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ABSTRACT

Background Advances in the understanding of complex trait genetics have always been enabled by advances
in genomic technology. Next-generation sequencing (NGS) is set to revolutionize the way complex trait genetics
research is carried out.

Results NGS has multiple applications in the field of human genetics, but is accompanied by substantial study
design, analysis and interpretation challenges. This review discusses key aspects of study design considera-
tions, data handling issues and required analytical developments. We also highlight early successes in mapping
genetic traits using NGS.

Conclusion NGS opens the entire spectrum of genomic alterations for the genetic analysis of complex traits
and there are early publications illustrating its power. Continuing development in analytical tools will allow the
promise of NGS to be realized.
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Advances in complex trait genetics

The field of complex trait genetics has progressed rapidly over

the last 5 years. Irreproducible candidate gene studies examin-

ing a few single nucleotide polymorphisms (SNPs) and declar-

ing significance at relaxed thresholds riddled the literature and

represented standard study design and practice less than a

decade ago. Advances in high-throughput genotyping technol-

ogies revolutionized our understanding of human genome

variation, enabled better-designed studies and, with dropping

costs, ultimately enabled genome-wide association scans

(GWAS). GWAS transformed the field of complex trait research

and have been very successful in identifying robustly associ-

ated common variants. The field is now shifting towards the

study of lower frequency and rare variants, which have recently

been shown to influence common traits. These studies can only

be empowered by technological advances (in sequencing and

rare variant typing), improved bioinformatics approaches and a

better understanding of human sequence variation and thus

following the historical trend of advances in human genetics.

History of sequencing technology development

Sequencing technology advances are inextricably linked with

advances in chemistry, biology, engineering and computer

science [1,2]. The history of DNA sequencing has been charac-

terized by two periods of rapid development (1970–1977;

2005–2010) with 28 intervening years of gradual progress. In

December of 1977, Sanger et al. [3] published their ‘‘dideoxy

method’’ that used chain-terminating nucleotide analogues to

cause base-specific termination of primed DNA synthesis. This

eventually became the workhorse of DNA sequencing over the

next 28 years and was the foundation of the sequencing of the

human genome published in 2001 [4,5]. Developments between

1977 and 2005 (when the first next-generation paper was pub-

lished) were centred on increasing throughput and accuracy

and decreasing cost. Important advances such as the invention

of PCR [6], the development of the first automated DNA

sequencer [7] and of dye-terminator sequencing [8], the release

of commercial automated sequencers and the introduction of

capillary electrophoresis for separating DNA molecules [9,10]

paved the way for sequencing to play an important role in

expanding biological knowledge.

The need for high-throughput, low-cost sequencing drove

the development of massively parallel technologies, also

termed next-generation sequencing (NGS) technologies. The

first generation of NGS technologies achieved this using
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pyrosequencing (e.g. 454) [11], sequencing by ligation (e.g.

SOLiD) [12] and sequencing by synthesis (e.g. Illumina, Helicos)

[13–15]. Costs have already dropped dramatically from�$500

Million for the first human genome to�$10 Million using capil-

lary sequencing to�$30 000 per genome using NGS in 2010.

NGS applications in complex trait research

Next-generation sequencing can be used both for de novo

sequencing of genomes (requiring sequence assembly) and for

sample re-sequencing that compares the resulting data to the

reference sequence to discover variation present in the sample.

NGS greatly expands the types, sizes and frequency spectra of

genomic variation amenable to analysis. In addition to genomic

variation, NGS is an ideal platform to investigate gene expres-

sion below the noise level of microarrays, analyse allele-specific

gene expression, investigate alternative splicing, histone modi-

fications, transcription factor binding and achieve methylome

analysis at base-pair resolution. Currently, the most widely

used application of NGS in complex trait genetic studies

involves SNP discovery and genotyping. NGS allows the previ-

ously unattainable, systematic discovery of low frequency vari-

ants in thousands of samples and association of these variants

with phenotypes of interest. NGS can also facilitate the detec-

tion and typing of structural variants along their full size and

frequency spectra, although the field is still in its infancy (but

will undoubtedly rapidly progress). Large-scale experiments

such as the 1000 genomes (http://www.1000genomes.org/

page.php) and the UK10k (http://www.uk10k.org/) projects

will provide an excellent resource of sequence data and derive

variant information for the scientific community. As with the

advent of high-throughput genotyping a few years ago, NGS is

a technological advance that requires specialized analysis tools

and carries specific study design considerations that are just

now starting to be addressed.

Analytical challenges

Although NGS can open up vast opportunities for the discovery

of complex trait genetic determinants, several analytical chal-

lenges need to be addressed first. We discuss five of these issues

that range from study design to downstream analyses below.

Optimizing parameters for sequencing study design
The advent of NGS has given rise to novel study design consid-

erations, beyond those encountered by researchers conducting

large-scale genotyping experiments. Theoretically, NGS can

deliver whole-genome sequencing (WGS) for individual

samples, but realistically a cost-to-data equilibrium has to be

reached within the context of the research question. This can be

balanced by considering only a fraction of the genome and ⁄ or

by pooling samples. Whole-genome, whole-exome and targeted

gene ⁄ region re-sequencing offer different levels of agnosticity

with inversely correlated costs. WGS approaches are appropri-

ate when there is no a priori biological reason to restrict the

investigation to specific regions of the genome. A similar

approach was followed in GWAS and conclusively showed that

common variants underlying complex traits are distributed

across the genome and are not preferentially situated within

genes. However, WGS can be prohibitively expensive. Whole-

exome sequencing offers coverage of exons and noncoding

RNAs and is the gene-centric global alternative to WGS.

Targeted regional re-sequencing can be useful in fine-mapping

experiments, for example following identification of robust

GWAS signals. Non-WGS approaches employ sequence enrich-

ment techniques (PCR, array-based sequence capture and

in-solution capture) focusing on regions of interest. Sequence

capture methods enable large-scale experiments that would not

be feasible with PCR (which is difficult to multiplex, optimize

and normalize, but can be highly effective). Cost efficiency can

also be improved by pooling DNA samples rather than

sequencing samples individually. Pools can either be indexed

or nonindexed and the choice depends on the goal of the exper-

iment. Indexing pools allow the 1:1 mapping of reads to sam-

ples, whereas nonindexed pooling does not. Nonindexed pools

break the relationship between reads and samples and place an

enormous burden on variant calling algorithms to disentangle

true variants from NGS errors. Indexing allows individual

genotyping and increased frequency estimation accuracy. The

advent of NGS has also added considerations to the way in

which power is calculated, for example depth of coverage has

to be taken into account. Sample selection is another important

aspect of study design. Depending on the research question

asked, NGS experiments may be most powerful when focusing

on families, unrelated individuals, selected cases and controls

or individuals from the extremes of a trait distribution.

Storing and handling data
The first pragmatic requirement of NGS analysis involves an

informatics infrastructure to store, access and handle these

data of unprecedented scale. Raw data from NGS platforms

are base incorporation fluorescence images, analysis of

which produces the base calls. As an example, a single run

of an Illumina GAII sequencing machine produces approxi-

mately four terabytes (Tb) of data, but archiving of these

raw image files is no longer considered necessary. Sequence

alignment map (SAM) and the binary equivalent (BAM) file

formats are now routinely used in production pipelines [16]

across platforms. Compute and storage capacity are major

considerations in NGS data generation, and the field is

debating migration towards cloud computing as a possible

solution.
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Mapping and aligning to the reference genome
The first step in analysing NGS data is mapping and alignment

(alignment for short) of the generated small reads to a reference

sequence. Computational challenges associated with this task

include handling the sheer number of reads, dealing with

nonunique mapping and variation in base quality, and have

required algorithm development to produce efficient programs

for mapping NGS reads to the reference genome [17–23]. Li and

Homer [24] provide a detailed comparison of alignment algo-

rithms. Read alignment is a computationally intensive task, and

a bottleneck in the analysis of NGS data. Alignment algorithms

are evolving and becoming faster, which is a necessity as lane

throughput continues to grow. Correct read alignment to the

reference is an extremely important step, as any mapping errors

are then propagated into downstream analysis. A further major

determinant of alignment algorithm performance is the com-

pleteness and accuracy of the reference genome. The current

human reference genome is a composite genome from a small

set of individuals and contains gaps. Recent publications of

individuals’ entire genomes have revealed that they contain

sequence that is not found anywhere in the reference human

genome [14,15,25]. Recent unpublished work has shown an

improvement in overall alignment accuracy if this novel

sequence is included as part of the reference (DePristo and Li,

unpublished). Emerging whole-genome NGS data will allow

the construction of a more complete reference genome.

Variant calling and genotyping
The discovery and genotyping of sequence variants repre-

sents the cornerstone of NGS data use in complex trait

genetic association studies. There are several challenges in

calling true variants and distinguishing them from mapping

and sequencing errors. The field has therefore been active in

developing and optimizing SNP (variant) calling algorithms.

We focus here on three of the sources of confounding that

can substantially complicate the identification and genotyping

of variants from NGS data: (i) alignment artefacts around

small insertions–deletions (indels), (ii) PCR artefacts from

library preparation and (iii) error profile of reads. Alignment

artefacts due to indels are a major source of false positive

SNP calls. The misalignment of reads containing small indels

is a consequence of the fact that all reads are mapped inde-

pendently and is exacerbated by algorithms that do not

perform gapped alignments (M. A. Depristo et al. in prepara-

tion). The consequences of such resulting misalignment are

that there will be several base mismatches with the reference

around the indel. These mismatches are errors but appear to

the variant calling algorithms as high-confidence SNPs

because they are supported by multiple reads, all with poten-

tially good mapping quality scores (Figure 1). Therefore,

either SNP calling algorithms need to be indel-‘aware’ or

potential indels should first be identified, local realignment

or assembly performed around them, followed by SNP

Reference sequence

Read suppor�ng reference

Read suppor�ng inser�on

Misaligned read

False SNP calls

Misaligned read

Inser�on

C A G C T G G A A A T T * * C C T T C T T T G A A G T C

C A G C T G G A A A T T * * C C T T C T T T G A A G T C

C A G C T G G A A A T T G C C C T T C T T T G A A G T C

G C * * C C T T C T T T G A A G T C

C A G C T G G A A A T T * * G C C

Figure 1 Consequences of Short Indel Misalignment on False Positive single nucleotide polymorphisms (SNP) Calling. Turquoise
bars represent false positive SNPs caused by the misalignment of reads containing a two base-pair insertion relative to the
reference. For the misaligned reads, since the inserted sequence occurs at the beginning ⁄ end of short reads, it is difficult for the
alignment algorithms to recognize the insertion. Whereas for the correctly mapped insertion read, the inserted sequence occurs in
the middle of a read with perfect matches on either side of the indel allowing the alignment algorithm correctly open a gap in the
reference. Several SNPs in such a short window are hallmarks of indel misalignment.
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calling after completion of these initial steps. An additional

challenge to true variant discovery is a consequence of errors

introduced through the PCR steps in library preparation.

Sequencing experiments expect that each base is equally

likely to be covered and that each read represents a unique

piece of DNA. However, in actuality, these null assumptions

are not realized due to both variable GC content and PCR

artefacts. The construction of Illumina libraries requires PCR,

and during this process, a particular DNA fragment can

become clonally amplified and over-represented in the

library. This leads to a single piece of DNA generating a

large number of nonindependent reads covering the same

bases. If the PCR reaction introduces DNA replication errors,

there may be numerous reads (depending on the cycle where

the error was introduced) supporting the correct and the

erroneous bases, thus generating what looks like a confident

SNP call. The use of paired-end sequencing libraries allows

researchers to identify and properly deal with these PCR-

related issues. The probability that two reads from a pair-end

library have the exact same outer coordinates is extremely

small; therefore, reads that have exactly the same outer coor-

dinates are considerably more likely to be clonal and nonin-

dependent. Currently, the recommended way to deal with

these reads is to mark them as duplicates, and only use the

read in the set with the best mapping quality. In this way, if

there truly is a variant at the locus, the evidence will come

from independent reads. The final challenge in making good

SNP calls we discuss here is the location of the variant in the

reads that harbour the variant. Bases at the ends of reads can

have a substantially higher error rate than bases at the begin-

ning and middle of reads. SNP calling algorithms do consider

the base quality score, but it has been shown that quality

scores coming off the machines are not well-calibrated [M. A.

Depristo et al. in preparation, 26,27]. This makes recalibrating

the quality scores of the aligned bases before SNP calling

extremely important. Even with recalibrated base qualities,

the ends of reads can lead to spurious SNP calls. The

approach used to filter out spurious SNP calls due to base

calling errors involves clipping the end of reads, so that only

the portion of reads with high-confidence bases is used for

alignment and variant calling. The road to high-confidence

genotyping is paved with similar challenges. Until uncer-

tainty is minimized or eradicated, it is important to generate

variant-associated quality metrics that reflect the level of con-

fidence both at the variant level and at the individual genotype

level (M. A. Depristo et al. in preparation).

Analysing multiple low frequency and rare variants
with respect to the trait of interest
The search for causal loci in rare diseases with Mendelian

characteristics is conceivably relatively straightforward given

full sequence data, even though analyses will need to account

for sequence and calling errors that may give rise to false

positive or false negative findings in the case and control

samples studied. Detecting robust association with common,

complex traits can be a much more complicated analytical

task, as the effects sought can be very subtle. Single-point

analysis of low frequency and rare variants will require hun-

dreds of thousands of individuals in order to robustly detect

modest effect sizes. To overcome this issue, powerful

approaches for the aggregate analysis of multiple low fre-

quency ⁄ rare variants across a locus that may exhibit allelic

heterogeneity have recently started to emerge [28–30]

(Figure 2). Analogous methods incorporating sequence-

derived quality scores and genotype-specific uncertainty will

also be required in order to appropriately account for possi-

ble sources of error. The interpretation of signals from such

locus-wide approaches can be difficult. The paradigm of

replication of association at the same variant, with the same

allele, in the same direction is starting to shift in order to

allow for heterogeneity across sample sets. Similarly, the

combination of data in meta-analytical frameworks will have

to accommodate conceivable differences in both effect size

and direction of effect across strata.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Individual 8

Individual 9

Individual 10

Individual 11

Individual 12

Individual 13

Individual 14

Individual 15

Individual ….

Figure 2 Graphical representation of allelic heterogeneity at a
locus with common and low frequency ⁄ rare variant associa-
tions with a complex trait. Turquoise bars represent trait-
related variants carried by different individuals at a locus of
interest. Bar width represents variant frequency (wider bars
denote variants with higher frequency). Single-point associa-
tion analysis of the low frequency ⁄ rare variants has extremely
low power, but composite analysis by considering all variants
of interest locus-wide is a more powerful alternative.

564 ª 2010 The Authors. European Journal of Clinical Investigation ª 2010 Stichting European Society for Clinical Investigation Journal Foundation

A. G. DAY-WILLIAMS AND E. ZEGGINI www.ejci-online.com



Discovery of disease genes using NGS

Research published over the last 6 months has validated the

power of NGS to identify disease genes [31–35]. Different study

designs and different platforms have been employed to suc-

cessfully identify Mendelian disease loci, thus illustrating the

robustness of data generated by NGS. Choi et al. reported the

first use of NGS to elucidate the genetic cause of a disease

through targeted re-sequencing of the exome of a single

individual using NimbleGen exon-capture arrays followed by

sequencing with Illumina’s Genome Analyzer platform [31].

Choi et al. found a homozygous missense mutation in SLC26A3

leading to a diagnosis of congenital chloride diarrhoea,

although the patient was originally suspected of having Bartter

syndrome. Ng et al. conducted a proof-of-concept experiment

using Agilent exon-capture arrays and Illumina’s Genome

Analyzer to sequence the exomes of four unrelated individuals

affected with the rare, dominantly inherited Freeman-Sheldon

syndrome (FSS) and eight unaffected HapMap individuals, and

unambiguously detected the previously identified gene MYH3

responsible for FSS [32]. Ng et al. followed this proof-of-concept

experiment with a study that identified mutations in the gene

DHODH as the previously unidentified cause of Miller

syndrome, a rare Mendelian disease. Lupski et al. used the

SoLID NGS platform to sequence the whole genome of an indi-

vidual with Charcot-Marie-Tooth neuropathy to identify the

causative alleles in the gene SH3TC2 and confirmed the causa-

tive nature of the identified mutations by directly sequencing

the exons where the mutations occurred in all family members

[34]. Roach et al. sequenced a nuclear family with two siblings

affected by the recessive disorders Miller syndrome and

primary ciliary dyskinesia using Complete Genomics’ service-

based NGS [35] and was able to narrow down the disease-caus-

ing gene interval substantially. These five studies illustrate the

power of NGS to quickly identify the causes of rare, Mendelian

diseases by sequencing a small number of individuals. These

are promising first steps in the use of NGS to identify disease

genes, but are very different in nature and scale from the

studies needed to identify susceptibility variants involved in

common, complex traits.

Sequencing strategies for complex trait locus identification

can differ widely and come with different sensitivity and speci-

ficity requirements (Table 1). Type 1 diabetes, a complex auto-

immune disease, has provided the first example of NGS-driven

disease locus identification. Nejentsev et al. identified four sig-

nificantly associated low frequency ⁄ rare SNPs (MAF < 3%) in

IFIH1 by pooled re-sequencing of 480 cases and 480 controls

using the 454 platform and thus identified IFIH1 as the most

likely causative gene in the previously associated linkage

disequilibrium block that contained three other genes [36]. NGS

approaches are also shedding new light into the genomic events

underlying cancer. NGS of cancer genomes allows researchers

to identify both SNPs and genomic rearrangements on a

genome-wide scale, allowing for a greater understanding of

somatic mutations. For example, NGS has provided new

insight into recurrent mutations in acute myeloid leukaemia

[37], acquired somatic mutations in melanoma [38], substitu-

tions and rearrangements in lung cancer [39,40] and the evolu-

tion of substitutions and rearrangements found in breast cancer

[41,42]. These early applications demonstrate the potential of

NGS to help elucidate the genetics of diverse traits and

diseases.

Table 1 Sensitivity and specificity of next-generation sequencing designs in complex disease studies

Project type Example setting Sequencing design

Required

sensitivity

Required

specificity

Sequence variant

discovery

Variant identification in candidate region

before genotyping follow-up

Targeted (nonindexed pools can

increase cost efficiency)

High Low

Novel association

discovery

Genome-wide sequence-based association

study; promising variants followed-up

with genotyping

Whole-genome ⁄ Whole-exome High Medium

Fine-mapping

established

association signal

Variant identification and association

testing to narrow established association

signal

Targeted (indexed pools can

increase cost efficiency)

Medium High

Cancer somatic

mutation

Identifying interchromosomal

rearrangements, duplications,

amplifications, point mutations

Whole-genome (both normal and

cancer samples sequenced)

High High

Sensitivity is defined as the ability to detect all variants present (e.g. high sensitivity ‡ high true positive rate). Specificity is defined as the correctness of called

variants (e.g. high specificity ‡ high true negative rate).
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Conclusions

Next-generation sequencing has, like many technological leaps

forward, realized numerous possibilities for the field of com-

plex trait genetics. Although multiple production, study design,

analysis and interpretation issues remain unresolved, progress

in developing, calibrating and optimizing tools for more accu-

rate data delivery and powerful association analysis has started

to materialize. The gap in heritability left by the study of com-

mon variants can now be probed. Examples of successes are

starting to emerge in the literature [36]. NGS may hold the key

to linking sequence polymorphism along the full variation,

frequency and effect size spectrum to polygenic phenotypes

and is set to transform the way in which complex trait genetics

research is carried out.
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