diff --git a/keras_hub/src/models/mit/mit_backbone.py b/keras_hub/src/models/mit/mit_backbone.py index 1398fe8eee..4ac0402fbd 100644 --- a/keras_hub/src/models/mit/mit_backbone.py +++ b/keras_hub/src/models/mit/mit_backbone.py @@ -57,7 +57,7 @@ def __init__( ```python images = np.ones(shape=(1, 96, 96, 3)) labels = np.zeros(shape=(1, 96, 96, 1)) - backbone = keras_hub.models.MiTBackbone.from_preset("mit_b0_imagenet") + backbone = keras_hub.models.MiTBackbone.from_preset("mit_b0_ade20k_512") # Evaluate model model(images) diff --git a/keras_hub/src/models/mobilenet/mobilenet_backbone.py b/keras_hub/src/models/mobilenet/mobilenet_backbone.py index d3aff7e9b8..c4fe6f3413 100644 --- a/keras_hub/src/models/mobilenet/mobilenet_backbone.py +++ b/keras_hub/src/models/mobilenet/mobilenet_backbone.py @@ -96,7 +96,7 @@ def __init__( stackwise_activation, output_num_filters, inverted_res_block, - image_shape=(224, 224, 3), + image_shape=(None, None, 3), input_activation="hard_swish", output_activation="hard_swish", depth_multiplier=1.0, diff --git a/keras_hub/src/models/resnet/resnet_backbone.py b/keras_hub/src/models/resnet/resnet_backbone.py index bc8def804a..aee033cdda 100644 --- a/keras_hub/src/models/resnet/resnet_backbone.py +++ b/keras_hub/src/models/resnet/resnet_backbone.py @@ -68,7 +68,7 @@ class ResNetBackbone(FeaturePyramidBackbone): input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3)) # Pretrained ResNet backbone. - model = keras_hub.models.ResNetBackbone.from_preset("resnet50") + model = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet") model(input_data) # Randomly initialized ResNetV2 backbone with a custom config. diff --git a/keras_hub/src/models/vae/vae_backbone.py b/keras_hub/src/models/vae/vae_backbone.py index c84986314d..606107d17f 100644 --- a/keras_hub/src/models/vae/vae_backbone.py +++ b/keras_hub/src/models/vae/vae_backbone.py @@ -10,7 +10,7 @@ class VAEBackbone(Backbone): - """VAE backbone used in latent diffusion models. + """Variational Autoencoder(VAE) backbone used in latent diffusion models. When encoding, this model generates mean and log variance of the input images. When decoding, it reconstructs images from the latent space. @@ -51,6 +51,18 @@ class VAEBackbone(Backbone): `"channels_last"`. dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype to use for the model's computations and weights. + + Example: + ```Python + backbone = VAEBackbone( + encoder_num_filters=[32, 32, 32, 32], + encoder_num_blocks=[1, 1, 1, 1], + decoder_num_filters=[32, 32, 32, 32], + decoder_num_blocks=[1, 1, 1, 1], + ) + input_data = ops.ones((2, self.height, self.width, 3)) + output = backbone(input_data) + ``` """ def __init__( diff --git a/keras_hub/src/models/vgg/vgg_backbone.py b/keras_hub/src/models/vgg/vgg_backbone.py index 504624a6c4..ef91c8689d 100644 --- a/keras_hub/src/models/vgg/vgg_backbone.py +++ b/keras_hub/src/models/vgg/vgg_backbone.py @@ -20,7 +20,7 @@ class VGGBackbone(Backbone): stackwise_num_filters: list of ints, filter size for convolutional blocks per VGG block. For both VGG16 and VGG19 this is [ 64, 128, 256, 512, 512]. - image_shape: tuple, optional shape tuple, defaults to (224, 224, 3). + image_shape: tuple, optional shape tuple, defaults to (None, None, 3). Examples: ```python