Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Dec 30, 2018
Nov 29, 2018
Nov 29, 2018
Apr 18, 2019
Apr 18, 2019
Nov 29, 2018
May 17, 2019
Apr 18, 2019

README.md

FishNet

This repo holds the implementation code of the paper:

FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction , Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang, NeurIPS 2018.

FishNet was used as a key component for winning the 1st place in COCO Detection Challenge 2018.

Note that the results released here are a bit better than what we have reported in the paper.

Prerequisites

  • Python 3.6.x
  • PyTorch 0.4.0+

Data Augmentation

Method Settings
Random Flip True
Random Crop 8% ~ 100%
Aspect Ratio 3/4 ~ 4/3
Random PCA Lighting 0.1

Note: We apply weight decay to all weights and biases instead of just the weights of the convolution layers.

Training

To train FishNet-150 with 8 GPUs and batch size 256, simply run

python main.py --config "cfgs/fishnet150.yaml" IMAGENET_ROOT_PATH

Models

Models trained without tricks

Model Params FLOPs Top-1 Top-5 Baidu Yun Google Cloud
FishNet99 16.62M 4.31G 77.41% 93.59% Download Download
FishNet150 24.96M 6.45G 78.14% 93.95% Download Download
FishNet201 44.58M 10.58G 78.76% 94.39% Available Soon Available Soon

Models trained with cosine lr schedule (200 epochs) and label smoothing

Model Params FLOPs Top-1 Top-5 Baidu Yun Google Cloud
FishNet150 24.96M 6.45G 79.35% 94.75% Download Download
FishNet201 44.58M 10.58G 79.71% 94.79% Download Download

To load these models, e.g. FishNet150, you need to first construct your FishNet150 structure like:

from models.network_factory import fishnet150
model = fishnet150()

and then you can load the weights from the pre-trained checkpoint by:

checkpoint = torch.load(model_path)  #  model_path: your checkpoint path, e.g. checkpoints/fishnet150.tar
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])

Note that you do NOT need to decompress the model using the tar command. The model you download from the cloud could be loaded directly.

TODO:

  • Update our arxiv paper.
  • Release pre-train models.
  • Train the model with more training tricks.

Citation

If you find our research useful, please cite the paper:

@inproceedings{sun2018fishnet,
  title={FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction},
  author={Sun, Shuyang and Pang, Jiangmiao and Shi, Jianping and Yi, Shuai and Ouyang, Wanli},
  booktitle={Advances in Neural Information Processing Systems},
  pages={760--770},
  year={2018}
}

Contact

You can contact Shuyang Sun by sending email to kevin.sysun@gmail.com

About

Implementation code of the paper: FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction, NeurIPS 2018

Topics

Resources

Releases

No releases published

Packages

No packages published

Languages