throughout this pa-
per: (·)T and (·)H denote the transpose and Hermitian transpose,
respectively, ‖ · ‖ is the Frobenius norm, Cx×y means the space
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Fig. 1: The IRS system model.
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Fig. 2: The sparse RF chain structure at the BS.

of x × y complex matrix, Re(·) and Tr(·) denote real number
operation and trace operation, respectively, and diag(a1, . . . , an)
is a diagonal matrix. ∠(·) represents the phase of a complex
number.

II. SystemModel and Problem Formulation

In this section, we first describe the IRS-aided THz MIMO-
OFDMA system model and antenna structure. Next, we present
the THz channel transmission model and corresponding param-
eters. Finally, we formulate the weighted sum rate maximiza-
tion problem.

A. System Model

We consider an IRS-aided THz multi-user MIMO system
with OFDMA as shown in Fig. 1, where the BS is equipped
with NTX antennas and NRF (NRF ≤ NTX) RF chains. The
diagram of the sparse RF chain at the BS is illustrated in
Fig. 2. We assume that there are no direct links between BS
and users due to the blockage of walls or other obstacles, and
the users can only receive the reflected signals from IRS. Let
NIRS, M and K denote the number of IRS elements, users
and subcarriers, respectively. We assume that the CSIs of all
links can be obtained using existing channel estimation schemes
proposed in broadband IRS system [23]–[25]. In addition, the
computation of resource allocation is executed in BS, and then
the BS needs to convey the resource allocation results (refection
matrix of the IRS) to IRS. As shown in Fig. 1, the IRS phased
shifts are controlled by an attached controller. Therefore, the BS
can transmit the reflection matrix to controller via a dedicated
separate wireless control link [9].

The received signal on the kth subcarrier at the mth user can
be expressed as

ym[k] = Gm[k]Fvm[k]xm[k]+
M∑

j,m

Gm[k]Fv j[k]x j[k]+nm[k], (1)

where Gm[k] = GtGrηkĝm[k]ΦĤ[k], with Gt and Gr as the
transmit and receive antenna gains, respectively, and ηk as the
pathloss compensation factor [18]. ĝm[k] ∈ C1×NIRS denotes the
channel vector from IRS to the mth user on the kth subcar-
rier, Φ ∈ CNIRS×NIRS is the reflection coefficient matrix with
Φ = diag{φ1, ..., φNIRS }, Ĥ[k] ∈ CNIRS×NTX represents the channel
matrix from BS to IRS on the kth subcarrier, F ∈ CNTX×NRF

is the analog beamforming matrix with F = [f1, ..., fNRF ],
vm[k] ∈ CNRF×1 and xm[k] denote the digital beamforming
and transmit signal for the mth user on the kth subcarrier,
respectively, nm[k] is the independent and identically distributed
(i.i.d.) additive white Gaussian noise (AWGN) with zero-mean
and variance N0. In (1), the first term is the designed signal,
while the second term is the multi-user interference that must
be mitigated by designing proper digital beamforming and
reflection matrix.

Next, we present the THz channel model. Let fc and B,
respectively, represent the central frequency and bandwidth.
Then, the frequency band of the kth subcarrier can be expressed
as fk = fc + B

K (k − 1 − K−1
2 ), k = 1, 2, ...,K. Although there

are a few scattering components in THz communication, their
power are much lower (more than 20 dB) than that of LoS
component [26], and thus, we only consider the LoS component
and ignore the other scattering components. Accordingly, the
channel matrix Ĥ[k] can be expressed as

Ĥ[k] = q( fk, d)H[k], (2)

where q( fk, d) is the complex path gain satisfying

q( fk, d) =
c

4π f d
e−

1
2 τ( fk)d, (3)

where c stands for the speed of light, τ( fk) represents the
medium absorption factor and d is the distance from the BS to
IRS [27]. H[k] can be expressed as

H[k] = ar(θk)aH
t (ϕk), (4)

with at(θk) and ar(ϕk), respectively, as the antenna array re-
sponse vector of the transmitter and receiver, namely

at(θk) =
1
√

NTX

[
1, e jπθk , e j2πθk , · · · , e j(NTX−1)πθk

]T
, (5a)

ar(ϕk) =
1
√

NIRS

[
1, e jπϕk , e j2πϕk , · · · , e j(NIRS−1)πϕk

]T
. (5b)

Here, θk = 2d0 fk sin(φt)/c and ϕk = 2d0 fk sin(φr)/c, d0 denotes
the antenna distance, and φt/φr ∈ [−π/2, π/2] are, respectively,
angle of departure (AoD) and angle of arrival (AoA). Similarly,
gm[k] can be expressed as

ĝm[k] = q( fk, dm)gm[k], (6)

where gm[k] = 1
√

NIRS

[
1, e jπϕk,m , e j2πϕk,m , · · · , e j(NIRS−1)πϕk,m

]
, and

q( fk, dm) is defined as

q( fk, dm) =
c

4π fkdm
e−

1
2 τ( fk)dm , (7)

with dm as the distance from the IRS to the mth user. The
BS-IRS-user m link channel can such be expressed as

Gm[k] = um[k]gm[k]ΦH[k], (8)
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where um[k] = GtGrηkq( f , dm)q( fk, dm). According to [27], the
cascaded path loss of the BS-IRS-user link should satisfy

ηkq( fk, d)q( fk, dm) =
χc

8
√
π3 fkddm

e−
1
2 τ( fk)(d+dm), (9)

where χ is the IRS element gain.
Finally, we rewrite (1) as

ym[k] =um[k]gm[k]ΦH[k]Fvm[k]xm[k]

+
∑M

j,m
um[k]gm[k]ΦH[k]Fv j[k]x j[k] + nm[k].

(10)

B. Problem Formulation
By employing (10), the achievable rate of the mth user on

the kth subcarrier can be expressed as

Rm[k] =
B
K

log

1+
|um[k]gm[k]ΦH[k]Fvm[k]|2∑M

j,m

∣∣∣um[k]gm[k]ΦH[k]Fv j[k]
∣∣∣2+BN0/K

 , (11)

and thus, the achievable sum rate for the mth user can be
written as

Rm =
∑K

k=1
Rm[k]. (12)

Next, we formulate the weighted sum rate maximization
problem as follows

max
{Φ,F,vm[k]}

∑M

m=1
αmRm (13a)

s.t. |φi| = 1, i ∈ {1, · · · ,NIRS}, (13b)∑M

M=1

∑K

k=1
||Fvm[k]||2 ≤ Pmax, (13c)

F(i, j) = 1/
√

NTX, i ∈ {1, · · · ,NTX}, j ∈ {1, · · · ,NRF}, (13d)

where αm denotes the weight of the mth user, (13b) is the
uni-modular constraint for each reflection coefficient φi, (13c)
is the sum transmit power constraint, and (13d) is the am-
plitude constraint of analog beamforming. The objective of
(13) is to jointly optimize the reflection matrix Φ and hybrid
analog/digital beamforming F and vm[k] for maximizing the
weighed sum rate of the system. Obviously, (13) is a non-
convex optimization problem due to the non-convex objec-
tive function (13a) and constraints (13b), (13d). We need to
optimize the reflect matrix Φ, analog beamforming F, and
digital beamforming vm[k] for the original problem. Obviously,
reflect matrix Φ and analog beamforming F need to cater
for all subcarriers as [28]. Finding the optimal solution is
a challenging task, and we propose an effective alternatively
iterative optimization algorithm to deal with it.

III. Solution of TheWeighted Sum Rate Optimization Problem
In this section, we propose an alternatively iterative opti-

mization algorithm. First, we consider the hybrid analog/digital
beamforming of F, vm[k] under given reflection matrix Φ. We
formulate a MIMO-OFDM sum rate maximization problem
and use it to obtain the analog beamforming matrix F. Next,
we transform the original problem into a SDP and solve the
digital beamforming vm[k] by the SDR technique. Lastly, we
solve the reflection matrix Φ according to the obtained hybrid
beamforming F and vm[k]. The above procedure is repeated
until convergence.

A. Optimization of F and vm[k] under Fixed Φ

Under given Φ, the original problem can be transformed as

max
{F,vm[k]}

M∑
m=1

K∑
k=1

am log

1+

∣∣∣ĥm[k]Fvm[k]
∣∣∣2∑M

j,m

∣∣∣ĥm[k]Fv j[k]
∣∣∣2+δ2

 (14a)

s.t. (13c), (13d), (14b)

where ĥm[k] = um[k]gm[k]ΦH[k], am = Bαm/K, and δ2 =

BN0/K.
Problem (14) is still difficult to solve since each common

element of the analog beamforming F needs to cater for all
users and subcarriers. Furthermore, the data streams of different
users may own different priority weights, which leads to more
complicated analog beamforming design. For simplicity, we
assume that all users have the same weights and it can be
regarded as a MIMO-OFDM system by neglecting the inter-
user interference. To solve the analog beamforming F, we first
define Ĥ[k] = [ĥ1[k]T , ..., ĥM[k]T ]T , and reformulate a MIMO-
OFDM sum rate maximization problem as follows:

max
{F,V[k]}

1
K

K∑
k=1

log
(
I+

Ĥ[k]FV[k]V[k]HFHĤ[k]H

δ2

)
(15a)

s.t. ||FV[k]||2 ≤ Pmax/K, (13d). (15b)

Here, we consider the transmit power constraint for each
subcarrier to obtain the lower bound. Note that (15) is only used
for designing F. For a given F, the optimal digital beamforming
matrix can be calculated as [29]

V[k] = (FHF)−1/2Ue[k]Γe[k], (16)

where Ue[k] is the set of right singular vector according to the
NRF largest singular value of Ĥ[k]F(FHF)−1/2, and Γe[k] is a di-
agonal matrix of the power allocated to the data streams on each
subcarrier. Here, we assume that there are NRF data streams.
In addition, it is obvious that fH

i fi = 1, while fH
i f j � 1 (i , j)

with high probability for a large NTX. Therefore, for the i.i.d.
channels, the analog beamforming satisfying FHF ≈ I can
always be approximated as proportional to the identity matrix,
namely FHF ∝ I. Moreover, in the high or moderate signal-to-
noise ratio (SNR) regime, the equal power allocation scheme
for all streams on each subcarrier can be adopted without
significant performance degradation, namely Γe[k] ∝ I [30]. As
a result, the digital beamforming matrix can be approximated
as V[k] ≈ λUe[k], where λ =

√
Pmax/(KNTXNRF). Based on the

above analysis, we have

1
K

K∑
k=1

log
(
I+

Ĥ[k]FV[k]V[k]HFHĤ[k]H

δ2

)

=
1
K

K∑
k=1

log
(
I+

λ

δ2 Ĥ[k]FUe[k]Ue[k]HFHĤ[k]H
)

=
1
K

K∑
k=1

log
(
I+

λ

δ2 FHĤ[k]HĤ[k]F
)
.

(17)
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Finally, we can obtain the upper bound of (17) using the
Jensen’s inequality1 as

1
K

K∑
k=1

log
(
I+

λ

δ2 FHĤ[k]HĤ[k]F
)
≤ log

(
I+

λ

δ2 FHΣF
)
, (18)

where Σ = 1
K

∑K
k=1

(
Ĥ[k]HĤ[k]

)
and the analog beamforming

matrix can be obtained by solving the following problem

F? = arg max
F(i, j)=1/

√
NTX

log
(
I+

λ

δ2 FHΣF
)
. (19)

Since Σ is a hermitian matrix, its singular value decomposition
(SVD) can be written as Σ = SΛSH . Therefore, the solution of
(19) can be given by F?(i, j) = 1

√
NTX

e∠(S1:NBF (i, j)), where S1:NBF

denotes the first NBF columns of S.
Note that although (16) provides a digital beamforming

solution, it is only suitable for the single user case. Therefore,
after obtaining the analog beamforming matrix F, problem (14)
can be transformed as follows for solving digital beamforming

max
{vm[k]}

M∑
m=1

K∑
k=1

am log

1+

∣∣∣h̄m[k]vm[k]
∣∣∣2∑M

j,m

∣∣∣h̄m[k]v j[k]
∣∣∣2+δ2

 (20a)

s.t.
∑M

M=1

∑K

k=1
||Fvm[k]||2 ≤ Pmax, (20b)

where h̄m[k] = ĥm[k]F. We define H̄m[k] = h̄m[k]Hh̄m[k] and
Vm[k] = vm[k]vm[k]H , and by using an auxiliary variable tm,k,
we reformulate (20) as

max
{Vm[k]}

M∑
m=1

K∑
k=1

am log
(
1+tm,k

)
(21a)

s.t. tm,k ≤
Tr(H̄m[k]Vm[k])∑M

j,m Tr(H̄m[k]V j[k])+δ2
, (21b)∑M

M=1

∑K

k=1
Tr(FHFVm[k]) ≤ Pmax, (21c)

rank(Vm[k]) = 1,Vm[k] � 0. (21d)

It is obvious that (21) is a non-convex optimization problem
due to (21b) and (21d). To cope with (21b), we introduce an
auxiliary variable bm,k and transform it as

tm,kbm,k ≤ Tr(H̄m[k]Vm[k]), (22a)

bm,k ≥
∑M

j,m
Tr(H̄m[k]V j[k])+δ2. (22b)

Now, we only need to deal with tm,kbm,k. According to [31],
the upper bound of tm,kbm,k can be obtained as

t(n)
m,k

2b(n)
m,k

b2
m,k +

b(n)
m,k

2t(n)
m,k

t2
m,k ≥ tm,kbm,k, (23)

where t(n)
m,k and b(n)

m,k are the values of tm,k and bm,k at the nth
iteration, respectively. Consequently, we transform (22a) into
the following convex constraints

t(n)
m,k

2b(n)
m,k

b2
m,k +

b(n)
m,k

2t(n)
m,k

t2
m,k ≤ Tr(H̄m[k]Vm[k]). (24)

1The Jensen’s inequality is defied as: If f (x), x ∈ [a, b] is a convex function,
and then for any x1, x2, · · · , xn ∈ [a, b], we have

∑n
i=1 f (xi)

n ≤ f
(∑n

i=1 xi
n

)
and the

equality holds only when x1 = x2 = · · · = xn.

Finally, (21) can be recast as the following SDP problem

max
{tm,k ,bm,k ,Vm[k]}

M∑
m=1

K∑
k=1

am log
(
1+tm,k

)
(25a)

s.t. (21c), (22b), (24), (25b)
rank(Vm[k]) = 1,Vm[k] � 0. (25c)

Since the rank-one constraint is non-convex, we need to drop
it and formulate a SDR problem that can be solved by existing
convex solvers such as the CVX toolbox. Summarily, to obtain
the digital beamforming matrix Vm[k], we need to iteratively
solve (25). Specifically, we first initialize the auxiliary variables
bo

m,k, to
m,k and solve (25) for obtaining the optimal b?m,k, t?m,k

and Vm[k]?. Next, bo
m,k and to

m,k are updated with the obtained
b?m,k and t?m,k, and then, we resolve (25). The above procedure
is repeated until the results converge or the iteration number
reaches its maximum value. In addition, since the SDR problem
of (25) is a convex optimization problem, the solutions are
optimal for each iteration. Therefore, iteratively solving (25)
and updating variables increase or at least maintain the value
of the objective function [32], [33]. Given the limited transmit
power, the designed iterative algorithm guarantees the value of
the objective function to be a monotonically non-decreasing
sequence with an upper bound, and it converges to a stationary
solution that is at least a local optimal.

For solving (25), we remove the rank-one constraint
rank(Vm[k]) = 1. To explore the characteristic of the solutions,
we first give the following theorem for the obtained digital
beamforming V?

m[k].
Theorem 1: For a large number of BS antenna NTX, the

obtained digital beamforming V?
m[k] satisfies rank(V?

m[k]) = 1.

Proof Refer to Appendix A.

In fact, even for a medium number of BS antennas, such
as NTX = 16, we find that the optimal V?

m[k] always satisfies
rank(V?

m[k]) = 1. If rank(V?
m[k]) = 1, the optimal v?m[k] can be

recovered by the eigenvalue decomposition, namely V?
m[k] =

v?m[k]Hv?m[k]. If the obtained V?
m[k] is not a rank-one matrix, the

Gaussian randomization technique is typically used to obtain a
rank-one solution [34]. Specifically, we first generate a random
vector v̂m[k] satisfying v̂m[k] ∼ CN(0,V?

m[k]). Then, we apply
v̂m[k] to problem (25) and check its feasibility. Here, we need to
independently generate sufficient feasible beamforming vectors
v̂m[k] and select the optimal one v̂m[k]? from all the random
vectors. Based on this, the final digital beamforming vector can
be approximated as vm[k]? = v̂m[k]?.

Now, we analyze the computational complexity for
solving problem (25). Let ε be the iteration accu-
racy; then, the number of iterations is on the order of
√

KMNRF + 5KM + 1 ln(1/ε) [35]. For problem (25), there are
KM linear matrix inequality (LMI) constraints of size NRF,
3KM + 1 LMI constraints of size 1, and KM second-order
cone constraints. Therefore, the complexity of solving problem
(25) is on the order of

√
∆1ζ ln(1/ε)(∆2 + ζ∆3 + ζ2), where

∆1 = KMNRF + 5KM + 1, ∆2 = KMN3
RF + 12KM + 1,

∆3 = KMN2
RF + 3KM + 1, and ζ = KMN2

RF.
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B. Optimization of Φ under Fixed F and Vm[k]

After obtaining the hybrid analog/digital beamforming F
and vm[k], we consider the reflection matrix of IRS here and
transform (13) into the following optimization problem

max
{Φ}

M∑
m=1

K∑
k=1

am log

1+
|gm[k]Φzm[k]|2∑M

j,m

∣∣∣gm[k]Φz j[k]
∣∣∣2+δ2

 (26a)

s.t. |φi| = 1, i ∈ {1, · · · ,NIRS}, (26b)

where zm[k] = um[k]H[k]Fvm[k]. Let gm[k]Φzm[k] = cm,kφ,
where φ = [φ1, ..., φNIRS ]T and cm[k] = gm[k]diag(zm[k]). Thus,
we can reformulate (26) as

max
{φ}

M∑
m=1

K∑
k=1

am log

1+
|cm[k]φ|2∑M

j,m

∣∣∣c j[k]φ
∣∣∣2+δ2

 (27a)

s.t. |φi| = 1, i ∈ {1, · · · ,NIRS}. (27b)

Similarly, we define Cm[k] = cm[k]Hcm[k] and Ω = φφH , and
transform (27) into the following optimization problem

max
{Ω}

M∑
m=1

K∑
k=1

am log

1+
Tr(Cm[k]Ω)∑M

j,m Tr(C j[k]Ω)+δ2

 (28a)

s.t. Ω(i, i) = 1, i ∈ {1, · · · ,NIRS}, (28b)
rank(Ω) = 1,Ω � 0. (28c)

One can observe that (28) has a similar form to (21), and we
can adopt the same iterative method proposed in Section. III-A
to solve it. We omit the details due to the space limitation and
directly write the SDR problem as follows:

max{
t′m,k ,b

′
m,k ,Ω

}
M∑

m=1

K∑
k=1

am log
(
1+t′m,k

)
(29a)

s.t. b′m,k ≥
∑M

j,m
Tr(C j[k]Ω)+δ2, (29b)

t′(n)
m,k

2b′(n)
m,k

b′2m,k +
b′(n)

m,k

2t′(n)
m,k

t′2m,k ≤ Tr(Cm[k]Ω), (29c)

Ω(i, i) = 1,Ω � 0. (29d)

Here, we still need to alternatively solve problem (29) to
obtain the reflection matrix Φ. If the obtained φ? satisfies
rank(Ω?) = 1, the optimal φ? can be recovered by the eigen-
vector of Ω? = φ?φ?H , and the reflection coefficient matrix
Φ? can be expressed as Φ? = diag{φ?1 , ..., φ

?
NIRS
}. Otherwise,

the Gaussian randomization technique can be used to obtain a
rank-one solution [34].

Now, we analyze the computational complexity for solving
problem (29). Let ε be the iteration accuracy; then, the num-
ber of iterations is on the order of

√
2NIRS + 5KM ln(1/ε).

For problem (29), there are 1 LMI constraint of size NIRS,
3KM + NIRS LMI constraint of size 1, and KM second-
order cone constraints. Therefore, the complexity of solving
problem (29) is on the order of

√
∆1ζ ln(1/ε)(∆2 + ζ∆3 + ζ2),

where ∆1 = 2NIRS + 5KM, ∆2 = N3
IRS + NIRS + 12KM,

∆3 = N2
IRS + NIRS + 3KM, and ζ = N2

IRS.
Finally, we summarize the proposed alteratively iterative

optimization scheme in Algorithm 1.

Algorithm 1: The Proposed Alternative Iterative Optimiza-
tion Algorithm.

1 Initialize the reflection matrix Φ(0), iteration number r = 1
and maximum iteration number rmax.

2 repeat
3 Obtain the analog beamforming F(r) according to (19).
4 Initialize variables t(0)

m,k, b(0)
m,k, iteration number r′ = 1

and maximum iteration number r′max.
5 repeat
6 Obtain t?m,k, b?m,k and vm[k]? by solving (25).
7 Update variables t(r′)

m,k ← t?m,k, b(r′)
m,k ← b?m,k.

8 Update r′ ← r′ + 1.
9 until r′ = r′max or Convergence;

10 Initialize variables t′(0)
m,k, b′(0)

m,k, iteration number r′′ = 1
and maximum iteration number r′′max.

11 repeat
12 Obtain t′?m,k, b′?m,k and Ω? by solving (29).
13 Update variables t′(r

′′)
m,k ← t′?m,k, b′(r

′′)
m,k ← b′?m,k.

14 Update r′′ ← r′′ + 1.
15 until r′′ = r′′max or Convergence;
16 Obtain Φ? according to Ω?.
17 Update Φ(r) ← Φ?.
18 Update r ← r + 1.
19 until r = rmax or Convergence;
20 Obtain the analog beamforming Φ(r), digital beamforming

vm[k](r) and reflection matrix Φ(r).

IV. Extension to Imperfect CSIs from IRS to Users

Due to the mobility of users, it is difficult to obtain the perfect
CSIs from the IRS to users. Therefore, in this section, we as-
sume that there exists channel estimation error for the reflection
links between IRS and users, namely gm[k] = g̃m[k] + 4gm[k],
where g̃m[k] denotes the estimated CSI and 4gm[k] is the
estimation error. Here, we assume that the estimation error is
upper bounded with g̃m[k]g̃m[k]H ≤ ε. Next, we redesign the
hybrid analog/digital beamforming and reflection matrix with
imperfect CSI as follows

max
{Φ,F,vm[k]}

∑M

m=1
αmRm (30a)

s.t. |φi| = 1, i ∈ {1, · · · ,NIRS}, (30b)∑M

M=1

∑K

k=1
||Fvm[k]||2 ≤ Pmax, (30c)

gm[k] = g̃m[k] + 4gm[k], (30d)

g̃m[k]g̃m[k]H ≤ ε, (30e)

F(i, j) = 1/
√

NTX, i ∈ {1, · · · ,NTX}, j ∈ {1, · · · ,NRF}. (30f)

Similar to the proposed Algorithm 1, we design an alternative
iterative optimization scheme to solve it.

A. Optimization of F and vm[k] under Fixed Φ

In fact, it is extremely difficult to design analog beamforming
F under channel estimation error, and thus, we ignore the
estimation error and define gm[k] , g̃m[k] for simplicity, namely
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ĥm[k] = um[k]g̃m[k]ΦH[k]. In this way, we can adopt the same
scheme used in Section III-A to obtain the analog beamforming
F. Next, we directly solve the digital beamforming vm[k]. After
obtaining F, we define um[k]gm[k]ΦH[k]F , gm[k]Ξm[k], where
Ξm[k] = um[k]ΦH[k]F. Thus, the received signal of the mth
user on the kth subcarrier can be expressed as

ym[k] =(g̃m[k] + 4gm[k])Ξm[k]vm[k]xm[k]

+
∑M

j,m
(g̃m[k] + 4gm[k])Ξm[k]v j[k]x j[k] + nm[k],

(31)

and the achievable rate is given by

Rm[k] =
B
K

log

1+
|(g̃m[k]+4gm[k])Ξm[k]vm[k]|2∑M

j,m Υm[k]+BN0/K

 , (32)

where Υm[k] =
∣∣∣(g̃m[k]+4gm[k])Ξm[k]v j[k]

∣∣∣2. By introducing
an auxiliary variable τm,k, the original problem (30) can be
recast as

max
{vm[k]}

M∑
m=1

K∑
k=1

am log
(
1+ τm,k

)
(33a)

s.t. τm,k ≤
|(g̃m[k]+4gm[k])Ξm[k]vm[k]|2∑M

j,m Υm[k]+BN0/K
, (33b)

4gm[k]4gm[k]H ≤ ε, (33c)∑M

M=1

∑K

k=1
||Fvm[k]||2 ≤ Pmax. (33d)

By comparing the weighted sum rate maximization problem
under perfect CSI (21) and imperfect CSI (33), one can observe
that the original scheme used to solve (21) can not be directly
used to solve (33) due to the uncertain term 4gm[k]. To cope
with (33), we first give the following Lemma 1 referred to as
S-Procedure [36].

Lemma 1: Define the function

fi(x) = xQixH + 2Re{pixH} + ei, i ∈ {1, 2}, (34)

where x ∈ C1×O, Qi ∈ C
O×O, pi ∈ C

1×O, and ei ∈ R with O
representing any integer, and thus, the expression f1(x) ≤ 0⇒
f2(x) ≤ 0 holds if and only if there exists a β satisfying

β

[
Q1 pH

1
p1 e1

]
−

[
Q2 pH

2
p2 e2

]
� 0. (35)

Next, we have

|(g̃m[k]+4gm[k])Ξm[k]vm[k]|2

= ((g̃m[k]+4gm[k])Ξm[k]vm[k]) ((g̃m[k]+4gm[k])Ξm[k]vm[k])H

=4gm[k]Ξm[k]Vm[k]Ξm[k]H4gm[k]H

+ 2Re(g̃m[k]Ξm[k]Vm[k]Ξm[k]H4gm[k]H)

+ g̃m[k]Ξm[k]Vm[k]Ξm[k]H g̃m[k]H .

(36)

Similarly,
∑

j,m Υm[k] can be expressed as∑
j,m

Υm[k] =
∑

j,m

∣∣∣(g̃m[k]+4gm[k])Ξm[k]v j[k]
∣∣∣2

=4gm[k]Ξm[k]
(∑

j,m
V j[k]

)
Ξm[k]H4gm[k]H

+ 2Re(g̃m[k]Ξm[k]
(∑

j,m
V j[k]

)
Ξm[k]H4gm[k]H)

+ g̃m[k]Ξm[k]
(∑

j,m
V j[k]

)
Ξm[k]H g̃m[k]H .

(37)

Next, we transform (33b) into the following three constraints

µm,k ≤ |(g̃m[k]+4gm[k])Ξm[k]vm[k]|2 , (38a)
τm,kθm,k ≤ µm,k, (38b)

θm,k ≥
∑M

j,m
Υm[k]+BN0/K. (38c)

Combining (36), (33c) and Lemma 1, (38a) can be trans-
formed into the following convex LMI constraint[

βm,kI+V̂m[k] (g̃m[k]V̂m[k])H

g̃m[k]V̂m[k] ε+g̃m[k]V̂m[k]g̃m[k]H − µm,k

]
�0, (39)

where V̂m[k] = Ξm[k]Vm[k]Ξm[k]H . The non-convex constraint
(38b) can be expressed as the following convex constraint

τ(n)
m,k

2θ(n)
m,k

θ2
m,k +

θ(n)
m,k

2τ(n)
m,k

τ2
m,k ≤ µm,k, (40)

where τ(n)
m,k and θ(n)

m,k are the values of τm,k and θm,k at the nth
iteration, respectively. In addition, combining (37), (33c) and
Lemma 1, (38c) can be transformed into the following convex
LMI constraint[
βm,kI−V̌m[k] −(g̃m[k]V̌m[k])H

−g̃m[k]V̌m[k] ε−g̃m[k]V̌m[k]g̃m[k]H + θm,k − BN0/K

]
�0, (41)

where V̌m[k] = Ξm[k]
(∑

j,m V j[k]
)
Ξm[k]H .

Finally, we transform (28) into the following SDP problem

max
{τm,k ,µm,k ,θm,k ,{Vm[k]}}

M∑
m=1

K∑
k=1

am log
(
1+ τm,k

)
(42a)

s.t. (39), (40), (41), (42b)∑M

M=1

∑K

k=1
Tr(FHFVm[k]) ≤ Pmax, (42c)

rank(Vm[k]) = 1,Vm[k] � 0. (42d)

It is obvious that (42) can be solved with the convex
optimization toolbox such as CVX by removing the rank-one
constraint. Likewise, the optimal digital beamforming matrix
Vm[k] is obtained by iteratively solving problem (42).

To handle problem (42), we remove the rank-one constraint
rank(Vm[k]) = 1. If problem (42) does not yield a rank-one
solution, namely rank(Vm[k]) > 1, the Gaussian randomization
technique is used to obtain a rank-one solution [34].

Now, we analyze the computational complexity for solving
problem (42). Let ε be the iteration accuracy; then, the number
of iterations is on the order of

√
3KMNRF + 7KM ln(1/ε)

[35]. For problem (42), there are 2KM LMI constraints of
size NIRS + 1, KM LMI constraints of size NIRS, 3KM + 1
LMI constraints of size 1, and KM second-order cone con-
straints. Therefore, the complexity of solving problem (42)
is on the order of

√
∆1ζ ln(1/ε)(∆2 + ζ∆3 + ζ2), where ∆1 =

3KMNRF + 7KM, ∆2 = KM(2(NRF + 1)3 + N3
RF + 11) + 1,

∆3 = 2KM(NRF + 1)2 + KMN2
RF + 3KM + 1, and ζ = KMN2

RF.
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B. Optimization of Φ under Fixed F and Vm[k]

After obtaining the analog beamforming F and digital beam-
forming vm[k], we reconsider the reflection matrix Φ with
imperfect CSIs. According to the definition in Section III-B,
we have

um[k]gm[k]ΦH[k]Fvm[k] , gm[k]Φzm[k]. (43)

Next, we define Zm[k] , diag(zm[k]), and thus, we have
gm[k]Φzm[k] = gm[k]Zm[k]φ. After that, the achievable rate can
be expressed as

Rm[k] =
B
K

log

1+
|(g̃m[k]+4gm[k])Zm[k]φ|2∑M

j,m Υ′m[k]+BN0/K

 , (44)

where Υ′m[k] =
∣∣∣(g̃m[k]+4gm[k])Z j[k]φ

∣∣∣2. It can be found that
(44) has a similar expression with (32), and thus, the same
scheme can be used to solve the reflection matrix Φ. Therefore,
we omit the details and directly formulate the following SDR
problem as

max{
τ′m,k ,µ

′
m,k ,θ

′
m,k ,Ω

}
M∑

m=1

K∑
k=1

am log
(
1+ τ′m,k

)
(45a)

s.t.
[
β′m,kI+Ω̂m[k] (g̃m[k]Ω̂m[k])H

g̃m[k]Ω̂m[k] ε+g̃m[k]Ω̂m[k]g̃m[k]H − µ′m,k

]
�0, (45b)

τ′(n)
m,k

2θ′(n)
m,k

θ′2m,k +
θ′(n)

m,k

2τ′(n)
m,k

τ′2m,k ≤ µ
′
m,k, (45c)[

β′m,kI−Ω̌m[k] −(g̃m[k]Ω̌m[k])H

−g̃m[k]Ω̌m[k] ε−g̃m[k]Ω̌m[k]g̃m[k]H + θ′m,k − BN0/K

]
�0,

(45d)
Ω(i, i) = 1,Ω � 0, (45e)

where τm,k, µ′m,k and θ′m,k are the introduced auxiliary variables,
Ω̂m[k] = Zm[k]ΩZm[k]H , and Ω̌m[k] =

∑
j,m Ξ j[k]ΩΞ j[k]H . We

can use the CVX toolbox to solve (45). Likewise, if problem
(29) does not yield a rank-one solution, namely rank(Ω?) , 1.
The Gaussian randomization technique can be used to obtain a
rank-one solution [34].

Now, we analyze the computational complexity for solving
problem (45). Let ε be the iteration accuracy; then, the number
of iterations is on the order of

√
KMNIRS + 7KM ln(1/ε).

For problem (45), there are 2KM LMI constraints of size
NIRS + 1, 1 LMI constraint of size NIRS, 4KM LMI con-
straints of size 1, and KM second-order cone constraints.
Therefore, the complexity of solving problem (45) is on the
order of

√
∆1ζ ln[1/ε)(∆2 + 12KM + 1 + ζ∆2 + ζ2], where

∆1 = KMNIRS + 7KM, ∆2 = 2KM(NIRS + 1)3 + N3
IRS + 13KM,

∆3 = 2KM(NRF + 1)2 + N2
RF + 4KM, and ζ = N2

IRS .

V. Numerical Results

In this section, simulation results are presented to evaluate
the performance of the proposed schemes in IRS-aided THz
MIMO-OFDMA systems. Due to the severe pathloss in THz,
we consider a short distance communication scenario as shown
in Fig. 3, where users are located within a circle with 1.5 m
radius. The AoD/AOA follows the uniform distribution within

BS

IRS

d1=3 d2=2

d
3
=

3

Devices 

region

Fig. 3: The location distribution in the IRS-aided system.

TABLE I: Default Parameters Used in Simulations.

Parameters Value
Number of antennas NTX = 64
Number of RF chains NRF = 4
Number of reflection elements NIRS = 4
Central frequency fc = 340 [GHz]
Bandwidth B = 20 [GHz]
Number of subcarriers K = 16
Number of users M = 2
Transmit antenna gain Gt = 4+20 log10(

√
NTX)

Receive antenna gain Gr = 1
Absorption coefficient 0.0033/m
Speed of light c = 3 × 108

Noise variance N0 = −174 [dBm/Hz]

[−π/2, π/2], and the antenna spacing is assumed to be half
wavelength. The default simulation parameters are listed in
Table I, and they are used in simulation unless otherwise
specified.

Figs. 4 and 5 show the convergence performance of the
proposed inner iterative algorithm for solving the digital beam-
forming and reflection matrix, respectively, i.e., Line 5 ∼ 9 and
Line 11 ∼ 15 in Algorithm 1. Here, we set ε = 0, Pmax = 0
dBm and αm = 1 (m ∈ {1, 2}). The legend “nth iteration” in
Figs. 4 and 5 stands for the outer iteration number. One can
observe that the inner iterative algorithm tends to converge after
5 iterations for each outer iteration. In addition, it can be found
that the gap is small between the 2nd and 3rd iterations, but
large between the 1st and 2nd iteration. This means that outer
iterative loop (i.e., Algorithm 1) also converges rapidly, and we
will elaborate this in detail in Fig. 6.

The convergence performance of Algorithm 1 under different
estimation errors is plotted in Fig. 6, where we set the maxi-
mum transmit power Pmax = 4 dBm and αm = 1 (m ∈ {1, 2}). It
is clear that the rate tends to stabilize after 3 iterations, which
demonstrates the fast convergence of the proposed algorithm.
In addition, it is easy to understand that the rate is low for a
large estimation error as shown in Fig. 6, where ε = 0 means
perfect CSIs between the IRS and users.

Fig. 7 shows the rate versus Pmax under different estimation
errors, where we set αm = 1 (m ∈ {1, 2}). Meanwhile, we
also plot the rate under the fully digital structure, namely each
antenna is connected to each RF chain. It is clear that the rate
under the fully digital structure is higher than that under the
sparse RF chain structure for the same condition, while the
circuit power consumption is very high for the former. This is
also one of the reasons for which the sparse RF chain structure
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Fig. 4: The rate versus iteration for solving the digital beam-
forming.
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Fig. 5: The rate versus iteration for solving the reflection matrix.

is usually adopted when the ultra high frequency carrier is
applied. In addition, one can observe that the rate increases
with Pmax.

We plot the rate under different BS antennas in Fig. 8, where
we set Pmax = 4 dBm and αm = 1 (m ∈ {1, 2}). It is obvious
that the rate increases with the number of antennas, but with
a decreasing slope. In addition, we also plot the rate versus
Pmax for different numbers of IRS reflection elements in Fig. 9,
with ε = 0. It is observed again that a large number of IRS
reflection elements leads to a higher rate. This is because a
higher beamforming gain can be achieved when there are either
more antennas at the BS or more reflection elements at the IRS.

To compare the system performance under different users’
weights, we set the user weight α = [1 1] and α = [1 3] as
shown in Figs. 10 and 11. Under α = [1 1], it is clear the
objective is to just maximize the sum rate. This explains why
the sum rate with α = [1 3] is always lower than that with
α = [1 1]. If we look at the individual rates for the two users,
the rate for user 1 decreases, while that for user 2 increases
when changing from α = [1 1] to α = [1 3]. This is expected,
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Fig. 6: The rate versus iteration for the proposed Algorithm 1.
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Fig. 7: The rate versus the allowable maximum transmit power.

since a higher priority is given to user 2. Moreover, the sum
rate declines while the system fairness increases. In practice,
we can set different weights according to different quality of
service requirements of the users.

VI. Conclusion

In this paper, we have considered an IRS-aided THz MIMO-
OFDMA system, where the BS is equipped with a sparse
RF chain structure. First, we have proposed a joint hybrid
analog/digital beamforming and reflection matrix design to
maximize the weighted sum rate under perfect CSIs. Next,
considering the imperfect CSIs from the IRS to users, we
have redesigned a robust joint optimization algorithm. From
simulation results, we have found that the channel estimation
error has a large impact on the system sum rate. Moreover,
allocating a higher weight to a particular user can improve that
user’s rate, but at the cost of sum rate. Consequently, channel
estimation schemes and users weight selection are important
criteria for the design of practical systems, and we need to
adjust the weights according to different quality of service
requirements of the users.
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Appendix A
Proof of Theorem 1

First, we give the Lagrangian function of (25) without the
rank-one constraint as

F(tm,k, bm,k, ξ, ψm,k, νm,k,Vm[k]) =

M∑
m=1

K∑
k=1

am log
(
1+tm,k

)
+ξ

(
Pmax −

∑M

M=1

∑K

k=1
Tr(FHFVm[k])

)
+

M∑
m=1

K∑
k=1

ψm,k

(
bm,k −

(∑M

j,m
Tr(H̄m[k]V j[k])+δ2

))
+

M∑
m=1

K∑
k=1

νm,k

Tr(H̄m[k]Vm[k]) −

 t(n)
m,k

2b(n)
m,k

b2
m,k +

b(n)
m,k

2t(n)
m,k

t2
m,k




+

M∑
m=1

K∑
k=1

Tr(Θm,kVm[k]).

(46)

where ξ, ψm,k, νm,k, Θm,k, respectively, represent the Lagrange
multipliers corresponding the constraints (21c), (22b), (24) and
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Fig. 10: The rate versus the allowable maximum transmit power
with different weights.
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(25c). Since the relaxed SDP problem (25) is convex, and
the gap between the primal problem and its dual problem is
zero, namely it satisfies the Slater’s condition [37]. Therefore,
the Karaush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient for the optimal solutions of problem (25) with rank-
one constraint. Next, we give the KKT conditions related to
the optimal digital beamforming Vm[k]? as:

ξ?FHF +

M∑
j,m

K∑
k=1

ψ?m,kH̄ j[k] − ν?m,kH̄m[k] = Θ?
m,k, (47a)

Θ?
m,kVm[k]? = 0, (47b)

Θ?
m,k � 0, (47c)

where ξ?, ψ?m,k, ν?m,k and Θ?
m,k are the optimal Lagrange

multipliers. The analog beamforming can be expressed as
F = [f1, · · · , fRF], and we have fH

i fi = 1 and fH
i f j � 1 (i , j) for

a large NTX as our analysis for the analog beamforming matrix
in Section III-A. In this way, for a large NTX and i.i.d. channels,
we can obtain FHF ≈ I, and FHF is a full rank matrix, namely
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rank(FHF) = NRF. Because ξ? > 0, ψ?m,k > 0, we define

Y = ξ?FHF +

M∑
j,m

K∑
k=1

ψ?m,kH̄ j[k], (48)

and thus, Y is a positive-definite matrix which has full rank
with rank(Y) = NRF. Based on this, we have

rank(Θ?
m,k) =rank(Y − ν?m,kH̄m[k])

≥rank(Y) − rank(ν?m,kh̄m[k]Hh̄m[k])

≥NRF − 1.

(49)

Therefore, we can claim that the rank of Θ?
m,k is either NRF

or NRF−1. If rank(Θ?
m,k) = NRF, according to (47b), the optimal

Vm[k]? = 0, which means that the BS does not transmit any
signal. Thus, we have rank(Θ?

m,k) = NRF − 1, and the null
space of Θ?

m,k is one dimensional. Meanwhile, (47b) means
that Vm[k]? must lie in the null-space of Θ?

m,k, and we have
rank(Vm[k]?) = 1 and the proof is completed.
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