Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
// Koo
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/shuffleInfo.pb.h"
#include <sstream>
#include <fstream>
#include <iostream>
#include <string>
#include <iomanip>
#include <map>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "assembler"
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
STATISTIC(EmittedRelaxableFragments,
"Number of emitted assembler fragments - relaxable");
STATISTIC(EmittedDataFragments,
"Number of emitted assembler fragments - data");
STATISTIC(EmittedCompactEncodedInstFragments,
"Number of emitted assembler fragments - compact encoded inst");
STATISTIC(EmittedAlignFragments,
"Number of emitted assembler fragments - align");
STATISTIC(EmittedFillFragments,
"Number of emitted assembler fragments - fill");
STATISTIC(EmittedOrgFragments,
"Number of emitted assembler fragments - org");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAssembler::MCAssembler(MCContext &Context, MCAsmBackend &Backend,
MCCodeEmitter &Emitter, MCObjectWriter &Writer)
: Context(Context), Backend(Backend), Emitter(Emitter), Writer(Writer),
BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
}
MCAssembler::~MCAssembler() {
}
void MCAssembler::reset() {
Sections.clear();
Symbols.clear();
IndirectSymbols.clear();
DataRegions.clear();
LinkerOptions.clear();
FileNames.clear();
ThumbFuncs.clear();
BundleAlignSize = 0;
RelaxAll = false;
SubsectionsViaSymbols = false;
IncrementalLinkerCompatible = false;
ELFHeaderEFlags = 0;
LOHContainer.reset();
VersionMinInfo.Major = 0;
// reset objects owned by us
getBackend().reset();
getEmitter().reset();
getWriter().reset();
getLOHContainer().reset();
}
bool MCAssembler::registerSection(MCSection &Section) {
if (Section.isRegistered())
return false;
Sections.push_back(&Section);
Section.setIsRegistered(true);
return true;
}
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
if (ThumbFuncs.count(Symbol))
return true;
if (!Symbol->isVariable())
return false;
// FIXME: It looks like gas supports some cases of the form "foo + 2". It
// is not clear if that is a bug or a feature.
const MCExpr *Expr = Symbol->getVariableValue();
const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
if (!Ref)
return false;
if (Ref->getKind() != MCSymbolRefExpr::VK_None)
return false;
const MCSymbol &Sym = Ref->getSymbol();
if (!isThumbFunc(&Sym))
return false;
ThumbFuncs.insert(Symbol); // Cache it.
return true;
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
if (Symbol.isUsedInReloc())
return true;
return false;
}
const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(S))
return &S;
// Absolute and undefined symbols have no defining atom.
if (!S.isInSection())
return nullptr;
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
*S.getFragment()->getParent()))
return nullptr;
// Otherwise, return the atom for the containing fragment.
return S.getFragment()->getAtom();
}
// Koo [Note] fixup evaluation
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::evaluateFixup;
// FIXME: This code has some duplication with recordRelocation. We should
// probably merge the two into a single callback that tries to evaluate a
// fixup and records a relocation if one is needed.
const MCExpr *Expr = Fixup.getValue();
if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
getContext().reportError(Fixup.getLoc(), "expected relocatable expression");
// Claim to have completely evaluated the fixup, to prevent any further
// processing from being done.
Value = 0;
return true;
}
bool IsPCRel = Backend.getFixupKindInfo(
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved;
if (IsPCRel) {
if (Target.getSymB()) {
IsResolved = false;
} else if (!Target.getSymA()) {
IsResolved = false;
} else {
const MCSymbolRefExpr *A = Target.getSymA();
const MCSymbol &SA = A->getSymbol();
if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
IsResolved = false;
} else {
IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
*this, SA, *DF, false, true);
}
}
} else {
IsResolved = Target.isAbsolute();
}
Value = Target.getConstant();
if (const MCSymbolRefExpr *A = Target.getSymA()) {
const MCSymbol &Sym = A->getSymbol();
if (Sym.isDefined())
Value += Layout.getSymbolOffset(Sym);
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
const MCSymbol &Sym = B->getSymbol();
if (Sym.isDefined())
Value -= Layout.getSymbolOffset(Sym);
}
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
assert((ShouldAlignPC ? IsPCRel : true) &&
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
if (IsPCRel) {
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
// A number of ARM fixups in Thumb mode require that the effective PC
// address be determined as the 32-bit aligned version of the actual offset.
if (ShouldAlignPC) Offset &= ~0x3;
Value -= Offset;
}
// Let the backend adjust the fixup value if necessary, including whether
// we need a relocation.
Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
IsResolved);
return IsResolved;
}
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
switch (F.getKind()) {
case MCFragment::FT_Data:
return cast<MCDataFragment>(F).getContents().size();
case MCFragment::FT_Relaxable:
return cast<MCRelaxableFragment>(F).getContents().size();
case MCFragment::FT_CompactEncodedInst:
return cast<MCCompactEncodedInstFragment>(F).getContents().size();
case MCFragment::FT_Fill:
return cast<MCFillFragment>(F).getSize();
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_SafeSEH:
return 4;
case MCFragment::FT_Align: {
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
unsigned Offset = Layout.getFragmentOffset(&AF);
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
// If we are padding with nops, force the padding to be larger than the
// minimum nop size.
if (Size > 0 && AF.hasEmitNops()) {
while (Size % getBackend().getMinimumNopSize())
Size += AF.getAlignment();
}
if (Size > AF.getMaxBytesToEmit())
return 0;
return Size;
}
case MCFragment::FT_Org: {
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
MCValue Value;
if (!OF.getOffset().evaluateAsValue(Value, Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
int64_t TargetLocation = Value.getConstant();
if (const MCSymbolRefExpr *A = Value.getSymA()) {
uint64_t Val;
if (!Layout.getSymbolOffset(A->getSymbol(), Val))
report_fatal_error("expected absolute expression");
TargetLocation += Val;
}
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "')");
return Size;
}
case MCFragment::FT_Dwarf:
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
case MCFragment::FT_DwarfFrame:
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
case MCFragment::FT_CVInlineLines:
return cast<MCCVInlineLineTableFragment>(F).getContents().size();
case MCFragment::FT_CVDefRange:
return cast<MCCVDefRangeFragment>(F).getContents().size();
case MCFragment::FT_Dummy:
llvm_unreachable("Should not have been added");
}
llvm_unreachable("invalid fragment kind");
}
void MCAsmLayout::layoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is valid.
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
// We should never try to compute the fragment layout if its predecessor
// isn't valid.
assert((!Prev || isFragmentValid(Prev)) &&
"Attempt to compute fragment before its predecessor!");
++stats::FragmentLayouts;
// Compute fragment offset and size.
if (Prev)
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
else
F->Offset = 0;
LastValidFragment[F->getParent()] = F;
// If bundling is enabled and this fragment has instructions in it, it has to
// obey the bundling restrictions. With padding, we'll have:
//
//
// BundlePadding
// |||
// -------------------------------------
// Prev |##########| F |
// -------------------------------------
// ^
// |
// F->Offset
//
// The fragment's offset will point to after the padding, and its computed
// size won't include the padding.
//
// When the -mc-relax-all flag is used, we optimize bundling by writting the
// padding directly into fragments when the instructions are emitted inside
// the streamer. When the fragment is larger than the bundle size, we need to
// ensure that it's bundle aligned. This means that if we end up with
// multiple fragments, we must emit bundle padding between fragments.
//
// ".align N" is an example of a directive that introduces multiple
// fragments. We could add a special case to handle ".align N" by emitting
// within-fragment padding (which would produce less padding when N is less
// than the bundle size), but for now we don't.
//
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
assert(isa<MCEncodedFragment>(F) &&
"Only MCEncodedFragment implementations have instructions");
uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
report_fatal_error("Fragment can't be larger than a bundle size");
uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
F->Offset, FSize);
if (RequiredBundlePadding > UINT8_MAX)
report_fatal_error("Padding cannot exceed 255 bytes");
F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
F->Offset += RequiredBundlePadding;
}
}
void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
bool New = !Symbol.isRegistered();
if (Created)
*Created = New;
if (New) {
Symbol.setIsRegistered(true);
Symbols.push_back(&Symbol);
}
}
void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
MCObjectWriter *OW) const {
// Should NOP padding be written out before this fragment?
unsigned BundlePadding = F.getBundlePadding();
if (BundlePadding > 0) {
assert(isBundlingEnabled() &&
"Writing bundle padding with disabled bundling");
assert(F.hasInstructions() &&
"Writing bundle padding for a fragment without instructions");
unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
// If the padding itself crosses a bundle boundary, it must be emitted
// in 2 pieces, since even nop instructions must not cross boundaries.
// v--------------v <- BundleAlignSize
// v---------v <- BundlePadding
// ----------------------------
// | Prev |####|####| F |
// ----------------------------
// ^-------------------^ <- TotalLength
unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
if (!getBackend().writeNopData(DistanceToBoundary, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(DistanceToBoundary) + " bytes");
BundlePadding -= DistanceToBoundary;
}
if (!getBackend().writeNopData(BundlePadding, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(BundlePadding) + " bytes");
}
}
/// \brief Write the fragment \p F to the output file.
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F) {
MCObjectWriter *OW = &Asm.getWriter();
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
Asm.writeFragmentPadding(F, FragmentSize, OW);
// This variable (and its dummy usage) is to participate in the assert at
// the end of the function.
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
switch (F.getKind()) {
case MCFragment::FT_Align: {
++stats::EmittedAlignFragments;
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
uint64_t Count = FragmentSize / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.hasEmitNops()) {
if (!Asm.getBackend().writeNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->write8 (uint8_t (AF.getValue())); break;
case 2: OW->write16(uint16_t(AF.getValue())); break;
case 4: OW->write32(uint32_t(AF.getValue())); break;
case 8: OW->write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data:
++stats::EmittedDataFragments;
OW->writeBytes(cast<MCDataFragment>(F).getContents());
break;
case MCFragment::FT_Relaxable:
++stats::EmittedRelaxableFragments;
OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
break;
case MCFragment::FT_CompactEncodedInst:
++stats::EmittedCompactEncodedInstFragments;
OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
break;
case MCFragment::FT_Fill: {
++stats::EmittedFillFragments;
const MCFillFragment &FF = cast<MCFillFragment>(F);
uint8_t V = FF.getValue();
const unsigned MaxChunkSize = 16;
char Data[MaxChunkSize];
memcpy(Data, &V, 1);
for (unsigned I = 1; I < MaxChunkSize; ++I)
Data[I] = Data[0];
uint64_t Size = FF.getSize();
for (unsigned ChunkSize = MaxChunkSize; ChunkSize; ChunkSize /= 2) {
StringRef Ref(Data, ChunkSize);
for (uint64_t I = 0, E = Size / ChunkSize; I != E; ++I)
OW->writeBytes(Ref);
Size = Size % ChunkSize;
}
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment &LF = cast<MCLEBFragment>(F);
OW->writeBytes(LF.getContents());
break;
}
case MCFragment::FT_SafeSEH: {
const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
OW->write32(SF.getSymbol()->getIndex());
break;
}
case MCFragment::FT_Org: {
++stats::EmittedOrgFragments;
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
OW->writeBytes(OF.getContents());
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
OW->writeBytes(CF.getContents());
break;
}
case MCFragment::FT_CVInlineLines: {
const auto &OF = cast<MCCVInlineLineTableFragment>(F);
OW->writeBytes(OF.getContents());
break;
}
case MCFragment::FT_CVDefRange: {
const auto &DRF = cast<MCCVDefRangeFragment>(F);
OW->writeBytes(DRF.getContents());
break;
}
case MCFragment::FT_Dummy:
llvm_unreachable("Should not have been added");
}
assert(OW->getStream().tell() - Start == FragmentSize &&
"The stream should advance by fragment size");
}
void MCAssembler::writeSectionData(const MCSection *Sec,
const MCAsmLayout &Layout) const {
// Ignore virtual sections.
if (Sec->isVirtualSection()) {
assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
// Check that contents are only things legal inside a virtual section.
for (const MCFragment &F : *Sec) {
switch (F.getKind()) {
default: llvm_unreachable("Invalid fragment in virtual section!");
case MCFragment::FT_Data: {
// Check that we aren't trying to write a non-zero contents (or fixups)
// into a virtual section. This is to support clients which use standard
// directives to fill the contents of virtual sections.
const MCDataFragment &DF = cast<MCDataFragment>(F);
assert(DF.fixup_begin() == DF.fixup_end() &&
"Cannot have fixups in virtual section!");
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
if (DF.getContents()[i]) {
if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
report_fatal_error("non-zero initializer found in section '" +
ELFSec->getSectionName() + "'");
else
report_fatal_error("non-zero initializer found in virtual section");
}
break;
}
case MCFragment::FT_Align:
// Check that we aren't trying to write a non-zero value into a virtual
// section.
assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
cast<MCAlignFragment>(F).getValue() == 0) &&
"Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
assert((cast<MCFillFragment>(F).getValue() == 0) &&
"Invalid fill in virtual section!");
break;
}
}
return;
}
uint64_t Start = getWriter().getStream().tell();
(void)Start;
for (const MCFragment &F : *Sec)
writeFragment(*this, Layout, F);
assert(getWriter().getStream().tell() - Start ==
Layout.getSectionAddressSize(Sec));
}
std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
MCFragment &F,
const MCFixup &Fixup) {
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
FixedValue);
}
return std::make_pair(FixedValue, IsPCRel);
}
// Koo: Dump all fixups if necessary
// In .text, .rodata, .data, .data.rel.ro, .eh_frame, and debugging sections
void dumpFixups(std::list<std::tuple<unsigned, unsigned, bool, std::string, std::string, bool, std::string, unsigned, unsigned>> \
Fixups, std::string kind, bool isDebug) {
if (Fixups.size() > 0) {
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << " - Fixups Info (." << kind << "): " << Fixups.size() << "\n");
unsigned offset, size, numJTEntries, JTEntrySize;
bool isRel, isNewSection;
std::string FixupParentID, SymbolRefFixupName, sectionName;
for (auto it = Fixups.begin(); it != Fixups.end(); ++it) {
std::tie(offset, size, isRel, FixupParentID, SymbolRefFixupName, isNewSection, sectionName, numJTEntries, JTEntrySize) = *it;
char isRelTF = isRel ? 'T' : 'F';
if (isDebug && SymbolRefFixupName.length() > 0) {
errs() << "\t[" << FixupParentID << "]\t(" << offset << ", " << size << ", " << isRelTF;
if (SymbolRefFixupName.length() > 0)
errs() << ", JT#" << SymbolRefFixupName;
errs() << ")\n";
}
}
}
}
// Koo: Helper function to separate ID into MFID and MBBID
std::tuple<int, int> separateID(std::string ID) {
return std::make_tuple(std::stoi(ID.substr(0, ID.find("_"))), \
std::stoi(ID.substr(ID.find("_") + 1, ID.length())));
}
// Koo: Convert int into hex (0x00abcdef)
template<typename T>
std::string hexlify(T i) {
std::stringbuf buf;
std::ostream os(&buf);
os << "0x" << std::setfill('0') << std::setw(sizeof(T) * 2) << std::hex << i;
return buf.str();
}
// Koo: Final value updates for the entire layout of both MFs and MBBs
void updateReorderInfoValues(const MCAsmLayout &Layout) {
const MCAsmInfo *MAI = Layout.getAssembler().getContext().getAsmInfo();
const MCObjectFileInfo *MOFI = Layout.getAssembler().getContext().getObjectFileInfo();
std::map<std::string, std::tuple<unsigned, unsigned, std::list<std::string>>> \
jumpTables = MOFI->getJumpTableTargets();
// Show both MF and MBB offsets according to the final layout order
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "\n<MF/MBB Layout Summary>\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "----------------------------------------------------------------------------------\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << " Layout\tMF_MBB_ID\tMBBSize\tAlign\tFixups\tOffset \tMFSize\tSection\n");
// Deal with MFs and MBBs in a ELF code section (.text) only
for (MCSection &Sec : Layout.getAssembler()) {
MCSectionELF &ELFSec = static_cast<MCSectionELF &>(Sec);
std::string tmpSN, sectionName = ELFSec.getSectionName();
if (sectionName.find(".text") == 0) {
unsigned totalOffset = 0, totalFixups = 0, totalAlignSize = 0;
int MFID, MBBID, prevMFID = -1;
std::string prevID, canFallThrough;
unsigned MBBSize, MBBOffset, numFixups, alignSize, MBBType;
std::set<std::string> countedMBBs;
// Per each fragment in a .text section
for (MCFragment &MCF : Sec) {
// Here MCDataFragment has combined with the following MCRelaxableFragment or MCAlignFragment
// Corner case: MCDataFragment with no instruction - just skip it
if (isa<MCDataFragment>(MCF) && MCF.hasInstructions()) {
// Update the MBB offset and MF Size for all collected MBBs in the MF
for (std::string ID : MCF.getAllMBBs()) {
if (ID.length() == 0 && std::get<0>(MAI->MachineBasicBlocks[ID]) > 0)
llvm_unreachable("[CCR-Error] MCAssembler(updateReorderInfoValues) Something went wrong in MCDataFragment: MBB size > 0 with no parentID?");
if (countedMBBs.find(ID) == countedMBBs.end() && ID.length() > 0) {
bool isStartMF = false; // check if the new MF begins
std::tie(MFID, MBBID) = separateID(ID);
std::tie(MBBSize, MBBOffset, numFixups, alignSize, MBBType, tmpSN) = MAI->MachineBasicBlocks[ID];
if (tmpSN.length() > 0) continue;
MAI->MBBLayoutOrder.push_back(ID);
// Handle a corner case: see handleDirectEmitDirectives() in AsmParser.cpp
if (MAI->specialCntPriorToFunc > 0) {
MAI->updateByteCounter(ID, MAI->specialCntPriorToFunc, /*numFixups=*/ 0, /*isAlign=*/ false, /*isInline=*/ false);
MBBSize += MAI->specialCntPriorToFunc;
MAI->specialCntPriorToFunc = 0;
}
// Update the MBB offset, MF Size and section name accordingly
std::get<1>(MAI->MachineBasicBlocks[ID]) = totalOffset;
totalOffset += MBBSize;
totalFixups += numFixups;
totalAlignSize += alignSize;
countedMBBs.insert(ID);
MAI->MachineFunctionSizes[MFID] += MBBSize;
std::get<5>(MAI->MachineBasicBlocks[ID]) = sectionName;
canFallThrough = MAI->canMBBFallThrough[ID] ? "*":"";
if (MFID > prevMFID) {
isStartMF = true;
std::get<4>(MAI->MachineBasicBlocks[prevID]) = 1; // Type = End of the function
}
unsigned layoutID = MCF.getLayoutOrder();
if (isStartMF)
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "----------------------------------------------------------------------------------\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << " " << layoutID << "\t[DF " << ID << "]" << canFallThrough << "\t" << MBBSize << "B\t" \
<< alignSize << "B\t" << numFixups << "\t" << hexlify(totalOffset) << "\t" \
<< MAI->MachineFunctionSizes[MFID] << "B\t" << "(" << sectionName << ")\n");
prevMFID = MFID;
prevID = ID;
}
}
}
// Check out MCRelaxableFragments, which have not combined with any MCDataFragment
// It happens when there are consecutive MCRelaxableFragment (i.e., switch/case)
if (isa<MCRelaxableFragment>(MCF) && MCF.hasInstructions()) {
MCRelaxableFragment &MCRF = static_cast<MCRelaxableFragment&>(MCF);
std::string ID = MCRF.getInst().getParent();
if (ID.length() == 0 && std::get<0>(MAI->MachineBasicBlocks[ID]) > 0)
llvm_unreachable("[CCR-Error] MCAssembler(updateReorderInfoValues) - MCSomething went wrong in MCRelaxableFragment: MBB size > 0 with no parentID?");
// If yet the ID has not been showed up along with getAllMBBs(),
// it would be an independent RF that does not belong to any DF
if (countedMBBs.find(ID) == countedMBBs.end() && ID.length() > 0) {
bool isStartMF = false;
std::tie(MFID, MBBID) = separateID(ID);
std::tie(MBBSize, MBBOffset, numFixups, alignSize, MBBType, tmpSN) = MAI->MachineBasicBlocks[ID];
if (tmpSN.length() > 0) continue;
MAI->MBBLayoutOrder.push_back(ID);
// Update the MBB offset, MF Size and section name accordingly
std::get<1>(MAI->MachineBasicBlocks[ID]) = totalOffset;
totalOffset += MBBSize;
totalFixups += numFixups;
totalAlignSize += alignSize;
countedMBBs.insert(ID);
MAI->MachineFunctionSizes[MFID] += MBBSize;
std::get<5>(MAI->MachineBasicBlocks[ID]) = sectionName;
canFallThrough = MAI->canMBBFallThrough[ID] ? "*":"";
if (MFID > prevMFID) {
isStartMF = true;
std::get<4>(MAI->MachineBasicBlocks[prevID]) = 1; // Type = End of the function
}
unsigned layoutID = MCF.getLayoutOrder();
if (isStartMF)
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "----------------------------------------------------------------------------------\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << " " << layoutID << "\t[DF " << ID << "]" << canFallThrough << "\t" << MBBSize << "B\t" \
<< alignSize << "B\t" << numFixups << "\t" << hexlify(totalOffset) << "\t" \
<< MAI->MachineFunctionSizes[MFID] << "B\t" << "(" << sectionName << ")\n");
prevMFID = MFID;
prevID = ID;
}
}
}
// The last ID Type is always the end of the object
std::get<4>(MAI->MachineBasicBlocks[prevID]) = 2;
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "----------------------------------------------------------------------------------\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "Code(B)\tNOPs(B)\tMFs\tMBBs\tFixups\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << totalOffset << "\t" << totalAlignSize << "\t" << MAI->MachineFunctionSizes.size() \
<< "\t" << MAI->MachineBasicBlocks.size() << "\t" << totalFixups << "\n");
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "\tLegend\n\t(*) FallThrough MBB\n ");
}
}
// Dump if there is any CFI-generated JT
if (jumpTables.size() > 0) {
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "\n<Jump Tables Summary>\n");
unsigned totalEntries = 0;
for(auto it = jumpTables.begin(); it != jumpTables.end(); ++it) {
int JTI, MFID, MFID2, MBBID;
unsigned entryKind, entrySize;
std::list<std::string> JTEntries;
std::tie(MFID, JTI) = separateID(it->first);
std::tie(entryKind, entrySize, JTEntries) = it->second;
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "[JT@Function#" << MFID << "_" << JTI << "] " << "(Kind: " \
<< entryKind << ", " << JTEntries.size() << " Entries of " << entrySize << "B each)\n");
for (std::string JTE : JTEntries) {
std::tie(MFID2, MBBID) = separateID(JTE);
totalEntries++;
if (MFID != MFID2)
errs() << "[CCR-Error] MCAssembler::updateReorderInfoValues - JT Entry points to the outside of MF! \n";
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "\t[" << JTE << "]\t" \
<< hexlify(std::get<1>(MAI->MachineBasicBlocks[JTE])) << "\n");
}
}
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "#JTs\t#Entries\n" << jumpTables.size() << "\t" << totalEntries << "\n");
}
}
// Koo: These sections contain the fixups that we want to handle
static const char* fixupLookupSections[] =
{
".text",
".rodata",
".data",
".data.rel.ro",
".init_array",
};
// Koo: Helper functions for serializeReorderInfo()
int getFixupSectionId(std::string secName) {
for (size_t i = 0; i < sizeof(fixupLookupSections)/sizeof(*fixupLookupSections); ++i)
if (secName.compare(fixupLookupSections[i]) == 0)
return i;
return -1;
}
ShuffleInfo::ReorderInfo_FixupInfo_FixupTuple* getFixupTuple(ShuffleInfo::ReorderInfo_FixupInfo* FI, std::string secName) {
switch (getFixupSectionId(secName)) {
case 0: return FI->add_text();
case 1: return FI->add_rodata();
case 2: return FI->add_data();
case 3: return FI->add_datarel();
case 4: return FI->add_initarray();
default: llvm_unreachable("[CCR-Error] No such section to collect fixups!");
}
}
void setFixups(std::list<std::tuple<unsigned, unsigned, bool, std::string, std::string, bool, std::string, unsigned, unsigned>> Fixups,
ShuffleInfo::ReorderInfo_FixupInfo* fixupInfo, std::string secName) {
unsigned FixupOffset, FixupSize, FixupisRela, numJTEntries, JTEntrySize;
std::string sectionName, FixupParentID, SymbolRefFixupName;
bool isNewSection;
for (auto F = Fixups.begin(); F != Fixups.end(); ++F) {
ShuffleInfo::ReorderInfo_FixupInfo_FixupTuple* pFixupTuple = getFixupTuple(fixupInfo, secName);
std::tie(FixupOffset, FixupSize, FixupisRela, FixupParentID, \
SymbolRefFixupName, isNewSection, sectionName, numJTEntries, JTEntrySize) = *F;
pFixupTuple->set_offset(FixupOffset);
pFixupTuple->set_deref_sz(FixupSize);
pFixupTuple->set_is_rela(FixupisRela);
pFixupTuple->set_section_name(sectionName);
if (isNewSection)
pFixupTuple->set_type(4); // let linker know if there are multiple .text sections
else
pFixupTuple->set_type(0); // c2c, c2d, d2c, d2d default=0; should be updated by linker
// The following jump table information is fixups in .text for JT entry update only (pic/pie)
if (numJTEntries > 0) {
pFixupTuple->set_num_jt_entries(numJTEntries);
pFixupTuple->set_jt_entry_sz(JTEntrySize);
}
}
}
// Koo: Serialize all information for future reordering, which has been stored in MCAsmInfo
void serializeReorderInfo(ShuffleInfo::ReorderInfo* ri, const MCAsmLayout &Layout) {
// Set the binary information for reordering
ShuffleInfo::ReorderInfo_BinaryInfo* binaryInfo = ri->mutable_bin();
binaryInfo->set_rand_obj_offset(0x0); // Should be updated at linking time
binaryInfo->set_main_addr_offset(0x0); // Should be updated at linking time
const MCAsmInfo *MAI = Layout.getAssembler().getContext().getAsmInfo();
// Identify this object file has been compiled from:
// obj_type = 0: a general source file (i.e., *.c, *.cc, *.cpp, ...)
// obj_type = 1: a source file that contains inline assembly
// obj_type = 2: standalone assembly file (i.e., *.s, *.S, ...)
if (MAI->isAssemFile)
binaryInfo->set_src_type(2);
else if (MAI->hasInlineAssembly)
binaryInfo->set_src_type(1);
else
binaryInfo->set_src_type(0);
updateReorderInfoValues(Layout);
// Set the layout of both Machine Functions and Machine Basic Blocks with protobuf definition
std::string sectionName;
unsigned MBBSize, MBBoffset, numFixups, alignSize, MBBtype;
unsigned objSz = 0, numFuncs = 0, numBBs = 0;
int MFID, MBBID, prevMFID = 0;
for (auto MBBI = MAI->MBBLayoutOrder.begin(); MBBI != MAI->MBBLayoutOrder.end(); ++MBBI) {
ShuffleInfo::ReorderInfo_LayoutInfo* layoutInfo = ri->add_layout();
std::string ID = *MBBI;
std::tie(MFID, MBBID) = separateID(ID);
std::tie(MBBSize, MBBoffset, numFixups, alignSize, MBBtype, sectionName) = MAI->MachineBasicBlocks[ID];
bool MBBFallThrough = MAI->canMBBFallThrough[ID];
layoutInfo->set_bb_size(MBBSize);
layoutInfo->set_type(MBBtype);
layoutInfo->set_num_fixups(numFixups);
layoutInfo->set_bb_fallthrough(MBBFallThrough);
layoutInfo->set_section_name(sectionName);
if (MFID > prevMFID) {
numFuncs++;
numBBs = 0;
}
objSz += MBBSize;
numBBs++;
prevMFID = MFID;
}
binaryInfo->set_obj_sz(objSz);
// Set the fixup information (.text, .rodata, .data, .data.rel.ro and .init_array)
ShuffleInfo::ReorderInfo_FixupInfo* fixupInfo = ri->add_fixup();
setFixups(MAI->FixupsText, fixupInfo, ".text");
setFixups(MAI->FixupsRodata, fixupInfo, ".rodata");
setFixups(MAI->FixupsData, fixupInfo, ".data");
setFixups(MAI->FixupsDataRel, fixupInfo, ".data.rel.ro");
setFixups(MAI->FixupsInitArray, fixupInfo, ".init_array");
// Show the fixup information for each section
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "\n<Fixups Summary>\n");
dumpFixups(MAI->FixupsText, "text", /*isDebug*/ false);
dumpFixups(MAI->FixupsRodata, "rodata", false);
dumpFixups(MAI->FixupsData, "data", false);
dumpFixups(MAI->FixupsDataRel, "data.rel.ro", false);
dumpFixups(MAI->FixupsInitArray, "init_array", false);
}
/*
// Koo: Write the reorder information to the separate file (obsolete)
void MCAssembler::writeReorderInfo(std::string fileName, ShuffleInfo::ReorderInfo* ri) const {
fileName += ".shuffle.bin";
{
std::fstream output(fileName, std::ios::out | std::ios::trunc | std::ios::binary);
if (!ri->SerializeToOstream(&output)) {
errs() << "\nFailed to write the info to "<< fileName << "\n";
}
else {
errs() << "\nDumped Metadata: " << fileName << "\n";
}
}
}
*/
void MCAssembler::layout(MCAsmLayout &Layout) {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Create dummy fragments and assign section ordinals.
unsigned SectionIndex = 0;
for (MCSection &Sec : *this) {
// Create dummy fragments to eliminate any empty sections, this simplifies
// layout.
if (Sec.getFragmentList().empty())
new MCDataFragment(&Sec);
Sec.setOrdinal(SectionIndex++);
}
// Assign layout order indices to sections and fragments.
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSection *Sec = Layout.getSectionOrder()[i];
Sec->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCFragment &Frag : *Sec)
Frag.setLayoutOrder(FragmentIndex++);
}
// Layout until everything fits.
while (layoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
finishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().executePostLayoutBinding(*this, Layout);
// Koo - Collect what we need once layout has been finalized
const MCAsmInfo *MAI = Layout.getAssembler().getContext().getAsmInfo();
const MCObjectFileInfo *MOFI = Layout.getAssembler().getContext().getObjectFileInfo();
bool isNewTextSection = false, isNewRodataSection = false;
bool isNewDataSection = false, isNewDataRelSection = false, isNewInitSection = false;
unsigned textSecCtr = 0, rodataSecCtr = 0, dataSecCtr = 0, dataRelSecCtr = 0, initSecCtr = 0;
unsigned prevLayoutOrder;
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCSection &Sec : *this) {
// Koo
MCSectionELF &ELFSec = static_cast<MCSectionELF &>(Sec);
std::string secName = ELFSec.getSectionName();
unsigned layoutOrder = ELFSec.getLayoutOrder();
for (MCFragment &Frag : Sec) {
// Data and relaxable fragments both have fixups. So only process
// those here.
// FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
// being templated makes this tricky.
// Koo - Attach the size of the alignment to the previous fragment.
// Here assumes a) no two alignments are consecutive.
// b) data fragment (DF or RF) exists prior to AF. (may be broken in assembly)
uint64_t fragOffset = Frag.getOffset();
MCFragment *prevFrag;
if (isa<MCDataFragment>(&Frag) && Frag.hasInstructions())
prevFrag = static_cast<MCDataFragment*>(&Frag);
if (isa<MCRelaxableFragment>(&Frag) && Frag.hasInstructions())
prevFrag = static_cast<MCRelaxableFragment*>(&Frag);
// Update alignment size to reflect to the size of MF and MBB
if (MOFI->getObjectFileType() == llvm::MCObjectFileInfo::IsELF && \
secName.find(".text") == 0 && (isa<MCAlignFragment>(&Frag)) && fragOffset > 0) {
// Push this alignment to the previous MBB and the MF that the MBB belongs to
unsigned alignSize;
std::string ID;
if (isa<MCDataFragment>(*prevFrag))
ID = static_cast<MCDataFragment*>(prevFrag)->getLastParentTag();
if (isa<MCRelaxableFragment>(*prevFrag))
ID = static_cast<MCRelaxableFragment*>(prevFrag)->getInst().getParent();
alignSize = computeFragmentSize(Layout, Frag);
MAI->updateByteCounter(ID, alignSize, 0, /*isAlign=*/ true, /*isInline=*/ false);
// errs() << "MCAssembler::layout (Align Size: " << alignSize << "B\t@" << ID << ")\n";
}
if (isa<MCEncodedFragment>(&Frag) &&
isa<MCCompactEncodedInstFragment>(&Frag))
continue;
if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
continue;
ArrayRef<MCFixup> Fixups;
MutableArrayRef<char> Contents;
if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
Fixups = FragWithFixups->getFixups();
Contents = FragWithFixups->getContents();
} else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
Fixups = FragWithFixups->getFixups();
Contents = FragWithFixups->getContents();
} else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
Fixups = FragWithFixups->getFixups();
Contents = FragWithFixups->getContents();
} else
llvm_unreachable("Unknown fragment with fixups!");
for (const MCFixup &Fixup : Fixups) {
uint64_t FixedValue;
bool IsPCRel;
std::tie(FixedValue, IsPCRel) = handleFixup(Layout, Frag, Fixup);
getBackend().applyFixup(Fixup, Contents.data(),
Contents.size(), FixedValue, IsPCRel);
// Koo: Collect fixups here (ELF format only)
if (MOFI->getObjectFileType() == llvm::MCObjectFileInfo::IsELF) {
unsigned offset = fragOffset + Fixup.getOffset();
unsigned derefSize = 1 << getBackend().getFixupKindLog2Size(Fixup.getKind());
unsigned jtEntryKind = 0, jtEntrySize = 0, numJTEntries = 0;
std::map<std::string, std::tuple<unsigned, unsigned, std::list<std::string>>> JTs = MOFI->getJumpTableTargets();
std::string fixupParentID = Fixup.getFixupParentID();
std::string SymbolRefFixupName = Fixup.getSymbolRefFixupName();
std::list<std::string> JTEs; // contains all target(MFID_MBBID) in the JT
// The following handles multiple sections in C++
if (secName.find(".text") == 0) {
if (textSecCtr == 0) {
prevLayoutOrder = layoutOrder;
textSecCtr++;
}
else {
isNewTextSection = (layoutOrder == prevLayoutOrder) ? false:true;
if (isNewTextSection) textSecCtr++;
prevLayoutOrder = layoutOrder;
}
if (Fixup.getIsJumpTableRef()) {
std::tie(jtEntryKind, jtEntrySize, JTEs) = JTs[Fixup.getSymbolRefFixupName()];
numJTEntries = JTEs.size();
// errs() << "Fixup from: [" << Fixup.getFixupParentID() << "], numJTEntries: " << numJTEntries \
// << ", JT size: " << jtEntrySize << "\n";
}
MAI->FixupsText.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, isNewTextSection, secName, numJTEntries, jtEntrySize));
}
else if (secName.find(".rodata") == 0) {
if (rodataSecCtr == 0) {
prevLayoutOrder = layoutOrder;
rodataSecCtr++;
}
else {
isNewRodataSection = (layoutOrder == prevLayoutOrder) ? false:true;
if (isNewRodataSection) rodataSecCtr++;
prevLayoutOrder = layoutOrder;
}
MAI->FixupsRodata.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, isNewRodataSection, secName, numJTEntries, jtEntrySize));
}
else if (secName.find(".data") == 0) {
// The following special section could be generated to support RELRO option
// "When gcc sees a variable which is constant but requires a dynamic relocation,
// it puts it into a section named .data.rel.ro"
if (secName.find(".data.rel.ro") == 0) {
if (dataRelSecCtr == 0) {
prevLayoutOrder = layoutOrder;
dataRelSecCtr++;
}
else {
isNewDataRelSection = (layoutOrder == prevLayoutOrder) ? false:true;
if (isNewDataRelSection) dataRelSecCtr++;
prevLayoutOrder = layoutOrder;
}
MAI->FixupsDataRel.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, isNewDataRelSection, secName, numJTEntries, jtEntrySize));
}
else {
if (dataSecCtr == 0) {
prevLayoutOrder = layoutOrder;
dataSecCtr++;
}
else {
isNewDataSection = (layoutOrder == prevLayoutOrder) ? false:true;
if (isNewDataSection) dataSecCtr++;
prevLayoutOrder = layoutOrder;
}
MAI->FixupsData.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, isNewDataSection, secName, numJTEntries, jtEntrySize));
}
}
else if (secName.find(".init_array") == 0) {
if (initSecCtr == 0) {
prevLayoutOrder = layoutOrder;
initSecCtr++;
}
else {
isNewInitSection = (layoutOrder == prevLayoutOrder) ? false:true;
if (isNewInitSection) initSecCtr++;
prevLayoutOrder = layoutOrder;
}
MAI->FixupsInitArray.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, isNewInitSection, secName, numJTEntries, jtEntrySize));
}
/*
// The following two sections turn out not to be necessary for transformation
else if (secName.compare(".eh_frame") == 0) {
MAI->FixupsEhframe.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, false, secName, numJTEntries, jtEntrySize));
}
else if (secName.compare(".gcc_except_table") == 0) {
MAI->FixupsExceptTable.push_back(std::make_tuple(offset, derefSize, IsPCRel, \
fixupParentID, SymbolRefFixupName, false, secName, numJTEntries, jtEntrySize));
}
*/
// else // debug_* sections
// errs() << "[Koo] WHAT??? Check this section: " << secName << "\n";
}
}
}
}
}
// Koo: Serialize reorder_info data with Google's protocol buffer format
// by ELFObjectWriter::writeSectionData() from writeObject()@ELFObjectWriter.cpp
void MCAssembler::WriteRandInfo(const MCAsmLayout &Layout) const {
// std::string reorderFile = Layout.getAssembler().FileNames[0];
ShuffleInfo::ReorderInfo reorder_info;
serializeReorderInfo(&reorder_info, Layout);
// Obsolete - store reorder_info to .rand section in each object file
// writeReorderInfo(reorderFile, &reorder_info);
// writeReorderInfo(getObjTmpName(), &reorder_info);
std::string randContents;
if (!reorder_info.SerializeToString(&randContents)) {
errs() << "[CCR-Error] Failed to serialize the metadata to .rand section! \n";
}
MCObjectWriter& OW = (*this).getWriter();
OW.writeBytes(randContents);
std::string objFileName(Layout.getAssembler().getContext().getMainFileName());
if (objFileName.length() == 0)
objFileName = getObjTmpName();
DEBUG_WITH_TYPE("ccr-metadata", dbgs() << "Successfully wrote the metadata in a .rand section for " << objFileName << "\n");
google::protobuf::ShutdownProtobufLibrary();
}
void MCAssembler::Finish() {
// Create the layout object.
MCAsmLayout Layout(*this);
layout(Layout);
raw_ostream &OS = getWriter().getStream();
uint64_t StartOffset = OS.tell();
// Write the object file.
getWriter().writeObject(*this, Layout);
// Koo: Write the information for transformation (Obsolete)
// Layout.getAssembler().dump();
// WriteRandInfo(Layout);
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
MCValue Target;
uint64_t Value;
bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
Layout);
}
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().mayNeedRelaxation(F->getInst()))
return false;
for (const MCFixup &Fixup : F->getFixups())
if (fixupNeedsRelaxation(Fixup, F, Layout))
return true;
return false;
}
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
MCRelaxableFragment &F) {
// Koo
// Whether or not the instruction has been relaxed
// The RelaxableFragment must be counted as the emitted bytes
const MCAsmInfo *MAI = Layout.getAssembler().getContext().getAsmInfo();
std::string ID = F.getInst().getParent();
unsigned relaxedBytes = F.getRelaxedBytes();
unsigned fixupCtr = F.getFixup();
// Koo
if (!fragmentNeedsRelaxation(&F, Layout)) {
// [Case 1] Unrelaxed instruction
if (ID.length() > 0) {
unsigned curBytes = F.getInst().getByteCtr();
if (relaxedBytes < curBytes) {
// RelaxableFragment always contains relaxedBytes and fixupCtr variable
// for the adjustment in case of re-evaluation (simple hack but tricky)
MAI->updateByteCounter(ID, curBytes - relaxedBytes, 1 - fixupCtr,
/*isAlign=*/ false, /*isInline=*/ false);
F.setRelaxedBytes(curBytes);
F.setFixup(1);
// If this fixup points to Jump Table Symbol, update it.
F.getFixups()[0].setFixupParentID(ID);
}
}
return false;
}
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().relaxInstruction(F.getInst(), F.getSubtargetInfo(), Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
// Koo [Note] (virtual@MCCodeEmitter) => X86MCCodeEmitter::encodeInstruction()
getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
// Update the fragment.
F.setInst(Relaxed);
F.getContents() = Code;
F.getFixups() = Fixups;
// Koo [Case 2] Relaxed instruction:
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel
// Note: The relaxable fragment could be re-evaluated multiple times for relaxation
// Thus update it only if the relaxable fragment has not been relaxed previously
if (relaxedBytes < Code.size() && ID.length() > 0) {
MAI->updateByteCounter(ID, Code.size() - relaxedBytes, 1 - fixupCtr, \
/*isAlign=*/ false, /*isInline=*/ false);
F.setRelaxedBytes(Code.size());
F.setFixup(1);
F.getFixups()[0].setFixupParentID(ID);
}
return true;
}
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
uint64_t OldSize = LF.getContents().size();
int64_t Value;
bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
if (!Abs)
report_fatal_error("sleb128 and uleb128 expressions must be absolute");
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
if (LF.isSigned())
encodeSLEB128(Value, OSE);
else
encodeULEB128(Value, OSE);
return OldSize != LF.getContents().size();
}
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
uint64_t OldSize = DF.getContents().size();
int64_t AddrDelta;
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
assert(Abs && "We created a line delta with an invalid expression");
(void) Abs;
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
AddrDelta, OSE);
return OldSize != Data.size();
}
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
uint64_t OldSize = DF.getContents().size();
int64_t AddrDelta;
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
assert(Abs && "We created call frame with an invalid expression");
(void) Abs;
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
return OldSize != Data.size();
}
bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
MCCVInlineLineTableFragment &F) {
unsigned OldSize = F.getContents().size();
getContext().getCVContext().encodeInlineLineTable(Layout, F);
return OldSize != F.getContents().size();
}
bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
MCCVDefRangeFragment &F) {
unsigned OldSize = F.getContents().size();
getContext().getCVContext().encodeDefRange(Layout, F);
return OldSize != F.getContents().size();
}
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
// Holds the first fragment which needed relaxing during this layout. It will
// remain NULL if none were relaxed.
// When a fragment is relaxed, all the fragments following it should get
// invalidated because their offset is going to change.
MCFragment *FirstRelaxedFragment = nullptr;
// Attempt to relax all the fragments in the section.
for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
// Check if this is a fragment that needs relaxation.
bool RelaxedFrag = false;
switch(I->getKind()) {
default:
break;
case MCFragment::FT_Relaxable:
assert(!getRelaxAll() &&
"Did not expect a MCRelaxableFragment in RelaxAll mode");
RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
break;
case MCFragment::FT_Dwarf:
RelaxedFrag = relaxDwarfLineAddr(Layout,
*cast<MCDwarfLineAddrFragment>(I));
break;
case MCFragment::FT_DwarfFrame:
RelaxedFrag =
relaxDwarfCallFrameFragment(Layout,
*cast<MCDwarfCallFrameFragment>(I));
break;
case MCFragment::FT_LEB:
RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
break;
case MCFragment::FT_CVInlineLines:
RelaxedFrag =
relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
break;
case MCFragment::FT_CVDefRange:
RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
break;
}
if (RelaxedFrag && !FirstRelaxedFragment)
FirstRelaxedFragment = &*I;
}
if (FirstRelaxedFragment) {
Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
return true;
}
return false;
}
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSection &Sec = *it;
while (layoutSectionOnce(Layout, Sec))
WasRelaxed = true;
}
return WasRelaxed;
}
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
getBackend().finishLayout(*this, Layout);
}