Skip to content
Branch: master
Find file History
xemcerk and gabrieldemarmiesse Fix too many values to unpack error (#13511)
* fix too many values to unpack error

In the example script lstm_seq2seq_restore.py and lstm_seq2seq.py, when
parse the data using line.split("\t"), it will return 3 values rather than
2, a simple modification can fix it.

* add blankspace around operator
Latest commit 7a39b6c Nov 6, 2019
Permalink
Type Name Latest commit message Commit time
..
Failed to load latest commit information.
README.md Add missing examples to examples/README.md (#10637) Jul 10, 2018
addition_rnn.py Displayed some examples in the docs. (#11758) Jan 24, 2019
antirectifier.py Added MarkDown formatting to examples/antirectifier.py (#12294) Feb 17, 2019
babi_memnn.py Added MarkDown formatting support to examples/babi_memnn.py (#12221) Feb 7, 2019
babi_rnn.py Update babi_rnn.py (#13263) Sep 11, 2019
cifar10_cnn.py Update examples Sep 8, 2019
cifar10_resnet.py Update examples Sep 8, 2019
class_activation_maps.py Update examples Sep 8, 2019
cnn_seq2seq.py add cnn seq2seq example (#12831) May 23, 2019
conv_filter_visualization.py Remove deprecated example, fix conv filter example Sep 8, 2019
conv_lstm.py Added MarkDown formatting to examples/conv_lstm.py (#12293) Feb 17, 2019
deep_dream.py Update examples Sep 8, 2019
image_ocr.py Update examples Sep 9, 2019
imdb_bidirectional_lstm.py Added MarkDown formatting to examples/imdb_bidirectional_lstm.py (#12287 Feb 17, 2019
imdb_cnn.py Added MarkDown formatting to examples/imdb_cnn.py (#12292) Feb 17, 2019
imdb_cnn_lstm.py Added Markdown formatting to examples/imdb_cnn_lstm.py (#12303) Feb 19, 2019
imdb_fasttext.py Added MarkDown formatting to examples/imdb_fasttext.py (#12312) Feb 21, 2019
imdb_lstm.py Added Markdown formatting to examples/imdb_lstm.py (#12313) Feb 21, 2019
lstm_seq2seq.py Fix too many values to unpack error (#13511) Nov 6, 2019
lstm_seq2seq_restore.py Fix too many values to unpack error (#13511) Nov 6, 2019
lstm_stateful.py
lstm_text_generation.py Update examples Sep 8, 2019
mnist_acgan.py Update examples Sep 8, 2019
mnist_cnn.py Remove word “shuffled” from comments in examples (#9453) Feb 22, 2018
mnist_denoising_autoencoder.py Fix typos (#9138) Jan 20, 2018
mnist_hierarchical_rnn.py Enable examples pep8 (#10968) Aug 25, 2018
mnist_irnn.py Update examples Sep 8, 2019
mnist_mlp.py Remove word “shuffled” from comments in examples (#9453) Feb 22, 2018
mnist_net2net.py Update examples Sep 8, 2019
mnist_siamese.py Fix typo in siamese example (#12339) Feb 24, 2019
mnist_sklearn_wrapper.py Update examples Sep 8, 2019
mnist_swwae.py Update examples Sep 9, 2019
mnist_transfer_cnn.py Remove word “shuffled” from comments in examples (#9453) Feb 22, 2018
neural_doodle.py
neural_style_transfer.py Update examples Sep 9, 2019
pretrained_word_embeddings.py Update pretrained_word_embeddings.py (#13073) Jul 9, 2019
reuters_mlp.py Style fix for examples. (#5980) Mar 26, 2017
reuters_mlp_relu_vs_selu.py Basic style fixes in example docstrings Nov 8, 2017
variational_autoencoder.py Fix a bug (#12618) Apr 4, 2019
variational_autoencoder_deconv.py Formatting fixes (#12090) Jan 21, 2019

README.md

Keras examples directory

Vision models examples

mnist_mlp.py Trains a simple deep multi-layer perceptron on the MNIST dataset.

mnist_cnn.py Trains a simple convnet on the MNIST dataset.

cifar10_cnn.py Trains a simple deep CNN on the CIFAR10 small images dataset.

cifar10_cnn_capsule.py Trains a simple CNN-Capsule Network on the CIFAR10 small images dataset.

cifar10_resnet.py Trains a ResNet on the CIFAR10 small images dataset.

conv_lstm.py Demonstrates the use of a convolutional LSTM network.

image_ocr.py Trains a convolutional stack followed by a recurrent stack and a CTC logloss function to perform optical character recognition (OCR).

mnist_acgan.py Implementation of AC-GAN (Auxiliary Classifier GAN) on the MNIST dataset

mnist_hierarchical_rnn.py Trains a Hierarchical RNN (HRNN) to classify MNIST digits.

mnist_siamese.py Trains a Siamese multi-layer perceptron on pairs of digits from the MNIST dataset.

mnist_swwae.py Trains a Stacked What-Where AutoEncoder built on residual blocks on the MNIST dataset.

mnist_transfer_cnn.py Transfer learning toy example on the MNIST dataset.

mnist_denoising_autoencoder.py Trains a denoising autoencoder on the MNIST dataset.


Text & sequences examples

addition_rnn.py Implementation of sequence to sequence learning for performing addition of two numbers (as strings).

babi_rnn.py Trains a two-branch recurrent network on the bAbI dataset for reading comprehension.

babi_memnn.py Trains a memory network on the bAbI dataset for reading comprehension.

imdb_bidirectional_lstm.py Trains a Bidirectional LSTM on the IMDB sentiment classification task.

imdb_cnn.py Demonstrates the use of Convolution1D for text classification.

imdb_cnn_lstm.py Trains a convolutional stack followed by a recurrent stack network on the IMDB sentiment classification task.

imdb_fasttext.py Trains a FastText model on the IMDB sentiment classification task.

imdb_lstm.py Trains an LSTM model on the IMDB sentiment classification task.

lstm_stateful.py Demonstrates how to use stateful RNNs to model long sequences efficiently.

lstm_seq2seq.py Trains a basic character-level sequence-to-sequence model.

lstm_seq2seq_restore.py Restores a character-level sequence to sequence model from disk (saved by lstm_seq2seq.py) and uses it to generate predictions.

pretrained_word_embeddings.py Loads pre-trained word embeddings (GloVe embeddings) into a frozen Keras Embedding layer, and uses it to train a text classification model on the 20 Newsgroup dataset.

reuters_mlp.py Trains and evaluate a simple MLP on the Reuters newswire topic classification task.


Generative models examples

lstm_text_generation.py Generates text from Nietzsche's writings.

conv_filter_visualization.py Visualization of the filters of VGG16, via gradient ascent in input space.

deep_dream.py Deep Dreams in Keras.

neural_doodle.py Neural doodle.

neural_style_transfer.py Neural style transfer.

variational_autoencoder.py Demonstrates how to build a variational autoencoder.

variational_autoencoder_deconv.py Demonstrates how to build a variational autoencoder with Keras using deconvolution layers.


Examples demonstrating specific Keras functionality

antirectifier.py Demonstrates how to write custom layers for Keras.

mnist_sklearn_wrapper.py Demonstrates how to use the sklearn wrapper.

mnist_irnn.py Reproduction of the IRNN experiment with pixel-by-pixel sequential MNIST in "A Simple Way to Initialize Recurrent Networks of Rectified Linear Units" by Le et al.

mnist_net2net.py Reproduction of the Net2Net experiment with MNIST in "Net2Net: Accelerating Learning via Knowledge Transfer".

reuters_mlp_relu_vs_selu.py Compares self-normalizing MLPs with regular MLPs.

mnist_tfrecord.py MNIST dataset with TFRecords, the standard TensorFlow data format.

mnist_dataset_api.py MNIST dataset with TensorFlow's Dataset API.

cifar10_cnn_tfaugment2d.py Trains a simple deep CNN on the CIFAR10 small images dataset using Tensorflow internal augmentation APIs.

tensorboard_embeddings_mnist.py Trains a simple convnet on the MNIST dataset and embeds test data which can be later visualized using TensorBoard's Embedding Projector.

You can’t perform that action at this time.