Skip to content
Interactive Web Plotting for Python
Branch: master
Clone or download
Pull request Compare This branch is 927 commits behind bokeh:master.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github Update ISSUE_TEMPLATE.md Aug 5, 2017
bokeh update docs to install flexx from conda-forge (bokeh#7551) Feb 21, 2018
bokehjs Implement rollover correctly in non-typed array case (bokeh#7547) Feb 21, 2018
conda.recipe Remove pytest-catchlog from test dependencies (bokeh#7511) Feb 9, 2018
docker-tools Add support for npm 5 and upgrade no nodejs 8.8+ (bokeh#7314) Dec 13, 2017
examples Add axis names to Scatterplot matrix (bokeh#7530) Feb 19, 2018
scripts Update version number in package-lock.json (bokeh#7459) Jan 25, 2018
sphinx update docs to install flexx from conda-forge (bokeh#7551) Feb 21, 2018
tests Resolve pytest --log-file conflict (bokeh#7346) Dec 26, 2017
.bettercodehub.yml canonicalize bokeh.colors (bokeh#6994) Oct 2, 2017
.dockerignore Developer docker tools (bokeh#6375) Jul 16, 2017
.gitattributes add versioneer for version better automatic version number support Oct 10, 2013
.gitignore Replace backbone events with signaling API (bokeh#6233) May 8, 2017
.travis.yml try adding new anaconda token to the end of secure vars Oct 25, 2017
CHANGELOG 'Updating for version 0.12.14' Feb 7, 2018
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md Sep 10, 2017
LICENSE.txt 0.12.7 docs/examples (bokeh#6750) Aug 28, 2017
MAINTAINERS 0.12.7 docs/examples (bokeh#6750) Aug 28, 2017
MANIFEST.in Rewrite api in TypeScript (bokeh#7395) Jan 11, 2018
README.md update pip badge Feb 8, 2018
_setup_support.py Add support for npm 5 and upgrade no nodejs 8.8+ (bokeh#7314) Dec 13, 2017
classifiers.txt Use `git ls-files` to collect files for code quality tests (bokeh#5751) Jan 19, 2017
conftest.py add mark for tests needing selenium and support pytest --unmarked (bo… Jun 19, 2017
requirements.txt Use `git ls-files` to collect files for code quality tests (bokeh#5751) Jan 19, 2017
secrets.tar.enc Enable npm.org and pypi uploads. Jun 19, 2015
setup.cfg Clean up sampledata (bokeh#7022) Oct 9, 2017
setup.py document min PhantomJS version and error on bad versions (bokeh#7480) Jan 30, 2018
versioneer.py Use `git ls-files` to collect files for code quality tests (bokeh#5751) Jan 19, 2017

README.md

Bokeh

Latest Release latest release
License Bokeh license
Build Status build status
Static Analyis
Conda conda downloads
PyPI
Live Tutorial
Gitter
Twitter

Bokeh, a Python interactive visualization library, enables beautiful and meaningful visual presentation of data in modern web browsers. With Bokeh, you can quickly and easily create interactive plots, dashboards, and data applications.

Bokeh helps provide elegant, concise construction of novel graphics in the style of D3.js, while also delivering high-performance interactivity over very large or streaming datasets.

Interactive gallery

image anscombe stocks lorenz candlestick scatter splom
iris histogram periodic choropleth burtin streamline image_rgba
stacked quiver elements boxplot categorical unemployment les_mis

Installation

We recommend using the Anaconda Python distribution and conda to install Bokeh. Enter this command at a Bash or Windows command prompt:

conda install bokeh

This installs Bokeh and all needed dependencies.

To begin using Bokeh or to install using pip, follow the Quickstart documentation.

Documentation

Visit the Bokeh web page for information and full documentation, or launch the Bokeh tutorial in live Jupyter Notebooks

Contribute to Bokeh

To contribute to Bokeh, please review the Developer Guide.

Follow us

Follow us on Twitter @bokehplots and on YouTube.

You can’t perform that action at this time.