Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
310 lines (285 sloc) 14.5 KB
import pandas as pd
from autokeras import auto_model
from autokeras import hypermodels
from autokeras import nodes as input_module
from autokeras.tuners import greedy
class SupervisedStructuredDataPipeline(auto_model.AutoModel):
def __init__(self, outputs, column_names, column_types, **kwargs):
inputs = input_module.StructuredDataInput()
inputs.column_types = column_types
inputs.column_names = column_names
if column_types:
for column_type in column_types.values():
if column_type not in ['categorical', 'numerical']:
raise ValueError(
'Column_types should be either "categorical" '
'or "numerical", but got {name}'.format(name=column_type))
if column_names and column_types:
for column_name in column_types:
if column_name not in column_names:
raise ValueError('Column_names and column_types are '
'mismatched. Cannot find column name '
'{name} in the data.'.format(name=column_name))
super().__init__(inputs=inputs,
outputs=outputs,
**kwargs)
self._target_col_name = None
@staticmethod
def _read_from_csv(x, y):
df = pd.read_csv(x)
target = df.pop(y).to_numpy()
return df, target
def fit(self,
x=None,
y=None,
epochs=None,
callbacks=None,
validation_split=0.2,
validation_data=None,
**kwargs):
"""Search for the best model and hyperparameters for the task.
# Arguments
x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset.
Training data x. If the data is from a csv file, it should be a
string specifying the path of the csv file of the training data.
y: String, numpy.ndarray, or tensorflow.Dataset. Training data y.
If the data is from a csv file, it should be a string, which is the
name of the target column. Otherwise, it can be single-column or
multi-column. The values should all be numerical.
epochs: Int. The number of epochs to train each model during the search.
If unspecified, we would use epochs equal to 1000 and early stopping
with patience equal to 30.
callbacks: List of Keras callbacks to apply during training and
validation.
validation_split: Float between 0 and 1. Defaults to 0.2.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling. This argument is
not supported when `x` is a dataset.
The best model found would be fit on the entire dataset including the
validation data.
validation_data: Data on which to evaluate the loss and any model metrics
at the end of each epoch. The model will not be trained on this data.
`validation_data` will override `validation_split`. The type of the
validation data should be the same as the training data.
The best model found would be fit on the training dataset without the
validation data.
**kwargs: Any arguments supported by keras.Model.fit.
"""
# x is file path of training data
if isinstance(x, str):
self._target_col_name = y
x, y = self._read_from_csv(x, y)
if validation_data:
x_val, y_val = validation_data
if isinstance(x_val, str):
validation_data = self._read_from_csv(x_val, y_val)
super().fit(x=x,
y=y,
epochs=epochs,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
**kwargs)
def predict(self, x, batch_size=32, **kwargs):
"""Predict the output for a given testing data.
# Arguments
x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset.
Testing data x. If the data is from a csv file, it should be a
string specifying the path of the csv file of the testing data.
batch_size: Int. Defaults to 32.
**kwargs: Any arguments supported by keras.Model.predict.
# Returns
A list of numpy.ndarray objects or a single numpy.ndarray.
The predicted results.
"""
if isinstance(x, str):
x = pd.read_csv(x)
if self._target_col_name in x:
x.pop(self._target_col_name)
return super().predict(x=x,
batch_size=batch_size,
**kwargs)
def evaluate(self, x, y=None, batch_size=32, **kwargs):
"""Evaluate the best model for the given data.
# Arguments
x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset.
Testing data x. If the data is from a csv file, it should be a
string specifying the path of the csv file of the testing data.
y: String, numpy.ndarray, or tensorflow.Dataset. Testing data y.
If the data is from a csv file, it should be a string corresponding
to the label column.
batch_size: Int. Defaults to 32.
**kwargs: Any arguments supported by keras.Model.evaluate.
# Returns
Scalar test loss (if the model has a single output and no metrics) or
list of scalars (if the model has multiple outputs and/or metrics).
The attribute model.metrics_names will give you the display labels for
the scalar outputs.
"""
if isinstance(x, str):
x, y = self._read_from_csv(x, y)
return super().evaluate(x=x,
y=y,
batch_size=batch_size,
**kwargs)
class StructuredDataClassifier(SupervisedStructuredDataPipeline):
"""AutoKeras structured data classification class.
# Arguments
column_names: A list of strings specifying the names of the columns. The
length of the list should be equal to the number of columns of the data
excluding the target column. Defaults to None. If None, it will obtained
from the header of the csv file or the pandas.DataFrame.
column_types: Dict. The keys are the column names. The values should either
be 'numerical' or 'categorical', indicating the type of that column.
Defaults to None. If not None, the column_names need to be specified.
If None, it will be inferred from the data.
num_classes: Int. Defaults to None. If None, it will infer from the data.
multi_label: Boolean. Defaults to False.
loss: A Keras loss function. Defaults to use 'binary_crossentropy' or
'categorical_crossentropy' based on the number of classes.
metrics: A list of Keras metrics. Defaults to use 'accuracy'.
name: String. The name of the AutoModel. Defaults to
'structured_data_classifier'.
max_trials: Int. The maximum number of different Keras Models to try.
The search may finish before reaching the max_trials. Defaults to 100.
directory: String. The path to a directory for storing the search outputs.
Defaults to None, which would create a folder with the name of the
AutoModel in the current directory.
objective: String. Name of model metric to minimize
or maximize. Defaults to 'val_accuracy'.
overwrite: Boolean. Defaults to `True`. If `False`, reloads an existing
project of the same name if one is found. Otherwise, overwrites the
project.
seed: Int. Random seed.
"""
def __init__(self,
column_names=None,
column_types=None,
num_classes=None,
multi_label=False,
loss=None,
metrics=None,
name='structured_data_classifier',
max_trials=100,
directory=None,
objective='val_accuracy',
overwrite=True,
seed=None):
super().__init__(
outputs=hypermodels.ClassificationHead(num_classes=num_classes,
multi_label=multi_label,
loss=loss,
metrics=metrics),
column_names=column_names,
column_types=column_types,
max_trials=max_trials,
directory=directory,
name=name,
objective=objective,
tuner=greedy.Greedy,
overwrite=overwrite,
seed=seed)
def fit(self,
x=None,
y=None,
epochs=None,
callbacks=None,
validation_split=0.2,
validation_data=None,
**kwargs):
"""Search for the best model and hyperparameters for the task.
# Arguments
x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset.
Training data x. If the data is from a csv file, it should be a
string specifying the path of the csv file of the training data.
y: String, numpy.ndarray, or tensorflow.Dataset. Training data y.
If the data is from a csv file, it should be a string, which is the
name of the target column. Otherwise, It can be raw labels, one-hot
encoded if more than two classes, or binary encoded for binary
classification.
epochs: Int. The number of epochs to train each model during the search.
If unspecified, we would use epochs equal to 1000 and early stopping
with patience equal to 30.
callbacks: List of Keras callbacks to apply during training and
validation.
validation_split: Float between 0 and 1. Defaults to 0.2.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling. This argument is
not supported when `x` is a dataset.
validation_data: Data on which to evaluate the loss and any model metrics
at the end of each epoch. The model will not be trained on this data.
`validation_data` will override `validation_split`. The type of the
validation data should be the same as the training data.
**kwargs: Any arguments supported by keras.Model.fit.
"""
super().fit(x=x,
y=y,
epochs=epochs,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
**kwargs)
class StructuredDataRegressor(SupervisedStructuredDataPipeline):
"""AutoKeras structured data regression class.
# Arguments
column_names: A list of strings specifying the names of the columns. The
length of the list should be equal to the number of columns of the data
excluding the target column. Defaults to None. If None, it will obtained
from the header of the csv file or the pandas.DataFrame.
column_types: Dict. The keys are the column names. The values should either
be 'numerical' or 'categorical', indicating the type of that column.
Defaults to None. If not None, the column_names need to be specified.
If None, it will be inferred from the data.
output_dim: Int. The number of output dimensions. Defaults to None.
If None, it will infer from the data.
loss: A Keras loss function. Defaults to use 'mean_squared_error'.
metrics: A list of Keras metrics. Defaults to use 'mean_squared_error'.
name: String. The name of the AutoModel. Defaults to
'structured_data_regressor'.
max_trials: Int. The maximum number of different Keras Models to try.
The search may finish before reaching the max_trials. Defaults to 100.
directory: String. The path to a directory for storing the search outputs.
Defaults to None, which would create a folder with the name of the
AutoModel in the current directory.
objective: String. Name of model metric to minimize
or maximize, e.g. 'val_accuracy'. Defaults to 'val_loss'.
overwrite: Boolean. Defaults to `True`. If `False`, reloads an existing
project of the same name if one is found. Otherwise, overwrites the
project.
seed: Int. Random seed.
"""
def __init__(self,
column_names=None,
column_types=None,
output_dim=None,
loss='mean_squared_error',
metrics=None,
name='structured_data_regressor',
max_trials=100,
directory=None,
objective='val_loss',
overwrite=True,
seed=None):
super().__init__(
outputs=hypermodels.RegressionHead(output_dim=output_dim,
loss=loss,
metrics=metrics),
column_names=column_names,
column_types=column_types,
max_trials=max_trials,
directory=directory,
name=name,
objective=objective,
tuner=greedy.Greedy,
overwrite=overwrite,
seed=seed)
You can’t perform that action at this time.