Arsenic Mobile - A zero configuration ARP poisoning and credential
extraction tool for iOS

Kernel Sanders

Abstract

Trust and malicious activity on local networks were
not major considerations when the address resolution
protocol (ARP) was defined in 1982, and were still
unsatisfied in 1991 when HTTP was defined. As secu-
rity issues came to light, secure sockets layer (SSL,
defined in 1995) was developed as an attempt to
address these issues. However, because of the specifics
of both protocols coupled with unscrupulous users,
there remains an opportunity for exploitation.

Tools have been developed that exploit the vulner-
abilities inherent in the protocols, and this paper will
focus on original research implementing one such tool
(arsenic) in a user friendly manner on mobile devices.
What used to take multiple tools and configurations
on a full OS can now be accomplished with a single
command on a cell phone. Arsenic-mobile can be used
to demonstrate and educate users on the potential
dangers of these protocols commonly thought of as
secure.

1. Introduction

When the protocols that are now used as the back-
bone for networking were first developed, the notion
of trust and security were not major concerns of their
creators. The predominately government and research
university makeup of this new network did not re-
quire any extra precautions, as all members of the
network could be trusted. As this small network grew
into the internet, security concerns grew more serious
as the network began to host sensitive information
and moderate transactions. To counter these threats,
Netscape developed the secure sockets layer (SSL)
encryption protocol in 1995 [1]. This protocol uses
asymmetric (public key) cryptography to exchange
symmetric encryption keys to encrypt session traffic.
SSL was completely rewritten in 1996, and eventually
replaced by transport layer security (TLS) [2]. TLS
was based on SSL and uses the same cryptographic
principles. Today TLS 1.0 is the most prevalent form

of encryption used on the internet, despite a published
attack [3] [4].

2. Possible Attack Vectors

The SSL/TLS protocol presents a limited number
of areas where an attacker could potentially circumvent
the security measures and perform a man in the middle
attack. First, an attacker could determine the private
key associated with a signed certificate. This would
mean reversing a strong public key algorithm such as
RSA, which has been shown is very computationally
expensive. It has been shown that to factor a 768-bit
number it would take a standard computer of today
15,000 years [5]. This attack method is clearly not
practical for a man in the middle attack.

Second, an attacker could attempt to sign their
own certificate to say that they are the site they
are impersonating. However, this requires the same
computational work as determining a private key and
therefore is also impractical.

Finally, an attacker could break into a legitimate
certificate authority and sign themselves certificates
for popular websites. This would also be extremely
difficult, but it has been done before. On the 15th
of March, 2011 an Iranian hacker managed to sign
himself nine certificates for seven popular domains
[6]. However, most internet traffic is not encrypted
with SSL/TLS, and therefore most start these secure
sessions from regular HTTP sessions. These secure
sessions are initiated through HTTP 302 redirects, or
when the user clicks on a link to an HTTPS site.
Because these requests are sent unencrypted, they
could be seen and denied.

3. sslstrip and Arsenic

At Blackhat 2009, Moxie Marlinspike released a
tool that monitors HTTP connections and when a
user attempts to elevate to an HTTPS connection (by
clicking on a link or by being redirected) this tool
maintains the HTTP connection to the user, while
establishing an HTTPS connection out to the server [7].



This attack can be used to effectively capture a users
credentials without causing any warnings (such as an
invalid certificate warning) to appear in the browser.
In modern browsers the user experience between the
same website on HTTP and HTTPS is minimal.

Leveraging this fact, tools have been created that
incorporate the ARP cache poisoning and network
scanning with sslstrip to provide a simple, compact
way to implement this attack. One such tool is Arsenic
[8]. These tools operate well on laptops, but their
effectiveness and concealability could be improved if
they are able to be run on mobile devices, which is the
goal of this research.

4. Porting to iOS

Porting Arsenic to iOS presented some difficult and
unique challenges. The first and most important issue
to overcome was Apple’s code signing requirement.
However, due to the active and prevalent nature of the
“jailbreak” community, this proved to be a trivial step
(given a device on the correct software version, i.e.
< 6.1.3). The jailbreak community has also ported a
few dependancies of Arsenic to iOS, including Python
2.7.3, and arpspoof. However, i0S is does not have
iptalbes or ipfw, the two firewalls that Arsenic is able to
use. These are important because ssistrip is essentially
a shadow proxy and packets must be forwarded to it.
The lack of a firewall on iOS has been noted by others,
with a “Global Moderator” and “Hero Member” of
iNinjas.com saying, “As of now [November 5, 2012]
sslstrip does not work on the idevice... there are no
iptables and there is no port forwarding because of
kernel limitations.” [9] However, the i0S 4.0 jailbreak
was based on a vulnerability in the implementation of
the BSD pf firewall [10]. Although the pf firewall is
not fully implemented in iOS (probably a relic of the
BSD basis of Darwin) it is able to forward packets
according to rules, which is enough to get ssistrip to
work. In order for ssistrip to install properly, its de-
pendancies must be installed on iOS first. This presents
a challenge because these dependancies, Twisted-Web,
zope-interface, and pyOpenSsl have C source code
that must be compiled on the device. Luckily, the
jailbreak community has ported gcc to i0OS. With a
modification to the python Makefile, and the exclusion
of the portmap feature of Twisted-Web, installation
of the dependancies and ssistip went smoothly. The
final piece of Arsenic that was missing from iOS was
the standard Unix command fail. Instead of compiling
and installing tail, arsenic-mobile includes a python
implementation that functions just as well.

5. Installation Process

5.1. Jailbreaking

The first step required to install arsenic-mobile on a
device running iOS is to jailbreak the device. This will
allow unsigned code to run on the device. Depending
on the version of iOS the device is running this may
or may not be possible. A cursory internet search
will determine if it is possible and how to accomplish
jailbreaking the device.

5.2. Setup

In order to install the necessary components and
transfer files to the device running i0OS, OpenSSH must
be installed. From within the Cydia application search
for OpenSSH and install it. The IP address of the
device can be found under the Settings app in the Wi-
Fi section by touching the blue arrow to the right of
the network you are connected to.

5.3. Installation

Download arsenic-mobile from https://github.com/
kernel-sanders/arsenic-mobile. Transfer the arsenic-
mobile folder to the device by running

scp —-r arsenic-mobile root@[IP Address]:

The default password is alpine. Then SSH into the
device. To SSH into the device, from a computer on
the same network run the following command (Linux
or OSX in terminal, Windows will require an external
program like PuTTY)

ssh root@[IP Address of the device]
Next, install python and run the setup script.

cd arsenic-mobile

cd Python

dpkg -1 berkeleydb_4.6.21-4p_iphoneos—arm.deb
dpkg -1 1libffi_1%3a3.0.10-5_iphoneos—-arm.deb
dpkg -1 sqglite3-1ib_3.5.9-2_iphoneos—arm.deb
dpkg -1 sglite3_3.5.9-12_iphoneos—-arm.deb
dpkg -i python_2.7.3-3_iphoneos—arm.deb

cd

python setup.py

The setup script will install the rest of the depen-
dancies and custom files necessary for arsenic-mobile
to function correctly.


https://github.com/kernel-sanders/arsenic-mobile
https://github.com/kernel-sanders/arsenic-mobile

6. Functionality

arsenic-mobile has 3 modes of operation. First, it
can preform a simple ping scan of the network (the
gateway and the device’s IPs will not be shown). Sec-
ond, it can ARP spoof and man-in-the-middle attack a
single victim. Finally, it can run in “Coffee shop mode”
where it will scan the network every 5 seconds looking
for new hosts. Any new hosts will be ARP spoofed
and added to the man-in-the-middle attack. This attack
mode would be useful in a high traffic public area
with unsecured Wi-Fi. All captured credentials are
printed to the screen along with the domain they are
associated with, as well as written to a log file called
“credentials.txt” in the current working directory.

7. Future Work

Arsenic-mobile has been tested in closed laboratory
environments and has demonstrated the feasibility of
an easy to use man-in-the-middle attack that defeats
SSL/TLS. However, as websites have realized this
vulnerability, many now keep their entires sessions
in SSL (as opposed to only logon events or account
management). When this is the case, ss/strip is unable
to expire the session cookies to force the user to re-
logon (allowing their credentials to be captured). There
may yet be a way to force a user in a secure session
to have to re-logon, and that would be an interesting
area of further research. Beyond the technical aspects
of the tool, having it packaged as a .deb file for ease
of installation is another area to look into. Finally, a
graphical user interface that would appear as an app
tile on the home screen of the device and present a
polished interface to the user could also extend this
project.

8. Conclusion

Although great strides have been made to secure
communications on the internet, the trusting nature
of its founding protocols present exploitable
vulnerabilities. Tools have been developed to
demonstrate these vulnerabilities, and arsenic-mobile
is the first of its these on Apple’s iOS mobile
operating system. The portability and ease of use
that arsenic-mobile provides should only serve to
emphasize the need for users to take extra care when
browsing on open or untrusted networks.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Netscape Corporation, “The ssl protocol,” 1995.

A. Freier, P. Karlton, and P. Kocher, “The secure
sockets layer (ssl) protocol version 3.0. rfc 6101,” 1996.

“Ssl pulse: Survey of the ssl implementation of the most
popular web sites,” 2013.

D. Goodin, “Hackers break ssl encryption used by
millions of sites,” 2011.

T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thom,
J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. A.
Osvik, H. te Riele, A. Timofeev, and P. Zimmermann,
“Factorization of a 768-bit rsa modulus,” Cryptology
ePrint Archive, Report 2010/006, 2010, http://eprint.
iacr.org/.

Comodo Group, “Report of incident on 15-mar-2011,”
2001.

M. Marlinspike, “Defeating ssl in practice,” 2009.

KernelSanders, “Arsenic - a zero configuration arp
poisoning and credential extraction tool,” 2012, https:
/lgithub.com/kernel-sanders/Arsenic.

Apetrick, “Re: Sslstrip,” 2012, http://ininjas.com/
forum/index.php?topic=4537.0.

Jean, “Cve-2010-3830 - ios <4.2.1 packet filter
local kernel vulnerability,” 2010, http://esec-lab.
sogeti.com/post/2010/12/09/CVE-2010-3830-i0S-4.2.
1-packet-filter-local-kernel- vulnerability.


http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/kernel-sanders/Arsenic
https://github.com/kernel-sanders/Arsenic
http://ininjas.com/forum/index.php?topic=4537.0
http://ininjas.com/forum/index.php?topic=4537.0
http://esec-lab.sogeti.com/post/2010/12/09/CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability
http://esec-lab.sogeti.com/post/2010/12/09/CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability
http://esec-lab.sogeti.com/post/2010/12/09/CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability

	Introduction
	Possible Attack Vectors
	sslstrip and Arsenic
	Porting to iOS
	Installation Process
	Jailbreaking
	Setup
	Installation

	Functionality
	Future Work
	Conclusion
	References

