Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

Higher-order Coreference Resolution with Coarse-to-fine Inference


This repository contains the code for replicating results from

Getting Started

  • Install python (either 2 or 3) requirements: pip install -r requirements.txt
  • Download pretrained models at
    • Move the downloaded file to the root of the repo and extract: tar -xzvf e2e-coref.tgz
  • Download GloVe embeddings and build custom kernels by running
    • There are 3 platform-dependent ways to build custom TensorFlow kernels. Please comment/uncomment the appropriate lines in the script.
  • To train your own models, run
    • This assumes access to OntoNotes 5.0. Please edit the ontonotes_path variable.

Training Instructions

  • Experiment configurations are found in experiments.conf
  • Choose an experiment that you would like to run, e.g. best
  • Training: python <experiment>
  • Results are stored in the logs directory and can be viewed via TensorBoard.
  • Evaluation: python <experiment>

Demo Instructions

  • Command-line demo: python final
  • To run the demo with other experiments, replace final with your configuration name.

Batched Prediction Instructions

  • Create a file where each line is in the following json format (make sure to strip the newlines so each line is well-formed json):
  "clusters": [],
  "doc_key": "nw",
  "sentences": [["This", "is", "the", "first", "sentence", "."], ["This", "is", "the", "second", "."]],
  "speakers": [["spk1", "spk1", "spk1", "spk1", "spk1", "spk1"], ["spk2", "spk2", "spk2", "spk2", "spk2"]]
  • clusters should be left empty and is only used for evaluation purposes.
  • doc_key indicates the genre, which can be one of the following: "bc", "bn", "mz", "nw", "pt", "tc", "wb"
  • speakers indicates the speaker of each word. These can be all empty strings if there is only one known speaker.
  • Run python <experiment> <input_file> <output_file>, which outputs the input jsonlines with predicted clusters.

Other Quirks

  • It does not use GPUs by default. Instead, it looks for the GPU environment variable, which the code treats as shorthand for CUDA_VISIBLE_DEVICES.
  • The training runs indefinitely and needs to be terminated manually. The model generally converges at about 400k steps.